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Abstract. Extreme value theory in deterministic systems is
concerned with unlikely large (or small) values of an ob-
servable evaluated along evolutions of the system. In this pa-
per we study the finite-time predictability of extreme values,
such as convection, energy, and wind speeds, in three geo-
physical models. We study whether finite-time Lyapunov ex-
ponents are larger or smaller for initial conditions leading to
extremes. General statements on whether extreme values are
better or less predictable are not possible: the predictability
of extreme values depends on the observable, the attractor of
the system, and the prediction lead time.

1 Introduction

Extreme value theory (EVT) for time series{Xi}∞i=1
studies the limiting distribution of the partial maxima
max(X1, . . . ,Xn) asn→ ∞. EVT was originally developed
for time series of near-independent random variables (Lead-
better et al., 1983; Coles, 2001; Beirlant et al., 2004), but
in the last decade EVT has been extended to chaotic deter-
ministic dynamical systems (Haiman, 2003; Freitas and Fre-
itas, 2008; Freitas et al., 2010; Gupta, 2010; Holland et al.,
2012a,b; Felici et al., 2007a,b). In the latter context one con-
siders time series generated by evaluating a scalar observable
along evolutions of the system.

In this paper we study thepredictability of extreme val-
ues, rather than their probability distribution. Lyapunov ex-
ponents measure predictability, but they are not very useful in
forecasting applications. Firstly,Oseledec(1968) proved that
Lyapunov exponents are almost everywhere constant func-
tions of the initial condition. This means that all forecast out-
comes are equally (un)predictable regardless of the current

state of the system. Secondly, forecasts are typically made
ahead for only a few days up to weeks, whereas Lyapunov
exponents are asymptotic quantities, which are computed for
time tending toward infinity.

Finite-time Lyapunov exponents (FTLEs) measure the ex-
ponential growth rate of nearby trajectories over a finite time,
and typically they strongly depend on the initial condition.
Nese(1989) andAbarbanel et al.(1991) showed that FTLEs
for dynamical systems such as the Lorenz-63 model and the
Hénon map can be very different along various parts of the
attractor.Prasad and Ramaswamy(1999) andDatta and Ra-
maswamy(2003) demonstrated that distributions of FTLEs
in intermittent dynamical systems are non-Gaussian, asym-
metric, and often have fat tails. Similarly,Lai (2007) found
universal distributions for FTLEs in systems having an at-
tractor consisting of two distinct components. For studies on
how FTLEs converge to their infinite-time counterparts see
Bailey et al.(1997), Ziehmann et al.(1999, 2000), and refer-
ences therein.

In this paper we study whether initial conditions leading
to extreme values have larger or smaller FTLEs and how this
depends on the prediction lead time and the attractor of the
system. Section2 introduces our concept of FTLEs based on
norms that are tailored to the observable of interest, such as
energy, convection, or wind speed. In Sect.3 we study the
distribution of FTLEs as a function of lead time and thresh-
old for three geophysical models: a spectral truncation of the
barotropic vorticity equation and the Lorenz-63 and Lorenz-
96 models. Section4 concludes the paper with a discussion.
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Model Observable Min Mean Max 95th percentile 97th percentile 99th percentile
Lorenz–63 φcon -19.13 0.04 19.09 13.34 14.27 15.66

φen 9.57 772.42 2630.22 1744.66 1859.84 2058.29
Barotropic vorticity φsid 235.36 659.17 960.70 879.78 891.16 928.99
equation φtop 0.00 43.28 1044.14 191.44 254.23 406.08

φval 2.13 430.42 974.70 711.20 757.27 851.57
Lorenz–96 φen 399.40 674.20 1009.50 795.50 814.20 849.50

Table 1: Descriptive statistics for the observables used with the three models.
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Fig. 1: Distributions of the setΛτ,q for the Lorenz–63 model and observableφcon: box plots as a function of lead timeτ
for different thresholdsq. Boxes indicate the interquartile range, whiskers extend to the minimum and maximum values, and
circles mark the median. For each lead time four thresholds are chosen:q=−∞ (gray) and the 95th, 97th, and 99th percentiles
of the observable (resp. red, green, and blue).

2.1 Extreme events

The setting is a system of ordinary differential equations

ẋ= f(x), x∈R
n, (1)

and we denote the evolution operator byΦt. In addition,
we consider a scalar observableφ :Rn →R. We define the
extreme value domain as the set of points in phase space for
which the observable exceeds a thresholdq:

Eq = {x∈R
n :φ(x)>q}.

We speak of an extreme event whenever a trajectoryΦt(x)
enters the setEq.

The papers on extreme value theory for dynamical systems
cited in the introduction focused on the case whereφ has the
form

φ(x)= g(dist(x,x̃)),

whereg : [0,∞)→ R is a continuous function and̃x is a
point on the attractor. However, as pointed out by Holland
et al. (2012b), physically relevant observations are not ofthis

form. For example, geophysical quantities such as vorticity
or components of the velocity vector can often be written as

φ(x)= q⊤x (2)

whereq ∈R
n is a nonzero vector. Positive quantities, such

as energy, enstrophy, or squared wind speeds, can often be
written as

φ(x)= x⊤Qx (3)

whereQ=Q⊤ is a nonnegative definiten×nmatrix. In this
paper we exclusively focus on observations of the form (2)
and (3).

2.2 Finite-time Lyapunov exponents

Infinitesimal errors in the initial conditionx of the system (1)
in the directionv evolve asLt(x)v, where the matrixLt(x)
is the solution of the matrix intial value problem

Ẋ =Df(Φt(x))X, X(0)= I, (4)

which is often referred to as the tangent linear equation or
first variational equation. The singular vectors ofLt(x) give

Fig. 1. Distributions of the set3τ,q for the Lorenz-63 model and observableφcon: box plots as a function of lead timeτ for different
thresholdsq. Boxes indicate the interquartile range, whiskers extend to the minimum and maximum values, and circles mark the median. For
each lead time, four thresholds are chosen:q = −∞ (grey) and the 95th, 97th, and 99th percentiles of the observable (red, green, and blue,
respectively).

2 Methodology

In summary, our methodology consists of checking whether
initial conditions leading to extreme values typically have
larger or smaller finite-time Lyapunov exponents.

2.1 Extreme events

The setting is a system of ordinary differential equations

ẋ = f (x), x ∈ Rn, (1)

and we denote the evolution operator by8t . In addition, we
consider a scalar observableφ : Rn → R. We define the ex-
treme value domain as the set of points in phase space for
which the observable exceeds a thresholdq:

Eq = {x ∈ Rn : φ(x) > q}.

