dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Phosphorus and other trace elements from secondary olivine in composite mantle xenoliths (CMX) from Cima Volcanic Field (CVF; California, USA): implications for crystal growth kinetics
VerfasserIn Ioannis Baziotis, Paul Asimow, Theodoros Ntaflos, Jeremy Boyce, Antonios Koroneos, Diego Perugini, Yongsheng Liu, Stephan Klemme, Jasper Berndt
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250113563
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-13780.pdf
 
Zusammenfassung
Phosphorus(P)-rich zones in olivine may reflect excess incorporation of P during rapid growth; zoning patterns may then record growth rate variations (Milman-Barris et al., 2008; Stolper et al., 2009). We report data on interior cuts of two CMX from alkali basalt flows (Mukasa & Wilshire, 1997) in the CVF with second-generation P-rich olivines. In Ci-1-196, a dark layer (~200 μm wide) between lherzolite and websterite is interpreted as a rapidly crystallized melt layer (ML), consisting of Ol+Gl+Pl+Spl+Cpx+Ap+Ilm. Glass (~15 vol%) is variable in composition (P2O5 ≈¤1.2 wt%, Li 8.22-20.0 ppm). Olivines in the layer have 0.03-0.62 wt% P2O5; P-rich Ol (P2O5 >0.1 wt%) are Fo85-89.3. The lowest P concentrations are consistent with equilibrium with liquid parental to Gl, but the higher concentrations are not. Li concentrations, zoned from 3.84 to 4.90 ppm (core-rim), indicate equilibrium incorporation during crystal growth from a small, evolving melt pool and preservation of this rapidly relaxing gradient. REEs are mostly consistent with equilibrium growth from liquids evolving towards the observed LREE-enriched glass. Most of the clinopyroxenes are diopsides with some augites. Apatite inclusions occur in the rim of P-rich Fo85 and in An54. In Ki-5-301, a dark-coloured area of irregular shape (~200 μm wide) is present along the contact between lherzolite and orthopyroxenite, consisting of Ol+Pl+Gl+Cpx+Spl+Ilm+Ap. It resembles a tabular dyke but is connected to melt-patches infiltrating the host rock. Widespread Glass in the layer has variable composition with two populations not related by fractional crystallization: 1) P2O5 1.02-1.09 wt% and 2) P2O51.62-2.35 wt% (a Gl inclusion in Ol has P2O5 3.57 wt% may have captured melt from the P-rich boundary layer at the interface with the rapidly growing olivine). REEs cluster in the same two groups. Li is as low as 3.66 ppm group 1 and 3-4x higher (9.64-13.3 ppm) in group 2. Olivine occurs as small idiomorphic crystals embedded in Gl and as large (~100 μm) idiomorphic to hypidiomorphic crystals with Gl and Spl inclusions; Mg# ranges from Fo74.5 (rim in contact with Gl) to Fo90.3; P2O5 reaches 3.5 wt% (in a ~Fo84 rim); Li varies from 2.80 (core) to 6.35 ppm (rim). Clinopyroxene (Wo41-43En50-54Fs5-8; P2O5 0.04-0.08 wt%; Li 3.33 ppm) is found both within the ML and as a reaction product between melt and matrix Opx. Trace element geochemistry shows possible equilibrium with ML glass for some elements, but clear disequilibrium for others. Apatite occurs as large (~100 μm) crystals in contact with Ol or Gl, as near-rim inclusions in P-rich Fo84 and as tiny prismatic crystals in Gl; REEs show slight negative Eu anomalies (Eu/Eu*=0.79-0.86) due to prior crystallization of plagioclase. High-resolution X-ray mapping of P in Ol from Ci-1-196 reveals 3-7 μm wide P-rich bands parallel to facets. P2O5 correlates negatively with Si and Mg+Fe+Ca, suggesting a substitution Mg2SiO4 + 1 /ˆ•2 P2O5 /†’Mg1.5[]0.5PO4 + 1 /ˆ•2MgO+SiO2. P-Al-rich areas may grow in minutes, whereas P-Al-poor over few weeks (Jambon et al., 1992). At such rates, dendritic growth (Welsch et al., 2014) implies that core to rim zoning may not be simple growth stratigraphy. A slight correlation between P and Al in our data implies either diffusive relaxation of Al gradients or, judging by dynamic experiments (Grant & Kohn, 2013), cooling rates >10˚ C/h that generate disequilibrium solute trapping of P but near-equilibrium incorporation of Al. The petrogenetic history following melt intrusion requires rapid cooling and reaction with matrix minerals and crystallization sequence Ol/†’Cpx/†’Pl/†’Ap/†’Fe-Ox/†’quench of Gl. P and Li concentrations set upper and lower limits on growth rates after intrusion of melt into CVF xenoliths. Early-crystallized olivine grew rapidly enough that sluggish P became over-enriched but not so fast as to over-enrich other elements. Cpx formed later either as neoblasts or reaction rims in which P was homogeneous (Baziotis et al. 2014) and growth was slower compared to Ol but fast enough to preserve the Li zoning. Li diffuses in Ol a factor of 3 faster than Mg-Fe (Qian et al., 2010) and hence sets a lower limit on time from Ol growth to eruption.