dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Using neural networks to describe tracer correlations
VerfasserIn D. J. Lary, M. D. Müller, H. Y. Mussa
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 4, no. 1 ; Nr. 4, no. 1 (2004-01-31), S.143-146
Datensatznummer 250001485
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-4-143-2004.pdf
 
Zusammenfassung
Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and \methane\ volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.
 
Teil von