dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Flood routing modelling with Artificial Neural Networks
VerfasserIn R. Peters, G. Schmitz, J. Cullmann
Medientyp Artikel
Sprache Englisch
ISSN 1680-7340
Digitales Dokument URL
Erschienen In: Integration of hydrological models on different spatial and temporal scales ; Nr. 9 (2006-09-26), S.131-136
Datensatznummer 250006582
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/adgeo-9-131-2006.pdf
 
Zusammenfassung
For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks.

To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting.

In order to solve this problem we tested the application of Artificial Neural Networks (ANN). First studies show the ability of adequately trained multilayer feedforward networks (MLFN) to reproduce the model performance.

 
Teil von