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Abstract. Extreme value theory in deterministic systems is state of the system. Secondly, forecasts are typically made
concerned with unlikely large (or small) values of an ob- ahead for only a few days up to weeks, whereas Lyapunov
servable evaluated along evolutions of the system. In this paexponents are asymptotic quantities, which are computed for
per we study the finite-time predictability of extreme values, time tending toward infinity.

such as convection, energy, and wind speeds, in three geo- Finite-time Lyapunov exponents (FTLES) measure the ex-
physical models. We study whether finite-time Lyapunov ex- ponential growth rate of nearby trajectories over a finite time,
ponents are larger or smaller for initial conditions leading to and typically they strongly depend on the initial condition.
extremes. General statements on whether extreme values aNese(1989 andAbarbanel et al(1991) showed that FTLES
better or less predictable are not possible: the predictabilityfor dynamical systems such as the Lorenz-63 model and the
of extreme values depends on the observable, the attractor é{€non map can be very different along various parts of the
the system, and the prediction lead time. attractor.Prasad and Ramaswar(®999 andDatta and Ra-
maswamy(2003 demonstrated that distributions of FTLESs
in intermittent dynamical systems are non-Gaussian, asym-
metric, and often have fat tails. Similarlyai (2007 found
universal distributions for FTLEs in systems having an at-
tractor consisting of two distinct components. For studies on
how FTLEs converge to their infinite-time counterparts see
Bailey et al.(1997), Ziehmann et al(1999 2000, and refer-
ences therein.

1 Introduction

Extreme value theory (EVT) for time serie§X;}>°;
studies the limiting distribution of the partial maxima
max(Xy,..., X,) asn — oo. EVT was originally developed

for time series of near-independent random variadleag- In this paper we study whether initial conditions leading

_better et al. 1983 Coles 2001 Beirlant et al, 2009, t_’Ut to extreme values have larger or smaller FTLEs and how this
m_the_last de“?de EVT has b_een extended _to chaotic dete{iepends on the prediction lead time and the attractor of the
.m'”'s“c dynamlcal systemsigiman 2003 Freitas and Fre- system. Sectiof introduces our concept of FTLEs based on
itas, 2008 F.re.|tas et al.201q Gupta 2010 Holland et al, norms that are tailored to the observable of interest, such as
2012ab; Felici et al, 20073gb). In the latter context one con- nergy, convection, or wind speed. In S&twe study the
siders time series generated by evaluating a scalar observab stribu’tion of FTLés as a function of lead time and thresh-

along evolutions of the system. old for three geophysical models: a spectral truncation of the

In thish pa[?]er Wﬁ ?t“dy;hg!‘f dicdtgbi_lit';y (.Jf extreme val- barotropic vorticity equation and the Lorenz-63 and Lorenz-
ues, rather than their probabi ity distribution. Lyapunov €X" 96 models. Section concludes the paper with a discussion.
ponents measure predictability, but they are not very usefulin

forecasting applications. Firsti@dselede¢1968 proved that
Lyapunov exponents are almost everywhere constant func-
tions of the initial condition. This means that all forecast out-
comes are equally (un)predictable regardless of the current
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Fig. 1. Distributions of the sef\; , for the Lorenz-63 model and observalgigon: box plots as a function of lead time for different
thresholds;. Boxes indicate the interquartile range, whiskers extend to the minimum and maximum values, and circles mark the median. For
each lead time, four thresholds are chosges: —oo (grey) and the 95th, 97th, and 99th percentiles of the observable (red, green, and blue,
respectively).

2 Methodology where Q = QT is a nonnegative definite x n matrix. In
this paper we exclusively focus on observations of the form

In summary, our methodology consists of checking whetherggs. @) and @).

initial conditions leading to extreme values typically have

larger or smaller finite-time Lyapunov exponents. 2.2 Finite-time Lyapunov exponents

2.1 Extreme events Infinitesimal errors in the initial condition of the system
o _ ) ) ) Eq. (1) in the directiornv evolve asL, (x)v, where the matrix

The setting is a system of ordinary differential equations 7, (x) is the solution of the matrix intial value problem

x=fkx), xeR", 1 .

