dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels
VerfasserIn K. Suffrian, P. Simonelli, J. C. Nejstgaard, S. Putzeys, Y. Carotenuto, A. N. Antia
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 5, no. 4 ; Nr. 5, no. 4 (2008-08-18), S.1145-1156
Datensatznummer 250002684
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-5-1145-2008.pdf
 
Zusammenfassung
Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3–9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37–0.99 d−1) and increased from ca. 2–3 to 6–12 μg l−1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l−1 (corresponding to 1.9 and 10.8 μmol C l−1), peaking on day 13–15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12–43% of the standing stock d−1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20–65% of the standing stock per day.
 
Teil von