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Abstract

Terrestrial water storage (TWS) exerts a key control in global water, energy, and bio-
geochemical cycles. Although certain causal relationships exist between precipitation
and TWS, the latter also reflects impacts of anthropogenic activities. Thus, quantifica-
tion of the spatial patterns of TWS will not only help to understand feedbacks between5

climate dynamics and hydrologic cycle, but also provide new model calibration con-
straints for improving the current land surface models. In this work, the connectivity
of TWS is quantified using the climate network theory, which has received broad at-
tention in the climate modeling community in recent years. Complex networks of TWS
anomalies are built using two global TWS datasets, a remote-sensing product that is10

obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mis-
sion, and a model-generated dataset from the global land data assimilation system’s
NOAH model (GLDAS-NOAH). Both datasets have 1 ◦ ×1 ◦ resolutions and cover most
global land areas except for permafrost regions. TWS networks are built by first quanti-
fying pairwise correlation among all valid TWS anomaly time series, and then applying15

a statistical cutoff threshold to retain only the most important features in the network.
Basinwise network connectivity maps are used to illuminate connectivity of individual
river basins with other regions. The constructed network degree centrality maps show
TWS hotspots around the globe and the patterns are consistent with recent GRACE
studies. Parallel analyses of networks constructed using the two datasets indicate that20

the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE,
although significant discrepancies exist in some regions. Thus, our results provide im-
portant insights for constraining land surface models, especially in data sparse regions.

1 Introduction

Terrestrial water storage (TWS) is defined as vertically integrated water of all forms25

above and below the Earth’s surface (e.g., surface water, soil moisture, groundwater,
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and snow and ice) (Famiglietti, 2004). It is not only a key control of global water, energy,
and biogeochemical cycles, but also provides an integrated indicator of water availabil-
ity and uses (Houborg et al., 2012; Lettenmaier and Famiglietti, 2006; Long et al., 2013;
Voss et al., 2013; Guentner et al., 2007). Global TWS has been the subject of model-
ing studies for decades, however, validation of modeling results has been challenging5

historically because of limited availability of in situ data. Since its launch in 2002, the
Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided an
unprecedented opportunity to study TWS remotely. GRACE detects temporal variations
of the Earth’s gravity field which, over land, are mainly caused by short-term variations
or TWS anomalies (TWSA). Numerous studies conducted in the past decade have10

confirmed the remarkable capability of GRACE in tracking continental- and regional-
scale TWS changes (e.g., Famiglietti et al., 2011; Sun et al., 2010; Yeh et al., 2006;
Long et al., 2013; Rodell et al., 2009; Swenson and Wahr, 2003; Han et al., 2005; Long
et al., 2014). So far, the monthly TWSA grids derived from GRACE have been used as
an independent source of information for hydrologic model validation (Ramillien et al.,15

2008; Syed et al., 2008; Chen et al., 2005), calibration (Sun et al., 2012; Werth et al.,
2009; Lo et al., 2010; Sun et al., 2010; Döll et al., 2014), and data fusion (Zaitchik et al.,
2010; Houborg et al., 2012; Sun, 2013; Forman et al., 2012).

The global GRACE dataset accumulated over the last decade represents an im-
portant type of Big Data that can be mined for discovering information of global wa-20

ter/energy dynamics, and for helping to illuminate connections among major river
basins and within the river basins themselves. Such information will be complemen-
tary to existing TWS modeling efforts (e.g., Guentner et al., 2007; Rodell et al., 2004)
and will potentially serve as calibration constraints. In this study, the complex network
theory is adopted to represent GRACE TWSA as a network with a large set of inter-25

connected nodes. Patterns of TWS are then quantified through analyses of network
topologies.

Complex network theory has long been used by scientists in various disciplines to
study intricate connections in natural and social phenomena (Jackson, 2008; Newman
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and Girvan, 2004; Rubinov and Sporns, 2010). In recent years, the complex climate
network (CCN) theory, which is an extension of the traditional complex network analy-
ses to climate systems (Tsonis and Roebber, 2004; Tsonis et al., 2006), has attracted
significant attention. In CCN theory, cells of a gridded dataset are treated as nodes of
a network, and links (or edges) between nodes are established on the basis of statis-5

tical similarity of the time series associated with the cells. After a climate network is
constructed, various descriptive measures derived from the classical complex network
theory are then applied to quantify network topologies (Donges et al., 2009b; Tsonis
et al., 2006; Steinhaeuser et al., 2011). One of the major findings from the previous
CCN studies is that climate networks manifest a “small-world” network property, akin10

