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Abstract. For the modelling of the flood routing in the
lower reaches of the Freiberger Mulde river and its tributaries
the one-dimensional hydrodynamic modelling system HEC-
RAS has been applied. Furthermore, this model was used to
generate a database to train multilayer feedforward networks.

To guarantee numerical stability for the hydrodynamic
modelling of some 60 km of streamcourse an adequate res-
olution in space requires very small calculation time steps,
which are some two orders of magnitude smaller than the in-
put data resolution. This leads to quite high computation re-
quirements seriously restricting the application – especially
when dealing with real time operations such as online flood
forecasting.

In order to solve this problem we tested the application
of Artificial Neural Networks (ANN). First studies show
the ability of adequately trained multilayer feedforward net-
works (MLFN) to reproduce the model performance.

1 Introduction

Recent extreme flood events in central Europe, e.g. the flood
of August 2002, which affected – amongst others – the catch-
ment of the Freiberger Mulde river, led to an increased de-
mand for fast and robust prediction tools.

The proper modelling of flood wave propagation faces
challenges like backwater effects at river junctions and wide
floodplains. To take this into account sophisticated hydro-
dynamic modelling is necessary. We applied the HEC-River
Analysis System (HEC-RAS), which is a one-dimensional
hydrodynamic model based on a numerical solution of the
St-Venant-equations. This allows – and requires – the use
of detailed topographical information representing the hy-
draulic properties of the river reaches. The river bed and the
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floodplains are described by geometrical data and roughness
parameters of representative cross sections. Obviously, the
accuracy of the model is related to the distance between the
cross sections.

To avoid numerical instabilities a high resolution in space
requires a small computation interval. This relationship is de-
scribed by the Courant criterion. In this study a mean cross
section distance of some 150 m corresponded to time steps of
about 15 seconds. This leads to relatively high computational
efforts. That is the reason why in case of real time operations
the application of such a highly sophisticated model is not
very functional. For this purpose fully robust and fast simu-
lation tools like ANN is needed.

Previous studies concerning the application of ANN for
the simulation of routing processes only used observed data.
Shrestha et al. (2005) trained MLFN for the purpose of flood
flow simulation at the Neckar river using a hydrodynamic nu-
merical model, but only to provide data for unobserved loca-
tions for historical flood events. The main problem remains
the lack of extrapolation capability. Or, as stated by Minns
and Hall (1996): “ANN are a prisoner of their training data”.
We used hydrodynamic modelling to generate a database for
the training of the MLFN covering the whole range of possi-
ble flood events. This guaranties the capability of the trained
MLFN to predict extreme events beyond recorded floods.

The methodology was successfully tested at the lower river
reaches of the Freiberger Mulde catchment (Fig. 1).

2 Methodology

A general description of the methodology in the form of a
flow chart is showed in Fig. 2. In the following the particular
steps will be portrayed in detail.
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Fig. 1. Detail of the portrayed river sections.

2.1 Hydrodynamic modelling

The foundation of the setup of the hydrodynamic model
(HEC-RAS, USACE1, 2002) are geometrical data of the
river bed and the floodplains. Terrestrial measurements may
not include floodplains and have to be complemented with
data of a digital elevation model using GIS (ArcView) com-
bined with the HEC-GeoRAS extension (USACE2, 2002).
Once the cross sections are defined, the Manning values have
to be assigned. For the main channel typical values accord-
ing to river section characteristics as slope and width can be
allocated. The Manning values of the floodplains correspond
to land use and are assigned by means of HEC-GeoRAS. To
obtain a sufficient resolution in space additional cross sec-
tions are interpolated.

Cross sections at gauging stations are appointed as upper
boundary locations (see Fig. 1). A normal depth provides
the lower boundary condition. To avoid interference with the
target gauge, it has to be located far enough downstream of
the target gauge. Internal boundary conditions represent lat-
eral inflow from subcatchments alongside the modeled river
sections.

For calibration and validation purposes the performance
of the hydrodynamic model is evaluated by using histori-
cal flood discharge hydrographs. To calibrate the model, the
Manning values have to be arranged to increase model per-
formance. Because of a relatively high uncertainty concern-
ing the rating curves at high water levels it seems evident that
absolute discharge values are not very significant parameters
for the evaluation of the model performance. Instead, the
flow peak propagation time is a much more meaningful mea-
sure.

2.2 Generation of the training data base

After obtaining a validated model for the river system, the
next step is to find relevant information for the training of

Fig. 2. Flow chart of the methodology.

an ANN. Before describing the applied network architecture
and the consequential selection of vectors of characteristic
features, we will explain some general properties of ANN.
Since Artificial Neural Networks are black box models, they
only got a restricted extrapolation ability. Therefore train-
ing a neural network requires sets of input and output data
covering the whole range of possible flood events. Observed
data will not accomplish this condition because continuous
measurements are only available for a few decades. To get a
more complete data set of possible flood events these are gen-
erated by applying the hydrodynamic numerical model. For
the generation of realistic sets of flood discharge hydrographs
as upper boundary conditions of the hydraulic model, a de-
tailed analysis of the upstream catchment was performed. All
relevant scenarios of weather situations containing the whole
range of realistically possible flood events were used in a cal-
ibrated rainfall-runoff-model. By this way we get flood hy-
drographs at the upper limits of the modelled river reaches.