We speak of an extreme event whenever a trajectory8t (x)

enters the setEq .
The papers on extreme value theory for dynamical systems

cited in the introduction focused on the case whereφ has the
form

φ(x)= g(dist(x, x̃)),

whereg : [0,∞)→ R is a continuous function and̃x is a
point on the attractor. However, as pointed out byHolland
et al.(2012b), physically relevant observations are not of this
form. For example, geophysical quantities such as vorticity
or components of the velocity vector can often be written as

φ(x)= q>x, (2)

whereq ∈ Rn is a nonzero vector. Positive quantities, such
as energy, enstrophy, or squared wind speeds can often be
written as

φ(x)= x>Qx, (3)

whereQ=Q> is a nonnegative definiten× n matrix. In
this paper we exclusively focus on observations of the form
Eqs. (2) and (3).

2.2 Finite-time Lyapunov exponents

Infinitesimal errors in the initial conditionx of the system
Eq. (1) in the directionv evolve asLt (x)v, where the matrix
Lt (x) is the solution of the matrix intial value problem

Ẋ =Df (8t (x))X, X(0)= I, (4)

which is often referred to as the tangent linear equation or
first variational equation. The singular vectors ofLt (x) give
the direction and magnitude of maximal error growth along
a finite-time segment of an orbit in state space (Buizza and
Palmer, 1995; Palmer et al., 1998; Leutbecher and Palmer,
2008).

To measure the growth of perturbations over a time inter-
val [0,τ ], we use different norms att = 0 andt = τ . Let C
be the initial error covariance matrix, and letP be an orthog-
onal projection matrix (i.e.P = P 2

= P>). Let ‖ · ‖ denote
the Euclidean norm. The Rayleigh–Ritz quotient

‖PLτ (x)v‖
2

‖C−1/2v‖2
=
v>Lτ (x)

>PLτ (x)v

v>C−1v
(5)

is maximal if and only ifv is the right singular vector of
PLτ (x)C

1/2 associated with the largest singular value. We
define the time-τ finite-time Lyapunov exponents (FTLE) as

λi(x,τ )=
1

τ
log σi(x,τ ), i = 1, . . . ,n,

whereσ1(x,τ )≥ σ2(x,τ )≥ ·· · ≥ σn(x,τ ) are the singular
values ofPLτ (x)C1/2. In the following we assume that the
initial error covarianceC is the identity matrix.
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Table 1. Descriptive statistics for the observables used with the three models.

Model Observable Min Mean Max 95th percentile 97th percentile 99th percentile

Lorenz-63 φcon −19.13 0.04 19.09 13.34 14.27 15.66
φen 9.57 772.42 2630.22 1744.66 1859.84 2058.29

Barotropic vorticity φsid 235.36 659.17 960.70 879.78 891.16 928.99
equation φtop 0.00 43.28 1044.14 191.44 254.23 406.08

φval 2.13 430.42 974.70 711.20 757.27 851.57

Lorenz-96 φen 399.40 674.20 1009.50 795.50 814.20 849.50

We choose the projection matrixP such that the singular vec-
tors will point in the direction of maximal growth of the ob-
servableφ. For an observable of the form Eq. (2), we set

P =
qq>

‖q‖2

so that

‖Px‖2
=
φ(x)2

‖q‖2
.

In case of observable Eq. (3), recall that a symmetric non-
negative definiten×nmatrix hask ≤ n positive eigenvalues
µ1 ≥ ·· · ≥ µk > 0 and the corresponding eigenvectorsqi are
orthonormal. We can rewrite Eq. (3) as

φ(x)= x>Qx =

k∑
i=1

µi(q
>

i x)
2.

In this case we set

P =

k∑
i=1

qiq
>

i

so that

‖Px‖2
=

k∑
i=1

(q>

i x)
2,

and

µk‖Px‖
2
≤ φ(x)≤ µ1‖Px‖

2.

Hence, theφ(x) is large if and only if‖Px‖ is large.

2.3 Predictability of extreme values

We fix an initial pointx0 on the attractor and a sampling fre-
quencyω > 0 and compute a sample of points along an orbit
on the attractor:

S = { 8k/ω(x0) | k = 1, . . . ,N }.

We chooseω andN sufficiently large to provide a good sam-
pling of the attractor as far as both local and global fluctua-
tions are concerned. Typically, we takeN = 106, whereasω
depends on the time scale of the system of interest.

To study the predictability of extreme events, we define the
set

3τ,q = {λ1(x,τ ) | x ∈ S and8τ (x) ∈ Eq }

containing the FTLEs for initial conditions such that after
τ units of time the observable exceeds the thresholdq. We
study how the distribution of this set changes as the lead time
τ and thresholdq increase. For fixed lead times we compare
the distributions of the set3τ,q for q = −∞ (the entire sam-
ple) and forq being the 95th, 97th, and 99th percentiles of
the sample

{φ(x) | x ∈ S }.

If FTLEs cluster to larger positive (smaller negative) values
whenq increases, then extremes are less (better) predictable.

3 Results

We apply the methodology of Sect.2 to three geophysical
models: the Lorenz-63 and Lorenz-96 models and a spec-
tral truncation of the barotropic vorticity equation. As obser-
vations we will take energy, convection, and squared wind
speeds.

3.1 The Lorenz-63 model

In this section we consider the classical model for Rayleigh–
Bénard convection derived byLorenz(1963):

ẋ = σ(y− x), ẏ = x(ρ− z)− y, ż= xy−βz, (6)

with the classical parameter valuesσ = 10,ρ = 28, andβ =

8/3. We use the observables

φcon(x,y,z)= x and φen(x,y,z)= x2
+ y2

+ z2

that respectively measure the intensity of convection and the
total energy. For the projection matrix in Eq. (5), we respec-
tively take

Pcon =

1 0 0
0 0 0
0 0 0

 and Pen =

1 0 0
0 1 0
0 0 1

 .
www.nonlin-processes-geophys.net/19/529/2012/ Nonlin. Processes Geophys., 19, 529–539, 2012



532 A. E. Sterk et al.: Predictability of extreme values in geophysical models
4 A.E. Sterk et al.: Predictability of extreme values in geophysical models

study how the distribution of this set changes as the lead time
τ and thresholdq increase. For fixed lead times we compare
the distributions of the setΛτ,q for q=−∞ (the entire sam-
ple) and forq being the 95th, 97th, and 99th percentiles of
the sample

{φ(x) | x∈S}.
If FTLEs cluster to larger positive (smaller negative) values
whenq increases, then extremes are less (better) predictable.

3 Results

We apply the methodology of Section 2 to three geophysical
models: the Lorenz–63 and Lorenz–96 models and a spec-
tral truncation of the barotropic vorticity equation. As obser-
vations we will take energy, convection, and squared wind
speeds.