to networks appear in many other fields (e.g., social networks). In CCN, this can be
contributed to the existence of long-range connections that stabilize the climate sys-
tem and enhance energy transfers within it (Donges et al., 2009a, b, 2011). TWS is
closely intertwined with soil-vegetation-atmosphere interactions and is thus expected
to show similar spatiotemporal patterns as observed from climate networks (e.g., pre-15

cipitation network); however, it is well known that climate only plays a partial role in
TWS changes. Land use changes and other anthropogenic activities (e.g., deforesta-
tion, aquifer mining, and water structures) increasingly stress water availability in many
parts of the world and have been shown to produce global-scale impacts on the terres-
trial water cycle (Vörösmarty and Sahagian, 2000). Such aspects are usually difficult20

to be fully captured and quantified without extensive in situ monitoring data.
Different from the global circulation model outputs analyzed by many previous CCN

studies, GRACE TWSA is a remote sensing product that is subjected to errors caused
by instrumentation and data processing. As a result, the actual spatial resolution of
GRACE TWSA is not 1◦ ×1◦, but much coarser (Houborg et al., 2012). In other words,25

the intrinsic degrees of freedom of the GRACE TWS are much less than its grid di-
mension. An important question is then how well a complex network constructed using
GRACE TWSA can reflect the salient features of the global terrestrial water cycle. Im-
portantly, how these patterns can be corroborated. Toward this end, the TWS dataset
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(1◦×1◦) simulated by global land data assimilation system (GLDAS) is used for compar-
ison. GLDAS is a global terrestrial modeling system jointly developed by US National
Aeronautics and Space Administration’s (NASA) Goddard Space Flight Center and US
National Oceanic and Atmospheric Administration’s National Centers for Environmen-
tal Prediction. GLDAS incorporates satellite and in situ observations to produce optimal5

fields of land surface states and fluxes in near real time (Rodell et al., 2004). Although
GLDAS is only a surrogate of in situ observations that are ultimately required to val-
idate the GRACE results, previous studies have shown that GLDAS represents the
magnitudes and variability of TWS sufficiently well (Syed et al., 2008). Thus, GLDAS
represents a valuable independent source of information for validating GRACE results10

and has been used by a number of global-scale GRACE studies (e.g., Syed et al., 2008;
Landerer and Swenson, 2012; Chen et al., 2005). In this study, the network measures
inferred from GRACE data are compared to those built from the GLDAS outputs to
cross-examine the two products.

2 Methodology15

2.1 Network construction

A network is commonly represented by a graph G(V,E), which is specified by its node
set V = {1, . . .,N} and edge set E, with N the number of nodes. Thus, the number
of possible edges in an undirected graph (meaning the links are non-directional) is
N(N −1)/2. In the current context, each node corresponds to a grid cell at which20

a valid monthly time series is available and N is the total number of such cells in
a gridded dataset. Construction of a network generally proceeds in two steps, network
growth and pruning. In the network growth step, similarity between all potential node
pairs (i.e., edges) in graph G is quantified. Common measures of similarity are statisti-
cal correlation (either Pearson or Spearman), mutual information, and synchronization25

(Boers et al., 2013; Donges et al., 2009a). In the pruning step, an appropriate similarity
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threshold (τ) is imposed to the edge set to retain only those edges that are considered
relevant to each other, out of all possible edges. The main purpose of network pruning
is to improve network analysis efficiency. If the correlation between two time series is
used as a measure of statistical similarity, then τ represents the minimum correlation
coefficient (R) above which a pair of nodes is considered connected. The absolute5

value of correlation is used such that both strongly positive and negative correlations
are counted.

Several methods have been used in the CCN literature to determine τ. In the signifi-
cance testing method (Tsonis et al., 2006), τ is based on the two-sided Student’s t test.
The critical t value, tc, for a given sample size ns and user-defined significance level α10

are determined using the Student’s t cumulative distribution function (CDF), from which
the value of τ can be solved

tc =
τ
√
ns −2√
1− τ2

. (1)

A similar method uses the probability value (i.e., p value) of test statistics directly: a pair
of nodes is considered connected if the p value is less than a critical value; for instance,15

Steinhaeuser et al. (2011) set the critical value to 10−10. Yet another method defines τ
from an edge density function ρ(τ) defined as

ρ(τ) =
nc(τ)

N(N −1)/2
, (2)

where nc is the number of active edges retained in a network when the threshold is set
to τ. Thus, edge density is closely related to the CDF of R.20

Obviously, all methods involve certain degree of subjectivity. The selection of τ thus
incurs a tradeoff between network maneuverability and preservation of network fea-
tures: if too many edges are included, the main network features will be obscured, not
to mention a significant increase in computational effort required to characterize a large
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network. In this work, the edge density method is used because it allows a direct com-
parison of network properties computed from different datasets (Donges et al., 2009a).
Additional statistical analyses (see Sect. 4) are performed to ensure that all meaningful
features are retained in the constructed networks.