2.3 Multilayer feedforward networks

Multilayer feedforward networks (MLFN, also referred to
as multilayer perceptrons) are simple but powerful and very
flexible tools for function approximation. Figure 3 shows the
basic structure of such a MLFN.

In general, MLFN map an input vector to an output vector
(or single output value). The input vector must contain all
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the relevant variable informations for the reproduction of the
network output. Therefore we will also refer to this input
vector as vector of characteristic features. The proper choice
of the values associating this input vector appears to be the
most important step in setting up the MLFN. All the constant
components of the modelling process like the cross section
geometry are represented by the trained network as a black
box system.

Such a network consists of several layers containing a
number of neurons. The inputs to any neuron of the first
layer are all the network inputs (normalised to between−1
and 1), at any other layer the neuron inputs are the outputs
of the neurons of the precedent layer. The outputs of every
neuron of the last layer are the network outputs. Therefore, it
is called output layer. All the others are referred to as hidden
layers.

A layer of neurons is determined by its weight matrix, a
bias vector and a transfer function. The adjustment of the
weight matrix and the bias vector is a matter of the network
training, the transfer functions get predifined. Inside a hidden
layer a sigmoid transfer function is applied which guarantees,
that the layer outputs remain inside the range between−1
and 1. The output layer applies a linear transfer function.

For this application a neural network with one hidden layer
was used. In fact, MLFN with a single hidden layer can ap-
proximate virtually any function of interest to any degree of
accuracy, provided sufficiently many neurons in the hidden
layer are available (Hornik et al., 1989). The actual number
of hidden neurons has to be estimated by trial and error. The
number of neurons in the output layer equals the number of
desired outputs.

For further reading on Artificial Neural Networks Hagan
et al. (1996) can be recommended.

2.4 Vector of characteristic features

Refering to the previous paragraph, the focus on the setup of
the MLFN is the choice of the input vector, i.e. the choice of
the relevant features. To keep the problem as simple as possi-
ble the output is limited to a single value of flow discharge at
a single cross section. (Likewise, this methodology has been
applied for stage values too.)

The information relevant for a single target value at a
downstream location consists of a finite number of discharge
values at the upper boundary locations. The aimin appoint-
ing the vector of characteristic features is, in fact, to find all
the upstream boundary discharge values that affect the tar-
get discharge value at the downstream location. Because of
dealing with continuous time series, these discharge values
are represented by time steps.

As a first step a sensitivity analysis of a single input value
to the output hydrograph has been performed – by applying
the hydrodynamic numerical model. The alteration of the
discharge value at the timestept0 of a single upstream bound-

Fig. 3. Structure of the MLFN.

ary condition influences the output hydrograph between the
time stepstmin andtmax (Fig. 4).

If t0 stands for time step number zero, the indices min and
max represent the numbers of the time steps, between which
the alteration of the input value shows an effect at the model
output.

Q(input, t0)− > Q(output, tn), min ≤ n ≤ max (1)

Q(input, t1)− > Q(output, tn), min+1 ≤ n ≤ max+1 (2)

. . . (3)

In reverse, assuming that there is only one upstream
boundary condition, a single output value at a certain time
stept0 is only influenced by the input values at the time steps
betweent(− max) andt(− min).

Q(input, tn), − max≤n≤− min− > Q(output, t0) (4)

Or:

Q(output, t0)=f (Q(input, tn),− max≤ n ≤ − min) (5)

That means, that the output value is a function of the in-
put values dating back betweentmin and tmax (Fig. 5). This
methodology has to be applied for every upstream boundary
location. The identified input values are the characteristic
features for the output values (case 1).

Furthermoretmin is identical with the forecast horizontfor.
So it is reasonable to augment this value, if the consequetial
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Fig. 4. Sensitivity of the the output hydrograph to a single input value.

Fig. 5. Assignation of time spans to the input vector.

loss in accuracy remains small. The number of characteris-
tic features decreases, and certainly the performance will de-
cline too. To which extendtfor can be increased, depends on
the specific catchment, but certainlytfor must not exceed the
flow peak propagation time of the main tributaries (case 2).

3 Study area and data

The Mulde catchment (2983 km2) at Erlln gauge, in the Ore
mountains (Erzgebirge, East Germany) serves as a first test
application of this new methodology. The elevation stretches
between some 1200 m and 140 m at the outlet. The land use
mainly consists of forest (30%), agricultural land (47%), the
remainder being urbanised terrain and fallow. It was heavily
affected by the flood of August 2002.

