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Abstract. Neural networks are ideally suited to describe the
spatial and temporal dependence of tracer-tracer correlations.
The neural network performs well even in regions where the
correlations are less compact and normally a family of cor-
relation curves would be required. For example, the CH4-
N2O correlation can be well described using a neural net-
work trained with the latitude, pressure, time of year, and
CH4 volume mixing ratio (v.m.r.). In this study a neural net-
work using Quickprop learning and one hidden layer with
eight nodes was able to reproduce the CH4-N2O correlation
with a correlation coefficient between simulated and training
values of 0.9995. Such an accurate representation of tracer-
tracer correlations allows more use to be made of long-term
datasets to constrain chemical models. Such as the dataset
from the Halogen Occultation Experiment (HALOE) which
has continuously observed CH4 (but not N2O) from 1991 till
the present. The neural network Fortran code used is avail-
able for download.

1 Introduction

The spatial distributions of atmospheric trace constituents
are in general dependent on both chemistry and transport.
Compact correlations between long-lived species are well-
observed features in the middle atmosphere, as for exam-
ple described by Fahey et al. (1989); Plumb and Ko (1992);
Loewenstein et al. (1993); Elkins et al. (1996); Keim et al.
(1997); Michelson et al. (1998); Rinsland et al. (1999); Stra-
han (1999); Fischer et al. (2000); Muscari et al. (2003). The
correlations exist for all long-lived tracers – not just those
which are chemically related – due to their transport by the
general circulation of the atmosphere. The tight relation-
ships between different constituents have led to many anal-
yses where measurements of one tracer are used to infer the
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abundance of another tracer. These correlations can also be
used as a diagnostic of mixing (Schoeberl et al., 1997; Mor-
genstern et al., 2002) and to distinguish between air-parcels
of different origins (Waugh and Funatsu, 2003).

Of special interest are the so-called “long-lived tracers”:
constituents such as nitrous oxide (N2O), methane (CH4),
and the chlorofluorocarbons (CFCs) that have long lifetimes
(many years) in the troposphere and lower stratosphere, but
are destroyed rapidly in the middle and upper stratosphere.

The correlations are spatially and temporally dependent.
For example, there is a “compact-relation” regime in the
lower part of the stratosphere and an “altitude-dependent”
regime above this. In the compact-relation region, the abun-
dance of one tracer is uniquely determined by the value of
the other tracer, without regard to other variables such as lat-
itude or altitude. In the altitude-dependent regime, the cor-
relation generally shows significant variation with altitude
(Minschwaner et al., 1996) (Fig. 1d).

The description of such spatially and temporally depen-
dent correlations are usually achieved by a family of corre-
lations. However, a single neural network is a natural and
effective alternative.

1.1 Reconstructing N2O-CH4 corelations

The motivation for this study was preparation for a long term
chemical assimilation of Upper Atmosphere Research Satel-
lite (UARS) (Reber et al., 1993) data starting in 1991 and
coming up to the present. For this period we have contin-
uous version 19 data from the Halogen Occultation Exper-
iment (HALOE) (Russell et al., 1993) but not observations
of N2O as both ISAMS and CLAES failed. In addition we
would like to constrain the total amount of reactive nitrogen,
chlorine, and bromine in a self-consistent way (i.e. the corre-
lations between the long-lived tracers is preserved) . Tracer
correlations provide a means to do this by using HALOE
CH4 observations.
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Fig. 1. The neural network used to produce theCH4-N2O correlation in Panel (a) used Quickprop learning and one hidden layer with eight
nodes. The correlation coefficient between the actual solution and the neural network solution was 0.9995. Panel (b) shows how the median
fractional error of the neural network decreases with epoch (iteration). BothCH4 and pressure are strongly correlated withN2O as can
be seen in panels (c) and (d). Latitude and time are only weakly correlated withN2O as can be seen in panels (e) and (f). Even though
the correlation with time of year and latitude is relatively weak it still does play a role in capturing some of the details of theCH4-N2O
correlation in Panel (a).
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Fig. 1. The neural network used to produce the CH4-N2O correlation in Panel(a) used Quickprop learning and one hidden layer with eight
nodes. The correlation coefficient between the actual solution and the neural network solution was 0.9995. Panel(b) shows how the median
fractional error of the neural network decreases with epoch (iteration). Both CH4 and pressure are strongly correlated with N2O as can
be seen in panels(c) and(d). Latitude and time are only weakly correlated with N2O as can be seen in panels(e) and(f). Even though
the correlation with time of year and latitude is relatively weak it still does play a role in capturing some of the details of the CH4-N2O
correlation in Panel (a).
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2 Neural networks

Computational neural networks are composed of simple ele-
ments operating in parallel. These elements are inspired by
biological nervous systems. As in nature, the network func-
tion is determined largely by the connections between ele-
ments. A neural network can be trained to perform a par-
ticular function by adjusting the values of the connections
(weights) between elements (Fig. 1b).