3.1 The Lorenz–63 model

In this section we consider the classical model for Rayleigh–
Bénard convection derived by Lorenz (1963):

ẋ= σ(y−x), ẏ= x(ρ−z)−y, ż= xy−βz, (6)

with the classical parameter valuesσ=10, ρ=28, andβ =
8/3. We use the observables

φcon(x,y,z)= x and φen(x,y,z)= x2+y2+z2

which respectively measure the intensity of convection and
the total energy. For the projection matrix in (5) we respec-
tively take

Pcon=



1 0 0
0 0 0
0 0 0


 and Pen =



1 0 0
0 1 0
0 0 1




By numerical integration we computed a sample ofN =106

points on the attractor using the sample frequencyω=100.
Table 1 lists some statistics of the observables evaluated at
the sample points.

Fig. 1 shows how the distribution of the setΛτ,q changes
with lead time and thresholdq for the observableφcon. For
τ ≤ 0.25 more than 75 percent of the inital conditions lead-
ing to an exceedance of the 99th percentile have a negative
FTLE. This suggest that extreme values of convection are
well-predictable up to small lead times. Forτ > 0.25 more
than 75 percent of the initial conditions leading to an ex-
ceedance of the 99th quantile have a FTLE which is larger
than the median ofΛτ,−∞, which indicates that extreme val-
ues for this lead time are less predictable. When the lead time
τ increases the distributions ofΛτ,q for different thresholds
q become similar; this suggests that the difference in pre-
dictability between extremes and non-extremes dissappears.

Fig. 2 shows how the distribution of the setΛτ,q changes
with increasing lead time and threshold for the observable
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Fig. 3: Projection of the Lorenz–63 attractor on the(x,z)-
plane with colours indicating the magnitude of the maximal
time-τ FTLE. Black dots mark initial conditions leading to
an exceedance of the 95th percentile of the observableφcon.
For τ =0.25 initial conditions leading to extremes typically
have low FTLE, but forτ =0.25 they typically have a large
FTLE. This difference vanishes for longer lead times.

Fig. 2. Projection of the Lorenz-63 attractor on the(x,z)-plane
with colours indicating the magnitude of the maximal time-τ FTLE.
Black dots mark initial conditions leading to an exceedance of
the 95th percentile of the observableφcon. For τ = 0.25, initial
conditions leading to extremes typically have low FTLE, but for
τ = 0.25, they typically have a large FTLE. This difference van-
ishes for longer lead times.

By numerical integration we computed a sample ofN = 106

points on the attractor using the sample frequencyω = 100.
Table1 lists some statistics of the observables evaluated at
the sample points.

Figure 1 shows how the distribution of the set3τ,q
changes with lead time and thresholdq for the observable
φcon. For τ ≤ 0.25 more than 75 percent of the inital condi-
tions leading to an exceedance of the 99th percentile have a

A.E. Sterk et al.: Predictability of extreme values in geophysical models 5

-2

 0

 2

 4

 6

 8

 10

 12

x

z

(a) τ =0.25

-2

 0

 2

 4

 6

 8

 10

x
z

(b) τ =0.5

 0

 2

 4

 6

x

z

(c) τ =1.5

Fig. 4: As Fig. 3, but for the observableφen. Initial condi-
tions leading to extremes typically also have a large FTLE,
and this persists for larger lead times.

φen. For all lead timesτ almost all initial conditions leading
to an exceedance of the 95th percentile of the energy have a
FTLE which is larger than the median ofΛτ,−∞. This means
that in this case extreme values of the energy observableφen

0 2π

πb

0 2π

πb

Fig. 5: Contour plots of the stream function fields of the
zonal regime (top) and blocked regime (bottom) in the
barotropic vorticity equation (8). Blue dots mark the loca-
tions of the three wind speed observables (see main text).

are systematically less predictable than non-extreme values.
Only for lead times much longer thanτ =1.75 the distribu-
tions of Λτ,q for different quantilesq become similar (not
shown).

Fig. 3 and Fig. 4 show how for the observablesφcon and
φen the FTLEs vary on different parts on the attractor for
various lead times. Black dots mark the initial conditions
which lead to an exceedance of the 95th percentile within the
stated lead time. For short lead times initial conditions with
large FTLE are located in the central region of the attractor
where the two wings of the butterfly-shaped attractor cross
each other. When the lead time increases the unpredictable
regions quickly spread out on the entire attractor. The inital
conditions leading to extreme energy values systematically
coincide with the parts on the attractor having larger FTLEs,
whereas initial conditions leading to extreme convection do
not.

3.2 The barotropic vorticity equation

In this section we consider the barotropic vorticity equation
(BVE) for atmospheric flow over orography:

∂

∂t
∆ψ=−J(ψ,∆ψ+βy+γh)−C∆(ψ−ψ∗), (7)

whereψ is the stream function,ψ∗ is the forcing,βy is the
Coriolis force,h is the orography, and∆ is the Laplace op-
erator. In addition,J is the Jacobian operator:

J(f,g)=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Fig. 3. As Fig.2, but for the observableφen. Initial conditions lead-
ing to extremes typically also have a large FTLE, and this persists
for larger lead times.

negative FTLE. This suggest that extreme values of convec-
tion are well-predictable up to small lead times. Forτ > 0.25
more than 75 percent of the initial conditions leading to an
exceedance of the 99th quantile have a FTLE that is larger
than the median of3τ,−∞, which indicates that extreme val-
ues for this lead time are less predictable. When the lead time
τ increases, the distributions of3τ,q for different thresholds
q become similar; this suggests that the difference in pre-
dictability between extremes and non-extremes disappears.
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Fig. 2: As Fig. 1, but for the observableφen.

the direction and magnitude of maximal error growth along
a finite-time segment of an orbit in state space (Buizza and
Palmer, 1995; Palmer et al., 1998; Leutbecher and Palmer,
2008).

To measure the growth of perturbations over a time inter-
val [0,τ ] we use different norms att=0 andt= τ . LetC be
the initial error covariance matrix, and letP be an orthogo-
nal projection matrix (i.e.,P = P 2 =P⊤). Let ‖ · ‖ denote
the Euclidean norm. The Rayleigh–Ritz quotient

‖PLτ (x)v‖2
‖C−1/2v‖2 =

v⊤Lτ (x)
⊤PLτ (x)v

v⊤C−1v
(5)

is maximal if and only ifv is the right singular vector of
PLτ (x)C

1/2 associated with the largest singular value. We
define the time-τ finite-time Lyapunov exponents (FTLE) as

λi(x,τ)=
1

τ
logσi(x,τ), i=1,...,n,

whereσ1(x,τ) ≥ σ2(x,τ) ≥ ··· ≥ σn(x,τ) are the singular
values ofPLτ (x)C

1/2. In the following we assume that the
initial error covarianceC is the identity matrix.

