|
Titel |
Predictability of extreme values in geophysical models |
VerfasserIn |
A. E. Sterk, M. P. Holland, P. Rabassa, H. W. Broer, R. Vitolo |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1023-5809
|
Digitales Dokument |
URL |
Erschienen |
In: Nonlinear Processes in Geophysics ; 19, no. 5 ; Nr. 19, no. 5 (2012-09-17), S.529-539 |
Datensatznummer |
250014244
|
Publikation (Nr.) |
copernicus.org/npg-19-529-2012.pdf |
|
|
|
Zusammenfassung |
Extreme value theory in deterministic systems is concerned with unlikely large
(or small) values of an observable evaluated along evolutions of the system. In
this paper we study the finite-time predictability of extreme values, such as
convection, energy, and wind speeds, in three geophysical models. We study
whether finite-time Lyapunov exponents are larger or smaller for initial
conditions leading to extremes. General statements on whether extreme values
are better or less predictable are not possible: the predictability of extreme
values depends on the observable, the attractor of the system, and the
prediction lead time. |
|
|
Teil von |
|
|
|
|
|
|