/ W X —pr@nx. x©=1, (4)

and we denote the evolution operatordy. In addition, we

consider a scalar observahe R” — R. We define the ex- Which is often referred to as the tangent linear equation or

treme value domain as the set of points in phase space fdirst variational equation. The singular vectorsiofx) give

which the observable exceeds a threshpold the direction and magnitude of maximal error growth along
; a finite-time segment of an orbit in state spaBeigza and
E;={xeR":9(x) >q]}. Palmey 1995 Palmer et a].1998 Leutbecher and Palmer

We speak of an extreme event whenever a trajecioiit) 2008. _ o
enters the sek,. To measure the growth of perturbations over a time inter-
The papers on extreme value theory for dynamical system¥@l [0, 7], we use different norms at=0 and: = z. Let C

cited in the introduction focused on the case whetas the ~ Pe the initial error covariance matrix, and lete an orthog-
form onal projection matrix (i.eP = P2=PT). Let || - | denote

_ _ the Euclidean norm. The Rayleigh—Ritz quotient
¢ (x) = g(dist(x, X)),

2 T T
whereg : [0,00) — R is a continuous function and is a ||PL_r1(3;)v|£ =Y Lr()_cr) iLr(x)v
point on the attractor. However, as pointed outHbylland IC=2v]| v
etal.(20121), physically relevant observations are not of this j5 maximal if and only ifv is the right singular vector of
form. For example, geophysical quantities such as vorticityPLT(x)Cl/z associated with the largest singular value. We
or components of the velocity vector can often be written as yefine the timee finite-time Lyapunov exponents (FTLE) as

p(x)=q ' x, ()

whereq € R" is a nonzero vector. Positive quantities, such

as energy, enstrophy, or squared wind speeds can often be .
written a?sy P | P whereoy(x, 1) > 02(x, 1) > --- > 0,,(x, T) are the singular

values of P L. (x)C¥2. In the following we assume that the
d(x) =x"'0Ox, 3) initial error covariance” is the identity matrix.

®)

1
Ai(x,T) = ;Iogcri(x,t), i=1...,n,
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Table 1. Descriptive statistics for the observables used with the three models.

Model Observable Min Mean Max  95th percentile  97th percentile  99th percentile
Lorenz-63 Pcon —-19.13 0.04 19.09 13.34 14.27 15.66
den 9.57 77242 2630.22 1744.66 1859.84 2058.29
Barotropic vorticity  ¢siq 235.36  659.17  960.70 879.78 891.16 928.99
equation dtop 0.00 43.28 1044.14 191.44 254.23 406.08
dval 2.13 43042 974.70 711.20 757.27 851.57
Lorenz-96 den 399.40 674.20 1009.50 795.50 814.20 849.50

We choose the projection matrixsuch that the singular vec- To study the predictability of extreme events, we define the
tors will point in the direction of maximal growth of the ob- set

servablep. For an observable of the form E@)(we set
Arg={r(x,7) | x € Sandd.(x) € E; }

qq"
= W containing the FTLEs for initial conditions such that after
7 units of time the observable exceeds the threshold/e
so that study how the distribution of this set changes as the lead time
5 P(x)? 7 and threshold increase. For fixed lead times we compare
1P|l = g2 the distributions of the set. , for g = —oco (the entire sam-

) ple) and forg being the 95th, 97th, and 99th percentiles of
In case of observable Eq@)( recall that a symmetric non- o sample

negative definite x n matrix hask < n positive eigenvalues
u1>---> ur > 0and the corresponding eigenvectgrare {op(x) | x e S}

orthonormal. We can rewrite EB)(as
If FTLESs cluster to larger positive (smaller negative) values

k X .
wheng increases, then extremes are less (better) predictable.
p(x)=x"0x = E i (g, %)% q ( )P
i=1

In this case we set 3 Results
p_ Xk: T We apply the methodology of Se@.to three geophysical