We choose the projection matrixP such that the singular
vectors will point in the direction of maximal growth of the
observableφ. For an observable of the form (2) we set

P =
qq⊤

‖q‖2

so that

‖Px‖2= φ(x)2

‖q‖2 .

In case of observable (3) recall that a symmetric nonneg-
ative definiten×n matrix hask ≤ n positive eigenvalues

µ1 ≥ ··· ≥µk > 0 and the corresponding eigenvectorsqi are
orthonormal. We can rewrite (3) as

φ(x)= x⊤Qx=

k∑

i=1

µi(q
⊤

i x)
2.

In this case we set

P =
k∑

i=1

qiq
⊤

i

so that

‖Px‖2=
k∑

i=1

(q⊤i x)
2,

and
µk‖Px‖2 ≤φ(x)≤µ1‖Px‖2.

Hence, theφ(x) is large if and only if‖Px‖ is large.

2.3 Predictability of extreme values

We fix an initial pointx0 on the attractor and a sampling
frequencyω > 0 and compute a sample of points along an
orbit on the attractor:

S= { Φk/ω(x0) | k=1,...,N }.

We chooseω andN sufficiently large to provide a good sam-
pling of the attractor as far as both local and global fluctua-
tions are concerned. Typically, we takeN =106, whereasω
depends on the time scale of the system of interest.

To study the predictability of extreme events we define the
set

Λτ,q = {λ1(x,τ) | x∈S andΦτ (x)∈Eq }
containing the FTLEs for initial conditions such that after
τ units of time the observable exceeds the thresholdq. We

Fig. 4. As Fig.1, but for the observableφen.

Figure4 shows how the distribution of the set3τ,q changes
with increasing lead time and threshold for the observable
φen. For all lead timesτ almost all initial conditions leading
to an exceedance of the 95th percentile of the energy have a
FTLE that is larger than the median of3τ,−∞. This means
that in this case extreme values of the energy observableφen
are systematically less predictable than non-extreme values.
Only for lead times much longer thanτ = 1.75, the distribu-
tions of3τ,q for different quantilesq become similar (not
shown).

Figures2 and 3 show how for the observablesφcon and
φen the FTLEs vary on different parts on the attractor for
various lead times. Black dots mark the initial conditions
which lead to an exceedance of the 95th percentile within the
stated lead time. For short lead times, initial conditions with
large FTLE are located in the central region of the attractor
where the two wings of the butterfly-shaped attractor cross
each other. When the lead time increases the unpredictable
regions quickly spread out on the entire attractor. The initial
conditions leading to extreme energy values systematically
coincide with the parts on the attractor having larger FTLEs,
whereas initial conditions leading to extreme convection do
not.

3.2 The barotropic vorticity equation

In this section we consider the barotropic vorticity equation
(BVE) for atmospheric flow over orography:

∂

∂t
1ψ = −J (ψ,1ψ +βy+ γ h)−C1(ψ −ψ∗), (7)

whereψ is the stream function,ψ∗ is the forcing,βy is the
Coriolis force,h is the orography, and1 is the Laplace op-
erator. In addition,J is the Jacobian operator:
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and this persists for larger lead times.

φen. For all lead timesτ almost all initial conditions leading
to an exceedance of the 95th percentile of the energy have a
FTLE which is larger than the median ofΛτ,−∞. This means
that in this case extreme values of the energy observableφen
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Fig. 5: Contour plots of the stream function fields of the
zonal regime (top) and blocked regime (bottom) in the
barotropic vorticity equation (8). Blue dots mark the loca-
tions of the three wind speed observables (see main text).

are systematically less predictable than non-extreme values.
Only for lead times much longer thanτ =1.75 the distribu-
tions of Λτ,q for different quantilesq become similar (not
shown).

Fig. 3 and Fig. 4 show how for the observablesφcon and
φen the FTLEs vary on different parts on the attractor for
various lead times. Black dots mark the initial conditions
which lead to an exceedance of the 95th percentile within the
stated lead time. For short lead times initial conditions with
large FTLE are located in the central region of the attractor
where the two wings of the butterfly-shaped attractor cross
each other. When the lead time increases the unpredictable
regions quickly spread out on the entire attractor. The inital
conditions leading to extreme energy values systematically
coincide with the parts on the attractor having larger FTLEs,
whereas initial conditions leading to extreme convection do
not.

3.2 The barotropic vorticity equation

In this section we consider the barotropic vorticity equation
(BVE) for atmospheric flow over orography:

∂

∂t
∆ψ=−J(ψ,∆ψ+βy+γh)−C∆(ψ−ψ∗), (7)

whereψ is the stream function,ψ∗ is the forcing,βy is the
Coriolis force,h is the orography, and∆ is the Laplace op-
erator. In addition,J is the Jacobian operator:

J(f,g)=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Fig. 5. Contour plots of the stream function fields of the zonal
regime (top) and blocked regime (bottom) in the barotropic vor-
ticity Eq. (8). Blue dots mark the locations of the three wind speed
observables (see main text).

J (f,g)=
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
.

The domain is[0,2π ]×[0,πb], whereb equals twice the as-
pect ratio of theβ–plane channel. We take periodic boundary
conditions inx and fory = 0,πb, we require

∂ψ

∂x
= 0,

2π∫
0

∂ψ

∂y
dx = 0,
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Table 2. Parameters and coefficients of the model Eq. (8) as used byCrommelin et al.(2004).

Par Value Par Value Par Value

C 0.1 α2 32
√

2(b2
+ 3)/15π(b2

+ 4) γ 0.2
b 0.5 β 5/4 γ1 4

√
2bγ /3π(b2

+ 1)
ψ̂∗

1 0.95 β1 βb2/(b2
+ 1) γ2 32

√
2bγ /15π(b2

+ 4)
r -0.801 β2 βb2/(b2

+ 4) γ̃1 4
√

2bγ /3π
ψ̂∗

4 rψ̂∗
1 δ1 64

√
2b2/15π(b2

+ 1) γ̃2 8
√

2bγ /15π
α1 8

√
2b2/3π(b2

+ 1) δ2 64
√

2(b2
− 3)/15π(b2

+ 4) ε 16
√

2/5π
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Par Value Par Value Par Value
C 0.1 α2 32

√

2(b2+3)/15π(b2+4) γ 0.2
b 0.5 β 5/4 γ1 4

√

2bγ/3π(b2+1)

ψ̂∗

1 0.95 β1 βb2/(b2+1) γ2 32
√

2bγ/15π(b2+4)

r -0.801 β2 βb2/(b2+4) γ̃1 4
√

2bγ/3π

ψ̂∗

4 rψ̂∗

1 δ1 64
√

2b2/15π(b2+1) γ̃2 8
√

2bγ/15π

α1 8
√

2b2/3π(b2+1) δ2 64
√

2(b2−3)/15π(b2+4) ε 16
√

2/5π

Table 2: Parameters and coefficients of the model (8) as used by Crommelin et al. (2004).
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Fig. 6: As Fig. 1, but for the model (8) with observableφsid.

