dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Global terrestrial water storage connectivity revealed using complex climate network analyses
VerfasserIn A. Y. Sun, J. Chen, J. Donges
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 2, no. 2 ; Nr. 2, no. 2 (2015-04-30), S.781-809
Datensatznummer 250115162
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-2-781-2015.pdf
 
Zusammenfassung
Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationships exist between precipitation and TWS, the latter also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and hydrologic cycle, but also provide new model calibration constraints for improving the current land surface models. In this work, the connectivity of TWS is quantified using the climate network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS datasets, a remote-sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated dataset from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both datasets have 1 ° × 1 ° resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a statistical cutoff threshold to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show TWS hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two datasets indicate that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide important insights for constraining land surface models, especially in data sparse regions.
 
Teil von