Commonly neural networks are trained so that a particular
input leads to a specific target output. The network is ad-
justed, based on a comparison of the output and the target,
until the network output matches the target. Typically many
such input/target pairs are used, in this supervised learning,
to train a network. Batch training of a network proceeds
by making weight and bias changes based on an entire set
(batch) of input vectors. Incremental training changes the
weights and biases of a network as needed after presentation
of each individual input vector. Incremental training is some-
times referred to as “on line” or “adaptive” training.

Neural networks have been trained to perform complex
functions in various fields of application including pattern
recognition, identification, classification, speech, vision and
control systems. It is well established that multilayer feed-
forward networks are universal approximators (Hornik et al.,
1989; Castro and Delgado, 1996; Ying, 1998).

In this study we use neural networks (Peterson et al., 1994)
to describe the temporal and spatial dependence of tracer cor-
relations (Fig. 1).

To find the optimum neural network configuration a range
of network architectures were considered containing between
one and two hidden layers with between one and sixteen
nodes in each hidden layer. A range of updating procedures
were also used including back-propagation, Manhattan learn-
ing, Langevin Learning, Quickprop and Rprop. Each net-
work was trained for 106 epochs. The details of the different
learning methods can be found in (Peterson et al., 1994). A
variety of activation functions were used. Non-linear acti-
vation functions performed best, and the most successful is
shown below in Eq. (1). To determine which network ar-
chitecture and updating procedure was most suitable each
configuration was tried in turn and the correlation coefficient
between the actual solution and the neural network solution
were computed (the correlation coefficient being a normal-
ized measure of the linear relationship strength between vari-
ables). The configuration with the highest correlation co-
efficient between simulated and training values was chosen.
This configuration used the Quickprop (Qprop) method, in-
troduced by Fahlman (1988), a very popular batch training
algorithm for Feedforward Neural Networks.

2.1 The CH4-N2O correlation

Figure 1a shows the CH4-N2O correlation from the Cam-
bridge 2D model (Law and Pyle, 1993a,b) overlaid with a

neural network fit to the correlation. The neural network used
was a feed-forward multilayer perceptron type with Quick-
prop learning (Peterson et al., 1994). There were four inputs,
one output, and one hidden layer with eight nodes. A non-
linear activation function was used, namely

g(x) =
1

1 + exp(−2x)
(1)

The training dataset contained 1292 patterns, sampling the
input space completely as shown in Fig. 1. The network was
constrained for 106 epochs (iterations).

The correlation coefficient between the actual solution and
the neural network solution was 0.9995. Fig. 1 panel (b)
shows how the median fractional error of the neural network
decreases with epoch (iteration). Both CH4 and pressure are
strongly correlated with N2O as can be seen in panels (c) and
(d). Latitude and time are only weakly correlated with N2O
as can be seen in panels (e) and (f). Even though the cor-
relation with time of year and latitude is relatively weak it
still does play a role in capturing some of the details of the
CH4-N2O correlation in Panel (a).

A polynomial or other fit will typically do a good job of
describing the CH4-N2O correlation for high values of CH4
and N2O. However, for low values of CH4 and N2Othere is
quite a spread in the relationship which a single curve can
not describe. This is the altitude dependent regime where
the correlation shows significant variation with altitude (Min-
schwaner et al., 1996).

Fig. 1c shows a more conventional fit using a Chebyshev
polynomial of order 20. This fit was chosen as giving the
best agreement to the CH4-N2O correlation after performing
fits using 3667 different equations. Even though this is a
good fit the spread of values can not be described by a single
curve. However, a neural network trained with the latitude,
pressure, time of year, and CH4 volume mixing ratio (v.m.r.)
(four inputs) is able to well reproduce the N2O v.m.r. (one
output), including the spread for low values of CH4 and N2O.

2.2 Scaling

Variable scaling often allows neural networks to achieve bet-
ter results. In this case all variables were scaled to vary be-
tween zero and one. If the initial range of values was more
than an order of magnitude then log scaling was also applied.
In the case of time of year the sine of the fractional time of
year was used to avoid a step discontinuity at the start of the
year.

3 Conclusions

Neural networks are ideally suited to describe the spatial
and temporal dependence of tracer-tracer correlations. Even
in regions when the correlations are less compact. Use-
ful insight can be gained into the relative roles of the input
variables from visualizing the network weight assignment.
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The neural network Fortran code used is available for down-
load.
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