- 4_1q’q" models: the Lorenz-63 and Lorenz-96 models and a spec-

= tral truncation of the barotropic vorticity equation. As obser-
so that vations we will take energy, convection, and squared wind
k speeds.
1Px?=" (g %)%
i=1 3.1 The Lorenz-63 model

and In this section we consider the classical model for Rayleigh—
will Px|1? < ¢ (x) < pa| Px||°. Bénard convection derived lyrenz(1963:
Hence, they (x) is large if and only if| Px|| is large. x=o0(y—x), y=x(p—2)—y, z=xy-—pz (6)
2.3 Predictability of extreme values with the classical parameter values= 10, p = 28, ands =

8/3. We use the observables
We fix an initial pointxg on the attractor and a sampling fre- o o
quencyw > 0 and compute a sample of points along an orbit®con(x, y,2) =x and ¢en(x,y,2) =x“+y°+z

on the attractor: . . : .
that respectively measure the intensity of convection and the

S={Pr/wx0) | k=1,...,N }. total energy. For the projection matrix in E&)(we respec-
- . tively take

We choosev andN sufficiently large to provide a good sam-

pling of the attractor as far as both local and global fluctua- 100 100

tions are concerned. Typically, we take= 10°, whereasy Peon=]000] and Po,=|010

depends on the time scale of the system of interest. 000 001
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Fig. 2. Projection of the Lorenz-63 attractor on tle, z)-plane ©r=15
with colours indicating the magnitude of the maximal time&TLE.

Black dots mark initial conditions leading to an exceedance of_Fig' 3. AsFig.2, but_forthe observabligen. Initial conditions_ Iead-_
the 95th percentile of the observahigon. For = 0.25, initial ing to extremes typically also have a large FTLE, and this persists

conditions leading to extremes typically have low FTLE, but for for larger lead times.
t = 0.25, they typically have a large FTLE. This difference van-
ishes for longer lead times.

negative FTLE. This suggest that extreme values of convec-

By numerical integration we computed a samplevof 10° tion are well-predictable up to small lead times. For 0.25
points on the attractor using the sample frequaney 100. more than 75 percent of the initial conditions leading to an
Table 1 lists some statistics of the observables evaluated aexceedance of the 99th quantile have a FTLE that is larger
the sample points. than the median ok, _,, which indicates that extreme val-

Figure 1 shows how the distribution of the set., ues for this lead time are less predictable. When the lead time
changes with lead time and threshgldor the observable r increases, the distributions af; , for different thresholds
¢con- Forr <0.25 more than 75 percent of the inital condi- ¢ become similar; this suggests that the difference in pre-
tions leading to an exceedance of the 99th percentile have dictability between extremes and non-extremes disappears.

Nonlin. Processes Geophys., 19, 52839, 2012 www.nonlin-processes-geophys.net/19/529/2012/
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Fig. 4. As Fig. 1, but for the observablgen.

Figure4 shows how the distribution of the sat, , changes
with increasing lead time and threshold for the observable mb
¢en. For all lead timeg almost all initial conditions leading
to an exceedance of the 95th percentile of the energy have a
FTLE that is larger than the median af, _,. This means
that in this case extreme values of the energy observahle
are systematically less predictable than non-extreme values.
Only for lead times much longer than= 1.75, the distribu-
tions of A, for different quantilesy become similar (not
shown).

Figures2 and 3 show how for the observablefq, and
¢en the FTLEs vary on different parts on the attractor for
various lead times. Black dots mark the initial conditions
which lead to an exceedance of the 95th percentile within the
stated lead time. For short lead times, initial conditions with
large FTLE are located in the central region of the attractor
where the two wings of the butterfly-shaped attractor cross
each other. When the lead time increases the unpredictable
regions quickly spread out on the entire attractor. The initial
conditions leading to extreme energy values systematically
coincide with the parts on the attractor having larger FTLEs,
whereas initial conditions leading to extreme convection doFig. 5. Contour plots of the stream function fields of the zonal

21

b

not. regime (top) and blocked regime (bottom) in the barotropic vor-
ticity Eq. (8). Blue dots mark the locations of the three wind speed
3.2 The barotropic vorticity equation observables (see main text).