The domain is[0,2π]× [0,πb], whereb equals twice the as-
pect ratio of theβ–plane channel. We take periodic boundary
conditions inx and fory=0,πb we require

∂ψ

∂x
=0,

∫ 2π

0

∂ψ

∂y
dx=0,

which respectively mean that on the lateral boundaries the
northward component of the velocity vanishes and that the
net zonal flow is zero.

Charney and DeVore (1979) studied a 3-dimensional spec-
tral truncation of (7), and detected coexisting equilibriarep-
resenting blocked and zonal flow patterns. De Swart (1989)
studied higher order truncations, including the 6-dimensional
truncation

˙̂
ψ1 = γ̃1ψ̂3−C(ψ̂1− ψ̂∗

1),

˙̂
ψ2 =−(α1ψ̂1−β1)ψ̂3−Cψ̂2−δ1ψ̂4ψ̂6,

˙̂
ψ3 = (α1ψ̂1−β1)ψ̂2−γ1ψ̂1−Cψ̂3+δ1ψ̂4ψ̂5,

˙̂
ψ4 = γ̃2ψ̂6−C(ψ̂4− ψ̂∗

4)+ε(ψ̂2ψ̂6− ψ̂3ψ̂5),

˙̂
ψ5 =−(α2ψ̂1−β2)ψ̂6−Cψ̂5−δ2ψ̂4ψ̂3,

˙̂
ψ6 = (α2ψ̂1−β2)ψ̂5−γ2ψ̂4−Cψ̂6+δ2ψ̂4ψ̂2.

(8)

We study this model with the parameters of Crommelin et al.
(2004), which are listed in Table 2. With this choice the chan-
nel[0,2π]×[0,πb] has dimensions5000×1250 km, the orog-
raphyh(x,y)= cos(x)sin(y/b) has a dimensional amplitude
of 200 m, and one unit of time corresponds to one day.

Crommelin et al. (2004) found intermittent transitions be-
tween two regions in state space corresponding to zonal and
blocked flows, see Fig. 5. The dynamics consists of three re-
current episodes: (1) transitions from zonal to blocked flows,
typically taking 30 days, (2) transitions from blocked to zonal
flows, typically taking 40–80 days, and (3) spiraling be-
haviour around the zonal regime, typically lasting more than
200 days. This intermittent behaviour can be explained by
the presence of Shil’nikov-like strange attractors due to ho-
moclinic bifurcations taking place near a Hopf-saddle-node
bifurcation (Broer and Vegter, 1984; Broer and Vitolo, 2008).

As observable we use the squared wind speed at several
locations in theβ-plane channel. In Appendix A we show
that the east- and northward components of the wind vector
at(x,y) can be computed from the state vectorψ̂ asq⊤1 ψ̂ and
q⊤2 ψ̂, whereq1,q2 ∈R

6 are orthogonal vectors depending on
(x,y). Hence, the squared wind speed at location(x,y) is
given by

φ(ψ̂)= (q⊤1 ψ̂)
2+(q⊤2 ψ̂)

2 = ψ̂⊤(q1q
⊤

1 +q2q
⊤

2 )ψ̂.

Fig. 6. As Fig.1, but for the model Eq. (8) with observableφsid.

which respectively mean that on the lateral boundaries the
northward component of the velocity vanishes and that the
net zonal flow is zero.

Charney and DeVore(1979) studied a 3-dimensional spec-
tral truncation of Eq. (7), and detected coexisting equilib-
ria representing blocked and zonal flow patterns.De Swart
(1989) studied higher order truncations, including the 6-
dimensional truncation

˙̂
ψ1 = γ̃1ψ̂3 −C(ψ̂1 − ψ̂∗

1 ),

˙̂
ψ2 = −(α1ψ̂1 −β1)ψ̂3 −Cψ̂2 − δ1ψ̂4ψ̂6,

˙̂
ψ3 = (α1ψ̂1 −β1)ψ̂2 − γ1ψ̂1 −Cψ̂3 + δ1ψ̂4ψ̂5,

˙̂
ψ4 = γ̃2ψ̂6 −C(ψ̂4 − ψ̂∗

4 )+ ε(ψ̂2ψ̂6 − ψ̂3ψ̂5),

˙̂
ψ5 = −(α2ψ̂1 −β2)ψ̂6 −Cψ̂5 − δ2ψ̂4ψ̂3,

˙̂
ψ6 = (α2ψ̂1 −β2)ψ̂5 − γ2ψ̂4 −Cψ̂6 + δ2ψ̂4ψ̂2.

(8)

We study this model with the parameters ofCrommelin et al.
(2004), which are listed in Table2. With this choice the
channel[0,2π ] × [0,πb] has dimensions 5000× 1250 km,
the orographyh(x,y)= cos(x)sin(y/b) has a dimensional
amplitude of 200 m, and one unit of time corresponds to one
day.

Crommelin et al.(2004) found intermittent transitions be-
tween two regions in state space corresponding to zonal and
blocked flows, see Fig.5. The dynamics consists of three re-
current episodes: (1) transitions from zonal to blocked flows,

typically taking 30 days, (2) transitions from blocked to zonal
flows, typically taking 40–80 days, and (3) spiraling be-
haviour around the zonal regime, typically lasting more than
200 days. This intermittent behaviour can be explained by
the presence of Shil’nikov-like strange attractors, due to ho-
moclinic bifurcations taking place near a Hopf-saddle-node
bifurcation (Broer and Vegter, 1984; Broer and Vitolo, 2008).

As observable we use the squared wind speed at several
locations in theβ-plane channel. In AppendixA we show
that the east- and northward components of the wind vector at
(x,y) can be computed from the state vectorψ̂ asq>

1 ψ̂ and
q>

2 ψ̂ , whereq1,q2 ∈ R6 are orthogonal vectors depending
on (x,y). Hence, the squared wind speed at location(x,y) is
given by

φ(ψ̂)= (q>

1 ψ̂)
2
+ (q>

2 ψ̂)
2
= ψ̂>(q1q

>

1 + q2q
>

2 )ψ̂.

For the projection matrix in Eq. (5) we take

P =
q1q

>

1

‖q1‖
2

+
q2q

>

2

‖q2‖
2
.