The river reaches in the study area (Fig. 1, Table 1) amount
to more than 60 km including parts of the Zschopau and
Striegis rivers. 551 cross sections with a mean distance of
120 metres characterise the river bed and the valley. The
cross sections are extracted from a digital elevation model
(20 m*20 m*0.1 m resolution) combined with data of a ter-
restrial survey from the late sixties.

The upper boundary conditions consist of flow hydro-
graphs at the inflow gauges, as described in Table 1. As
mentioned above, the lower boundary condition must not in-

fluence the target cross section at the Erlln gauge. Therefore,
a constant friction slope some 8 km downstream of Erlln was
appointed.

The discharge hydrographs at the upstream boundaries
represent about 90 percent of the total area at the outlet. The
remaining subcatchments are not equipped with gauging sta-
tions. To estimate their influence to the total discharge we
applied a rainfall-runoff-model with regionalised parameters.

The availability of discharge data with a resolution of one
hour is within the scope of expectancy. The mentioned flood
of 2002 resulted in a destruction of several gauging stations,
amongst them the gauging station at Erlln. The highest stages
recorded at every of the four gauges within the study area
date back to December 1974. This flood event was used for
validation purposes.

4 Results

The flow discharge hydrograph calculated by the hydrody-
namic model for the validation flood of 1974 (Fig. 8) shows
a good reproduction of the measured one. Rating curves have
considerable uncertainties in cases of extreme floods. That is
the reason why in these cases absolute values are not very
trustworthy. But criteria like the shape and the flood peak
propagation time prove to be a good model of the natural
system.

The hydrodynamic numerical modelling regarding geo-
metrical parameters and the distance between the cross sec-
tions requires computation intervals of some 15 seconds. For
the generation of the data base of possible extreme flood
events time series of 20 years had to be computed.

The application of this methodology for the estimation of
the input vector of the MLFN produces a result as shown
in Table 2. The internal boundary conditions representing
the lateral inflow are not independent from the other input
hydrographs and the respective subcatchments are relatively
small compared to the total catchment. Due to this they are
not represented in the input vector of the MLFN. The dots on
the hydrographs of the upstream gauges in Fig. 6 symbolise
the characteristic features for the single output value at the
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Table 1. Catchment characteristics of the study area.

Upper boundaries:

Gauge Tributary Area [km2] Mean flow [m3/s]

Kriebstein UP Zschopau 1757 24
Nossen Freiberger Mulde 585 7
Niederstriegis Striegis 283 2.7

Lower boundary:

Constant friction slope some 8 km downsteam of the target gauge at Erlln

Table 2. Propagation times to the Erlln gauging station.

Gauge Peak propagation time Influence interval

Kriebstein 6 h 3–9 h
Nossen 8 h 6–9 h
Niederstriegis 6 h 6–7 h

Fig. 6. Characteristic features (blue dots) for the target discharge
value (red dot).

target hydrograph (case 1). Reducing this set by the unfilled
dots keeps only values within a distance of at least 6 h (min-
imum flood peak propagation time) to the target value (case
2).

For both cases MLFN with 15 neurons in the hidden layer
were trained. Figure 7 shows a comparison of the network
outputs and the outputs of the hydrodynamic model (herein
referred to as targets) as normalised values. The mapped data
have not been used as training data. In both cases an excellent
performance of the trained MLFN can be reported.

Figure 8 compares the output of the MLFN (case 2) with
the output of the hydrodynamic model and the measured hy-
drograph for the 1974 flood event. The trained MLFN is able
to reproduce the performance of the physically based model
to a satisfying degree of precision.

Fig. 7. Correlation of MLFN output with output of HEC-RAS, left:
case 1, right: case 2).

Fig. 8. Performances of HEC-RAS and the MLFN for the flood
event of 1974.

Moreover, the application of the MLFN is much faster than
HEC-RAS. The calculation of a time series of one year takes
less than a second, compared to about 12 h with the hydrody-
namic numerical model.
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5 Conclusions

This contribution presented a new methodology to com-
bine hydrodynamic numerical modelling with artificial intel-
ligence. The goal is to overcome both the restricted extrap-
olation capabilities of artificial neural networks and the high
computation requirements concerning the application of so-
phisticated physically based modelling. The advantages of
the use of ANN for flood prediction purposes have been em-
phasised. Notwithstanding, the ability of a hydrodynamic
model to deal with extreme floods beyond recorded events
has been incorporated.

Moreover, the hydrodynamic numerical model is an ap-
propriate tool to find the characteristic features for the input
vector of the MLFN. This is the basis for an efficient utilisa-
tion of the input information.

In fact, the trained MLFN reproduces the model perfor-
mance in an excellent manner. The advantages of the use of
artificial intelligence are obvious: A noticeable decrease of
computation time may be useful for on-line flood forecast-
ing. Furthermore, by reducing the vector of characteristic
features the forecast horizon can be increased up to the flow
peak propagation time.
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