dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Improving the ensemble transform Kalman filter using a second-order Taylor approximation of the nonlinear observation operator
VerfasserIn G. Wu, X. Zheng, L. Wang, X. Liang, S. Zhang, X. Zhang
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 1, no. 1 ; Nr. 1, no. 1 (2014-04-11), S.543-582
Datensatznummer 250115085
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-1-543-2014.pdf
 
Zusammenfassung
The Ensemble Transform Kalman Filter (ETKF) assimilation scheme has recently seen rapid development and wide application. As a specific implementation of the Ensemble Kalman Filter (EnKF), the ETKF is computationally more efficient than the conventional EnKF. However, the current implementation of the ETKF still has some limitations when the observation operator is strongly nonlinear. One problem is that the nonlinear operator and its tangent-linear operator are iteratively calculated in the minimization of a nonlinear objective function similar to 4DVAR, which may be computationally expensive. Another problem is that it uses the tangent-linear approximation of the observation operator to estimate the multiplicative inflation factor of the forecast errors, which may not be sufficiently accurate.

This study seeks a way to avoid these problems. First, we apply the second-order Taylor approximation of the nonlinear observation operator to avoid iteratively calculating the operator and its tangent-linear operator. The related computational cost is also discussed. Second, we propose a scheme to estimate the inflation factor when the observation operator is strongly nonlinear. Experimentation with the Lorenz-96 model shows that using the second-order Taylor approximation of the nonlinear observation operator leads to a reduction of the analysis error compared with the traditional linear approximation. Similarly, the proposed inflation scheme leads to a reduction of the analysis error compared with the procedure using the traditional inflation scheme.
 
Teil von