We will study the extreme wind speeds at three locations: the
side of the orography(x,y)= (0,3πb/4), the top(x,y)=

(0,πb/2), and the valley(x,y)= (π,πb/2), see Fig.5. The
corresponding wind speed observables are denoted byφside,
φtop, andφval. By numerical integration we computed a sam-
ple ofN = 106 points on the attractor using the sample fre-
quencyω = 2. Table1 lists some statistics of the observables
evaluated at the sample points.
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Fig. 7: As Fig. 6, but for the observableφtop.
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Fig. 8: As Fig. 6, but for the observableφval.

For the projection matrix in (5) we take

P =
q1q

⊤
1

‖q1‖2
+
q2q

⊤
2

‖q2‖2
.

We will study the extreme wind speeds at three locations:
the side of the orography(x,y)= (0,3πb/4), the top(x,y)=
(0,πb/2), and the valley(x,y) = (π,πb/2), see Fig. 5. The
corresponding wind speed observables are denoted byφside,
φtop, andφval. By numerical integration we computed a
sample ofN = 106 points on the attractor using the sample
frequencyω=2. Table 1 lists some statistics of the observ-
ables evaluated at the sample points.

Fig. 6, 7, and 8 show how the distributions of the setΛτ,q

change with lead timeτ and thresholdq for three observables

φsid, φtop, andφval. For φsid the initial conditions leading
to extremes systematically have a large FTLE, which means
that extremes are less predictable. Forφtop the FTLEs for
initial conditions leading to extremes are highly variable. In
this case one cannot say that extremes are either better or less
predictable than generic events. Finally, forφval the FTLEs
for initial conditions leading to extremes are systematically
low: more than 75% of the initial conditions leading to ex-
tremes have an FTLE smaller than the median FTLE for all
events.

Figures 9–11 show the FTLEs vary on different parts of the
attractor. For all observables the initial conditions withlarge
FTLE are located near the zonal regime and the initial condi-
tions with small FTLE are located near the blocked regime.

Fig. 7. As Fig.6, but for the observableφtop.
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For the projection matrix in (5) we take

P =
q1q

⊤
1

‖q1‖2
+
q2q

⊤
2

‖q2‖2
.

We will study the extreme wind speeds at three locations:
the side of the orography(x,y)= (0,3πb/4), the top(x,y)=
(0,πb/2), and the valley(x,y) = (π,πb/2), see Fig. 5. The
corresponding wind speed observables are denoted byφside,
φtop, andφval. By numerical integration we computed a
sample ofN = 106 points on the attractor using the sample
frequencyω=2. Table 1 lists some statistics of the observ-
ables evaluated at the sample points.

Fig. 6, 7, and 8 show how the distributions of the setΛτ,q

change with lead timeτ and thresholdq for three observables

φsid, φtop, andφval. For φsid the initial conditions leading
to extremes systematically have a large FTLE, which means
that extremes are less predictable. Forφtop the FTLEs for
initial conditions leading to extremes are highly variable. In
this case one cannot say that extremes are either better or less
predictable than generic events. Finally, forφval the FTLEs
for initial conditions leading to extremes are systematically
low: more than 75% of the initial conditions leading to ex-
tremes have an FTLE smaller than the median FTLE for all
events.

Figures 9–11 show the FTLEs vary on different parts of the
attractor. For all observables the initial conditions withlarge
FTLE are located near the zonal regime and the initial condi-
tions with small FTLE are located near the blocked regime.

Fig. 8. As Fig.6, but for the observableφval.

Figures6, 7, and8 show how the distributions of the set
3τ,q change with lead timeτ and thresholdq for three ob-
servablesφsid, φtop, andφval. For φsid the initial conditions
leading to extremes systematically have a large FTLE, which
means that extremes are less predictable. Forφtop the FTLEs
for initial conditions leading to extremes are highly variable.
In this case one cannot say that extremes are either better
or less predictable than generic events. Finally, forφval the
FTLEs for initial conditions leading to extremes are system-
atically low: more than 75% of the initial conditions leading
to extremes have an FTLE smaller than the median FTLE for
all events.

Figures9–11show the FTLEs vary on different parts of the
attractor. For all observables the initial conditions with large
FTLE are located near the zonal regime and the initial condi-
tions with small FTLE are located near the blocked regime.
This separation persists remarkably for increasing lead time.
This is very different from the Lorenz-63 attractor, for which
the unpredictable regions quickly spread out along the attrac-
tor. For the observablesφsid andφtop the initial conditions
leading to extreme wind speeds systematically coincide with

the unpredictable parts of the attractor. Forφval the initial
conditions leading to extremes intersect the more predictable
regions on the attractor.

3.3 The Lorenz-96 model

The Lorenz-96 model is a conceptual model for traveling
waves in the atmosphere (Lorenz, 1996). This model is used
to test data assimilation methods (Trevisan and Palatella,
2011) and subgrid scale parameterizations (Crommelin and
Vanden-Eijnden, 2008). Although the model is not derived
from physical principles it has features which are typical
for geophysical models: forcing, dissipation, and energy pre-
serving quadratic terms.

The model variablesx1, . . . ,xn can be interpreted as me-
teorological quantities, such as pressure or vorticity, along a
circle of constant latitude where the indexi of each variable
xi plays the role of longitude. The dynamical equations are

dxi

dt
= xi−1(xi+1 − xi−2)− xi +F, i = 1, . . . ,n > 3, (9)
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Fig. 9: Projection on the(ψ̂3,ψ̂1)-plane of a the attractor
of (8) with colour indicating the magnitude of the maximal
time-τ FTLE. The grey circle (square) indicates the point in
phase space corresponding with the zonal (blocked) regime
of Fig. 5. Black dots mark initial conditions leading to an ex-
ceedance of the 95th percentile of the observableφsid. Note
that initial conditions leading to high wind speeds are located
near the zonal regime, where also the FTLEs are large.

This separation persists remarkably for increasing lead time.
This is very different from the Lorenz–63 attractor, for which
the unpredictable regions quickly spread out along the attrac-
tor. For the observablesφsid andφtop the initial conditions
leading to extreme wind speeds systematically coincide with
the unpredictable parts of the attractor. Forφval the initial
conditions leading to extremes intersect the more predictable
regions on the attractor.

3.3 The Lorenz–96 model

The Lorenz–96 model is a conceptual model for traveling
waves in the atmosphere (Lorenz, 1996). This model is used
to test data assimilation methods (Trevisan and Palatella,
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Fig. 10: As Fig. 9, but for observableφtop. In this case initial
conditions leading to large wind speeds are not confined to
the unpredictable region of the attractor.

2011) and subgrid scale parameterizations (Crommelin and
Vanden-Eijnden, 2008). Although the model is not derived
from physical principles it has features which are typical for
geophysical models: forcing, dissipation, and energy pre-
serving quadratic terms.