In this section we consider the barotropic vorticity equation
(BVE) for atmospheric flow over orography:

a
—AY =—JW, Ay + By +yh) —CAW — ), () _3fdg 9fds
at J(f = o
dx dy  dy ox
wherey is the stream function)* is the forcing,8y is the
Coriolis force,h is the orography, and is the Laplace op- The domain i§0, 2] x [0, 7 b], whereb equals twice the as-
erator. In addition/ is the Jacobian operator: pect ratio of the8B—plane channel. We take periodic boundary

conditions inx and fory = 0, = b, we require
2

d
Mo [Wazo
ox ay
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Table 2. Parameters and coefficients of the model Byag used byrommelin et al(2004).

Par Value Par Value Par Value

c 01 ay  32V2(2+3)/15r(b%+4) y 0.2

b 05 B 54 i A2by/3rb?+1)
¥r 095 1 Bb2/ (B2 +1) y2  32V2by /157 (b2 +4)
r -0.801 Bo B2/ (B2 +4) 71 AV2by/3n

vy ri 81 64V2b%/157 (b2 + 1) 72 8V2by/157

a1 8223 (b2 +1) 8»  64V2(b°—3)/15m (b2 +4) &  16V2/57
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Fig. 6. As Fig.1, but for the model Eqg.8) with observableps;q.

which respectively mean that on the lateral boundaries theypically taking 30 days, (2) transitions from blocked to zonal
northward component of the velocity vanishes and that theflows, typically taking 40-80 days, and (3) spiraling be-
net zonal flow is zero. haviour around the zonal regime, typically lasting more than
Charney and DeVorgl 979 studied a 3-dimensional spec- 200 days. This intermittent behaviour can be explained by
tral truncation of Eq. 7), and detected coexisting equilib- the presence of Shil'nikov-like strange attractors, due to ho-
ria representing blocked and zonal flow pattefde.Swart ~ moclinic bifurcations taking place near a Hopf-saddle-node
(1989 studied higher order truncations, including the 6- bifurcation Broer and Vegter1 984 Broer and Vitolg 2008.

dimensional truncation As observable we use the squared wind speed at several
o n - locations in theg-plane channel. In Appendid we show
I/_’l = 13— CWY1— ). that the east- and northward components of the wind vector at
1}2 — —(omh _ 51),}3 _ CI/A/2 _ 311/}41@6, (x, X) can be computed from the state veotoaSqlTw and
i . . e Cit 51l q, ¥, whereg, g» € R® are orthogonal vectors depending
?3 = (ay1—pyyY2—y1v1— Cz+81vays, @) on(x, y). Hence, the squared wind speed at locationy) is
V4 = P2v6 — C(Yra — V1) + e (Yraths — Vavs), given by
s = — (@1 — B2)ie — Cilis — Splratla, S = (] ¥)? + (a3 V) =¥ T (qu9] + 242V

126 — (a2l — B s — yavia— Ciis + Savaiia. For the pTrojectionTmatrix in Eq5f we take

We study this model with the parametersbmmelinetal. p — 2291, 9292

(2004, which are listed in Table. With this choice the lqall> N2l

channel[0, 2] x [0, 7b] has dimensions 50001250km,  We will study the extreme wind speeds at three locations: the

the orographyi(x, y) = cogx)sin(y/b) has a dimensional side of the orographyx, y) = (0,37 b/4), the top(x, y) =

amplitude of 200 m, and one unit of time corresponds to oneg(0, 7b/2), and the valleyx, y) = (r, 7b/2), see Figh. The

day. corresponding wind speed observables are denotefd;fy
Crommelin et al(2004 found intermittent transitions be-  ¢iop, andeya. By numerical integration we computed a sam-

tween two regions in state space corresponding to zonal angle of N = 10° points on the attractor using the sample fre-

blocked flows, see Fich. The dynamics consists of three re- quencyw = 2. Tablel lists some statistics of the observables

current episodes: (1) transitions from zonal to blocked flows,evaluated at the sample points.

Nonlin. Processes Geophys., 19, 52839, 2012 www.nonlin-processes-geophys.net/19/529/2012/
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Fig. 7. As Fig.6, but for the observablgiop.
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Fig. 8. As Fig.6, but for the observable, ).

