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Phosphorus(P)-rich zones in olivine may reflect excess incorporation of P during rapid growth; zoning patterns
may then record growth rate variations (Milman-Barris et al., 2008; Stolper et al., 2009). We report data on interior
cuts of two CMX from alkali basalt flows (Mukasa & Wilshire, 1997) in the CVF with second-generation P-rich
olivines.

In Ci-1-196, a dark layer (∼200 µm wide) between lherzolite and websterite is interpreted as a rapidly crystal-
lized melt layer (ML), consisting of Ol+Gl+Pl+Spl+Cpx+Ap+Ilm. Glass (∼15 vol%) is variable in composition
(P2O5 ≤1.2 wt%, Li 8.22-20.0 ppm). Olivines in the layer have 0.03-0.62 wt% P2O5; P-rich Ol (P2O5 >0.1 wt%)
are Fo85−89.3. The lowest P concentrations are consistent with equilibrium with liquid parental to Gl, but the higher
concentrations are not. Li concentrations, zoned from 3.84 to 4.90 ppm (core-rim), indicate equilibrium incorpo-
ration during crystal growth from a small, evolving melt pool and preservation of this rapidly relaxing gradient.
REEs are mostly consistent with equilibrium growth from liquids evolving towards the observed LREE-enriched
glass. Most of the clinopyroxenes are diopsides with some augites. Apatite inclusions occur in the rim of P-rich
Fo85 and in An54.

In Ki-5-301, a dark-coloured area of irregular shape (∼200 µm wide) is present along the contact between lherzolite
and orthopyroxenite, consisting of Ol+Pl+Gl+Cpx+Spl+Ilm+Ap. It resembles a tabular dyke but is connected to
melt-patches infiltrating the host rock. Widespread Glass in the layer has variable composition with two populations
not related by fractional crystallization: 1) P2O5 1.02-1.09 wt% and 2) P2O51.62-2.35 wt% (a Gl inclusion in Ol
has P2O5 3.57 wt% may have captured melt from the P-rich boundary layer at the interface with the rapidly
growing olivine). REEs cluster in the same two groups. Li is as low as 3.66 ppm group 1 and 3-4× higher (9.64-
13.3 ppm) in group 2. Olivine occurs as small idiomorphic crystals embedded in Gl and as large (∼100 µm)
idiomorphic to hypidiomorphic crystals with Gl and Spl inclusions; Mg# ranges from Fo74.5 (rim in contact with
Gl) to Fo90.3; P2O5 reaches 3.5 wt% (in a∼Fo84 rim); Li varies from 2.80 (core) to 6.35 ppm (rim). Clinopyroxene
(Wo41−43En50−54Fs5−8; P2O5 0.04-0.08 wt%; Li 3.33 ppm) is found both within the ML and as a reaction product
between melt and matrix Opx. Trace element geochemistry shows possible equilibrium with ML glass for some
elements, but clear disequilibrium for others. Apatite occurs as large (∼100 µm) crystals in contact with Ol or Gl,
as near-rim inclusions in P-rich Fo84 and as tiny prismatic crystals in Gl; REEs show slight negative Eu anomalies
(Eu/Eu*=0.79-0.86) due to prior crystallization of plagioclase.

High-resolution X-ray mapping of P in Ol from Ci-1-196 reveals 3-7 µm wide P-rich bands parallel to facets. P2O5

correlates negatively with Si and Mg+Fe+Ca, suggesting a substitution Mg2SiO4 + 1/2 P2O5 →Mg1.5[]0.5PO4 +
1/2MgO+SiO2. P-Al-rich areas may grow in minutes, whereas P-Al-poor over few weeks (Jambon et al., 1992).
At such rates, dendritic growth (Welsch et al., 2014) implies that core to rim zoning may not be simple growth
stratigraphy. A slight correlation between P and Al in our data implies either diffusive relaxation of Al gradients
or, judging by dynamic experiments (Grant & Kohn, 2013), cooling rates >10˚C/h that generate disequilibrium
solute trapping of P but near-equilibrium incorporation of Al.



The petrogenetic history following melt intrusion requires rapid cooling and reaction with matrix minerals and
crystallization sequence Ol→Cpx→Pl→Ap→Fe-Ox→quench of Gl. P and Li concentrations set upper and lower
limits on growth rates after intrusion of melt into CVF xenoliths. Early-crystallized olivine grew rapidly enough
that sluggish P became over-enriched but not so fast as to over-enrich other elements. Cpx formed later either as
neoblasts or reaction rims in which P was homogeneous (Baziotis et al. 2014) and growth was slower compared to
Ol but fast enough to preserve the Li zoning. Li diffuses in Ol a factor of 3 faster than Mg-Fe (Qian et al., 2010)
and hence sets a lower limit on time from Ol growth to eruption.