The model variablesx1,...,xn can be interpreted as me-
teorological quantities, such as pressure or vorticity, along a
circle of constant latitude, where the indexi of each variable
xi plays the role of longitude. The dynamical equations are

dxi
dt

= xi−1(xi+1−xi−2)−xi+F, i=1,...,n> 3, (9)

with periodic ‘boundary conditions’xi+n = xi. The dimen-
sionn and forcingF > 0 are free parameters. We setn=36
andF =8 which were orginally used by Lorenz.

We use the observable

φen(x)=

n∑

i=1

x2i

Fig. 9. Projection on the(ψ̂3, ψ̂1)-plane of a the attractor of Eq. (8)
with colour indicating the magnitude of the maximal time-τ FTLE.
The grey circle (square) indicates the point in phase space corre-
sponding with the zonal (blocked) regime of Fig.5. Black dots mark
initial conditions leading to an exceedance of the 95th percentile of
the observableφsid. Note that initial conditions leading to high wind
speeds are located near the zonal regime, where also the FTLEs are
large.

with periodic “boundary conditions”xi+n = xi . The dimen-
sionn and forcingF > 0 are free parameters. We setn= 36
andF = 8, which were originally used by Lorenz.

We use the observable

φen(x)=

n∑
i=1

x2
i

which measures the total energy of the system. For the pro-
jection in Eq. (5), we take the identity matrix. By numeri-
cal integration we computed a sample ofN = 106 points on
the attractor using the sample frequencyω = 100. Table1
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Fig. 9: Projection on the(ψ̂3,ψ̂1)-plane of a the attractor
of (8) with colour indicating the magnitude of the maximal
time-τ FTLE. The grey circle (square) indicates the point in
phase space corresponding with the zonal (blocked) regime
of Fig. 5. Black dots mark initial conditions leading to an ex-
ceedance of the 95th percentile of the observableφsid. Note
that initial conditions leading to high wind speeds are located
near the zonal regime, where also the FTLEs are large.

This separation persists remarkably for increasing lead time.
This is very different from the Lorenz–63 attractor, for which
the unpredictable regions quickly spread out along the attrac-
tor. For the observablesφsid andφtop the initial conditions
leading to extreme wind speeds systematically coincide with
the unpredictable parts of the attractor. Forφval the initial
conditions leading to extremes intersect the more predictable
regions on the attractor.

3.3 The Lorenz–96 model

The Lorenz–96 model is a conceptual model for traveling
waves in the atmosphere (Lorenz, 1996). This model is used
to test data assimilation methods (Trevisan and Palatella,
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Fig. 10: As Fig. 9, but for observableφtop. In this case initial
conditions leading to large wind speeds are not confined to
the unpredictable region of the attractor.

2011) and subgrid scale parameterizations (Crommelin and
Vanden-Eijnden, 2008). Although the model is not derived
from physical principles it has features which are typical for
geophysical models: forcing, dissipation, and energy pre-
serving quadratic terms.

The model variablesx1,...,xn can be interpreted as me-
teorological quantities, such as pressure or vorticity, along a
circle of constant latitude, where the indexi of each variable
xi plays the role of longitude. The dynamical equations are

dxi
dt

= xi−1(xi+1−xi−2)−xi+F, i=1,...,n> 3, (9)

with periodic ‘boundary conditions’xi+n = xi. The dimen-
sionn and forcingF > 0 are free parameters. We setn=36
andF =8 which were orginally used by Lorenz.

We use the observable

φen(x)=

n∑

i=1

x2i

Fig. 10. As Fig.9, but for observableφtop. In this case initial con-
ditions leading to large wind speeds are not confined to the unpre-
dictable region of the attractor.

lists some statistics of the observable evaluated at the sample
points.

Figure 12 shows how the distribution of the set3τ,q
changes with lead timeτ and thresholdq. For all lead times
τ , the distribution of the maximal FTLE does not change very
much with increasing thresholdq. This suggests that extreme
values of the energy observable are neither better nor less
predictable than non-extreme values.

4 Conclusions and discussion

In this paper we investigated the predictability of extreme
values in geophysical models. We studied how FTLEs de-
pend on forecast lead time and the threshold on the ob-
servable. General statements on whether extreme values are
better or worse to predict are not possible. Whether initial
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Fig. 11: As Fig. 9, but for observableφval. In this case initial
conditions leading to large wind speeds are located in the
more predictable regions of the attractor.

which measures the total energy of the system. For the
projection in (5) we take the identity matrix. By numeri-
cal integration we computed a sample ofN =106 points on
the attractor using the sample frequencyω = 100. Table 1
lists some statistics of the observable evaluated at the sample
points.

Fig. 12 show how the distribution of the setΛτ,q changes
with lead timeτ and thresholdq. For all lead timesτ the dis-
tribution of the maximal FTLE does not change very much
with increasing thresholdq. This suggests that extreme val-
ues of the energy observable are neither better nor less pre-
dictable than non-extreme values.

4 Conclusions and discussion

In this paper we investigated the predictability of extreme
values in geophysical models. We studied how FTLEs de-
pend on forecast lead time and the threshold on the observ-

Model Obs. Predictability of extremes
Lorenz–63 φcon For lead times up toτ = 0.25 extremes

are well-predictable (negative FTLEs),
but for longer lead times they are just as
predictable as non-extremes.

φen For lead times up toτ =01.75 extremes
are less predictable than non-extremes.

BVE φsid Extremes are less predictable, and this
persists up to long lead times due to the
intermittent nature of the dynamics.

φtop Extremes are better predictable than non-
extremes.

φval Extremes are neither better nor less pre-
dictable than non-extremes.

Lorenz–96 φen Extremes are neither better nor less pre-
dictable than non-extremes.

Table 3: The predictability of extreme values for the three
models with different observables.

able. General statements on whether extreme values are bet-
ter or worse predictable are not possible. Whether initial con-
ditions leading to extreme values have larger FTLEs depends
on (1) the observable, (2) the attractor of the system, and (3)
the prediction lead time. Table 3 presents the main conclu-
sion for each model/observable pair.

FTLEs measure forecast error growth rate under the as-
sumption that errors in the initial condition are infinitesi-
mally small. For finite-size, but small, errors the maximal
FTLE still is a good estimate of error growth (Harle et al.,
2006). For larger errors, however, error growth may no
longer be exponential and this will also effect the predictabil-
ity of extreme values. The present study should therefore be
extended to the setting of ensemble forecasts in which the
predictability of extremes is measured in terms of the dis-
persion of ensemble members. This approach would also be
more appropriate for operational weather forecasting models
without a tangent linear model needed to compute FTLEs,
such as the MOGREPS system of the UK Met Office (Bowler
et al., 2008).