Figures6, 7, and8 show how the distributions of the set the unpredictable parts of the attractor. Kgg the initial
A+ 4 change with lead time and threshold; for three ob-  conditions leading to extremes intersect the more predictable
servablespsig, top, andeval. FOr ¢sig the initial conditions  regions on the attractor.
leading to extremes systematically have a large FTLE, which
means that ex_tr_emes are less predlctableqbﬁ)gr_the FTLI_Es 3.3 The Lorenz-96 model
for initial conditions leading to extremes are highly variable.
In this case one cannot say that extremes are either better ) )
or less predictable than generic events. Finally,dj the The Lqrenz—96 model is a conceptual model for. traveling
FTLEs for initial conditions leading to extremes are system-WaVeS 'g the atmp s_pl)hgrlac(renzh 13_59@' _Th|s mo((jdellalsi useld
atically low: more than 75% of the initial conditions leading to test :ta gss_zm atllon metho r_(éV|§an an ?atelg
to extremes have an FTLE smaller than the median FTLE f0r201]) and subgrid scale parameterlzatloﬁsqmme In an
all events Vanden-Eijnden2008. Although the model is not derived

Figures9—-11show the FTLESs vary on different parts of the ;rom ph;t/]sic.al Iprinciplle.sf it has fgatgreg which are typical
attractor. For all observables the initial conditions with large or geophysical models: forcing, dissipation, and energy pre-

FTLE are located near the zonal regime and the initial condi->€MvIng quadratic terms.

tions with small FTLE are located near the blocked regime. The model variablesy, ..., x, can be interpreted as me-

This separation persists remarkably for increasing lead timet_eorologlcal quantities, such as pressure or vorticity, along a

This is very different from the Lorenz-63 attractor, for which circle of constant latitude where the inderf each variable
the unpredictable regions quickly spread out along the attrac? plays the role of longitude. The dynamical equations are
tor. For the observablessig and ¢top the initial conditions

leading to extreme wind speeds systematically coincide withgy;

E=xi—1(xi+1—xi—2)—xi+F, i=1..,n>3 (9)

www.nonlin-processes-geophys.net/19/529/2012/ Nonlin. Processes Geophys., 1953992012
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Fig. 9. Projection on thexﬁg, Jl)-plane of a the attractor of ECBY Fig. 10. As Fig.9, but for observableiop. In this case initial con-
with colour indicating the magnitude of the maximal timé&TLE. ditions leading to large wind speeds are not confined to the unpre-
The grey circle (square) indicates the point in phase space corredictable region of the attractor.

sponding with the zonal (blocked) regime of FigBlack dots mark

initial conditions leading to an exceedance of the 95th percentile of

the observablesig. Note that initial conditions leading to highwind - jiq¢¢ some statistics of the observable evaluated at the sample
speeds are located near the zonal regime, where also the FTLES a{)eoints
large. )

Figure 12 shows how the distribution of the set.,
changes with lead time and threshold. For all lead times
7, the distribution of the maximal FTLE does not change very
much with increasing threshodd This suggests that extreme
values of the energy observable are neither better nor less
predictable than non-extreme values.

with periodic “boundary conditions¥; , = x;. The dimen-
sionn and forcingF > 0O are free parameters. We set 36
and F = 8, which were originally used by Lorenz.

We use the observable

n
Gen(x) = lez 4 Conclusions and discussion
i1

In this paper we investigated the predictability of extreme
which measures the total energy of the system. For the provalues in geophysical models. We studied how FTLEs de-
jection in Eq. B), we take the identity matrix. By numeri- pend on forecast lead time and the threshold on the ob-
cal integration we computed a sampledf= 10° points on  servable. General statements on whether extreme values are
the attractor using the sample frequeney= 100. Tablel better or worse to predict are not possible. Whether initial

Nonlin. Processes Geophys., 19, 52839, 2012 www.nonlin-processes-geophys.net/19/529/2012/
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Table 3. The predictability of extreme values for the three models
! 0.5 with different observables.