Another important question is: how predictable are real-
world extremes, such as wind storms? Large-scale flow pat-
terns, such as the North Atlantic Oscillation, cause tempo-
ral clustering of storms (Mailier et al., 2006; Vitolo et al.,
2009). The emergence of these patterns might be a mani-
festation of intermittency, i.e., the irregular alternation be-
tween phases of chaotic and non-chaotic, such as steady or
periodic, dynamics (Pomeau and Manneville, 1980). For ex-
ample, the spectral truncation (8) of the barotropic vortic-
ity equation exhibits intermittent transitions between zonal
and blocked flows due to Shil’nikov-like strange attractors
appearing near a Hopf-saddle-node bifurcation (Crommelin
et al., 2004; Broer and Vitolo, 2008; Broer and Vegter, 1984).
Other forms of intermittency due to bifurcations of planetary

Fig. 11. As Fig.9, but for observableφval. In this case initial con-
ditions leading to large wind speeds are located in the more pre-
dictable regions of the attractor.

conditions leading to extreme values have larger FTLEs de-
pends on (1) the observable, (2) the attractor of the system,
and (3) the prediction lead time. Table3 presents the main
conclusion for each model/observable pair.

FTLEs measure forecast error growth rate under the as-
sumption that errors in the initial condition are infinitesi-
mally small. For finite-size, but small, errors, the maximal
FTLE still is a good estimate of error growth (Harle et al.,
2006). For larger errors, however, error growth may no longer
be exponential and this will also effect the predictability of
extreme values. The present study should, therefore, be ex-
tended to the setting of ensemble forecasts in which the pre-
dictability of extremes is measured in terms of the dispersion
of ensemble members. This approach would also be more ap-
propriate for operational weather forecasting models without
a tangent linear model needed to compute FTLEs, such as

Table 3. The predictability of extreme values for the three models
with different observables.

Model Obs. Predictability of extremes

Lorenz-63 φcon For lead times up toτ = 0.25 extremes
are well-predictable (negative FTLEs),
but for longer lead times they are just as
predictable as non-extremes.

φen For lead times up toτ = 01.75 extremes
are less predictable than non-extremes.

BVE φsid Extremes are less predictable, and this
persists up to long lead times due to the
intermittent nature of the dynamics.

φtop Extremes are neither better nor less
predictable than non-extremes.

φval Extremes are better predictable than
non-extremes

Lorenz-96 φen Extremes are neither better nor less
predictable than non-extremes.

the MOGREPS system of the UK Met Office (Bowler et al.,
2008).

Another important question is: how predictable are real-
world extremes, such as wind storms? Large-scale flow pat-
terns, such as the North Atlantic Oscillation, cause tempo-
ral clustering of storms (Mailier et al., 2006; Vitolo et al.,
2009). The emergence of these patterns might be a manifes-
tation of intermittency, i.e. the irregular alternation between
phases of chaotic and non-chaotic, such as steady or peri-
odic dynamics (Pomeau and Manneville, 1980). For exam-
ple, the spectral truncation Eq. (8) of the barotropic vortic-
ity equation exhibits intermittent transitions between zonal
and blocked flows due to Shil’nikov-like strange attractors
appearing near a Hopf-saddle-node bifurcation (Crommelin
et al., 2004; Broer and Vitolo, 2008; Broer and Vegter, 1984).
Other forms of intermittency due to bifurcations of planetary
waves have been detected in low-order models of the shal-
low water equations (Sterk et al., 2010). Because different
intermittent phases can have different error growth rates, the
emergence of large-scale flow patterns might enhance pre-
dictability of extremes.

Finally, we note that FTLEs might not be the best
measures of finite-time predictability. A different approach
would be to apply techniques based on Takens’ reconstruc-
tion theorem, such as correlation integrals and entropy; see
Broer and Takens(2011) and references therein. Such tech-
niques have been applied to developearly warning systems
for thermal excursions in chemical reactors (Zald́ıvar et al.,
2005). Potentially, these techniques can be useful in the pre-
diction of extreme values in geophysical applications. We be-
lieve that these questions and problems will have sufficient
potential for future research.
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Fig. 12: As Fig. 1, but for the Lorenz–96 model (9) with observableφen.

waves have been detected in low-order models of the shal-
low water equations (Sterk et al., 2010). Because different
intermittent phases can have different error growth rates,the
emergence of large-scale flow patterns might enhance pre-
dictability of extremes.

Finally, we note that FTLEs might not be the best mea-
sures of finite-time predictability. A different approach
would be to apply techniques based on Takens’ reconstruc-
tion theorem, such as correlation integrals and entropy; see
Broer and Takens (2011) and references therein. Such tech-
niques have been applied to developearly warning systems
for thermal excursions in chemical reactors (Zaldı́var et al.,
2005). Potentially, these techniques can be useful in the pre-
diction of extreme values in geophysical applications. We
believe that these questions and problems will have sufficient
potential for future research.

Appendix A Wind speed in the barotropic vorticity
equation

The stream function can be computed from the spectral coef-
ficientsψ̂i by

ψ(x,y)= b
√
2ψ̂1cos(y/b)+b

√
2ψ̂4cos(2y/b)

+2b{ψ̂2cos(x)+ ψ̂3 sin(x)}sin(y/b)
+2b{ψ̂5cos(x)+ ψ̂6 sin(x)}sin(2y/b).

De Swart (1988) uses the conventionu=−ψy,v=ψx. This
gives the following expressions for the east- and northward

components of the velocity field:

u(x,y)=
√
2ψ̂1sin(y/b)+2

√
2ψ̂4sin(2y/b)

−2{ψ̂2cos(x)+ ψ̂3 sin(x)}cos(y/b)
−4{ψ̂5cos(x)+ ψ̂6 sin(x)}cos(2y/b),

v(x,y) =−2b{ψ̂2sin(x)− ψ̂3cos(x)}sin(y/b)
−2b{ψ̂5sin(x)− ψ̂6cos(x)}sin(2y/b).

This can be rewritten as

u(x,y)= q⊤1 ψ̂ and v(x,y)= q⊤2 ψ̂,

where

q1 =




√
2sin(y/b)

2cos(x)cos(y/b)
2sin(x)cos(y/b)

2
√
2sin(2y/b)

−4cos(x)cos(2y/b)
−4sin(x)cos(2y/b)




and

q2 =




0
−2bsin(x)sin(y/b)
2bcos(x)sin(y/b)

0
−2bsin(x)sin(2y/b)
2bcos(x)sin(2y/b)



.

Note that the vectorsq1 andq2 are orthogonal.
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