R il Model Obs. Predictability of extremes
.ﬁ_/“ — 0.4 -
Lorenz-63 ¢con For lead times up ta = 0.25 extremes

(((g ‘\\'\%:" - are well-predictable (negative FTLES),

= but for longer lead times they are just as

i & — 03 predictable as non-extremes.
G\k%‘}« den For lead times up to = 01.75 extremes
« X3 0.2 are less predictable than non-extremes.
& BVE ¢sia Extremes are less predictable, and this
= persists up to long lead times due to the
- 0.1 intermittent nature of the dynamics.
¥s ¢top  Extremes are neither better nor less
(@7=05 predictable than non-extremes.
¢val Extremes are better predictable than
0.4 non-extremes

I Lorenz-96 ¢en Extremes are neither better nor less

predictable than non-extremes.

— 0.3

5 the MOGREPS system of the UK Met OfficBdwler et al,
2008.

L1 0.2 Another important question is: how predictable are real-
world extremes, such as wind storms? Large-scale flow pat-
terns, such as the North Atlantic Oscillation, cause tempo-
ral clustering of stormsMailier et al, 2006 Vitolo et al.,

- 0.1 2009. The emergence of these patterns might be a manifes-
3 tation of intermittency, i.e. the irregular alternation between
(b) T =2.5 phases of chaotic and non-chaotic, such as steady or peri-

odic dynamics Pomeau and Mannevilld980. For exam-
Fig. 11. As Fig.9, but for observabley. In this case initial con- ~ Pl€, the spectral truncation EcB)(of the barotropic vortic-
ditions leading to large wind speeds are located in the more preity equation exhibits intermittent transitions between zonal
dictable regions of the attractor. and blocked flows due to Shil'nikov-like strange attractors
appearing near a Hopf-saddle-node bifurcatiGnofnmelin
etal, 2004 Broer and Vitolg 2008 Broer and Vegterl984).
Other forms of intermittency due to bifurcations of planetary

conditions leading to extreme values have larger FTLEs deV@ves have been detected in low-order models of the shal-
ow water equationsSterk et al. 2010. Because different

pends on (1) the observable, (2) the attractor of the systerﬂ_, i X

and (3) the prediction lead time. TatBepresents the main intermittent phases can have different error growth rates, the

conclusion for each model/observable pair. emergence of large-scale flow patterns might enhance pre-
FTLEs measure forecast error growth rate under the asdictability of extremes.

sumption that errors in the initial condition are infinitesi- _Finally, we note that FTLEs might not be the best
mally small. For finite-size, but small, errors, the maximal measures of finite-time predictability. A different approach

FTLE still is a good estimate of error growthigrle et al, ~ Would be to apply techniques based on Takens’ reconstruc-
2006. For larger errors, however, error growth may no Iongert'on theorem, such as correlation integrals apd entropy; see
be exponential and this will also effect the predictability of Broer and Takeng201]) and references therein. Such tech-

extreme values. The present study should, therefore, be eXiidues have been applied to develegrly warning systems

tended to the setting of ensemble forecasts in which the prefor thermal excursions in chemical reactoraldivar et al,

dictability of extremes is measured in terms of the dispersion?009- Potentially, these techniques can be useful in the pre-
of ensemble members. This approach would also be more arg_lcnon of extreme valqes in geophysical appllcatlons. V\/.e.be—
propriate for operational weather forecasting models without€ve that these questions and problems will have sufficient
a tangent linear model needed to compute FTLEs, such aRotential for future research.

www.nonlin-processes-geophys.net/19/529/2012/ Nonlin. Processes Geophys., 1953992012
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Fig. 12. As Fig. 1, but for the Lorenz-96 model EcQYwith observablejen.

Appendix A and
Wind speed in the barotropic vorticity equation . 0 i
—2bsin(x) sin(y/b)
The stream function can be computed from the spectral coefy, — 2bcosx)sin(y/b)
ficientsy; by _ 0 _
—2bsin(x) sin(2y/b)
2bcogx)sin(2y/b)

¥ (x, y) = bv/2y1 oSy /b) + b/ 214 c08(2y /b)
+ 2b{ir> cOSx) + Y3 Sin(x)} sin(y/b) Note that the vectorg; andg, are orthogonal.

+ 2b{{i5cogx) + PgSin(x)} sin(2y /b).
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