2.2 Network measures5

The outcome of network construction process is a Boolean-valued, symmetric N ×N
matrix, referred to as the adjacency matrix and denoted by A. Elements of A, ai j , are
set according to the following rule

ai j =
{

1, if
∣∣Ri j∣∣ > τ

0, otherwise

}
(3)

in which
∣∣Ri j∣∣ is the absolute value of correlation between edge (i , j ). A number of10

network measures can then be applied on A to quantify network topology. The main
metrics adopted in this work include the degree of centrality and connection length.

The degree of centrality of a node, ki , is defined as the number of first neighbors
of node i and reflects the importance of node i in a network. Regions having high ki
values are referred to as “supernodes” in network theory because these nodes tend to15

have not only local connections, but also long-range connections or teleconnections.
However, ki itself does not reveal the actual type of connections. Because of nonunifor-
mity of cell areas at different latitudes, the degree of centrality ki is usually weighted by
cell areas, leading to the area-weighted connectivity,ACi (Tsonis et al., 2006; Heitzig
et al., 2012),20

ACi =
∑
j∈ni

cosλj
/ N∑

j=1

cosλj , i = 1, . . .,N (4)

where ni is the set of all first neighbors of the node i , and λj is the latitude of its j-th
first neighbor. Thus, ACi is a normalized value representing the fraction of the Earth’s
surface area that a node is connected to.
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A classic measure of network integration is the average distance between node i
and all other nodes, Di , and is defined as (Rubinov and Sporns, 2010)

Di =
1

N −1

∑
j∈V,j 6=i

di j , i = 1, . . .,N, (5)

where di j is the number of edges traversed along the shortest path between node
pair (i , j ). If (i , j ) is not connected, di j is defined as infinity. The characteristic path5

length of the network is obtained by taking average of all Di and it represents the
average number of edges to be traversed along the distance between two randomly
selected nodes in a network. Calculation of pairwise shortest path lengths becomes
computationally expensive when the number of node pairs is large. In this work, the
average distance between node i and all other nodes, Li , is quantified according to10

Li =
1
ki

∑
j∈ni

li j , (6)

where only the first neighbors of node i is included, and li j is the physical distance
between node pair (i , j ) measured by using the respective cell-center latitudes and
longitudes, (λi ,φi ) and (λj ,φj ). The physical-based characteristic path length of the

network, L, is simply the average of all Li (i = 1, . . .,N). The probability distribution of15

Li provides a sense of the average edge lengths in a network and L provides a measure
of network integration.

3 Data and data processing

The GRACE TWSA dataset used in this study was downloaded from Jet Propul-
sion Laboratory (JPL)’s Tellus site, (http://grace.jpl.nasa.gov/index.cfm). The dataset20

is based on RL05 GRACE solutions (in the form of spherical harmonics) released by
788
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the Center for Space Studies at the University of Texas Austin. It includes 121 epochs
from January 2003 to July 2013 at approximately monthly intervals. The 6 missing
months, which are not contiguous, were reconstructed using linear interpolation. The
grid dimensions are 360×180 and ocean area is masked out, resulting ∼ 25 000 cells in
each TWSA grid. In generating the gridded TWSA product, a number of postprocess-5

ing algorithms have been applied, as documented in details in Landerer and Swenson
(2012). In particular, a destriping filter is applied to minimize the effect of north–south-
oriented stripes in GRACE monthly solutions, and a 300 km Gaussian filter is then used
to reduce random errors in high-degree spherical harmonic coefficients not removed
by destriping. The GRACE gravity field solutions are typically truncated at a spectral10

degree less than 60. To restore signal attenuation caused by truncation and filtering,
the JPL dataset also includes a spatially distributed and temporally invariant scaling
factor field. This scaling factor field is not used in this study because it does not affect
pairwise correlations.

Outputs from GLDAS’s NOAH model were obtained from NASA (http://disc.sci.gsfc.15

nasa.gov/services/grads-gds/gldas). GLDAS covers latitudes between −60◦ and 90◦,
and does not model permafrost regions such as Greenland and Antarctica (Rodell
et al., 2004). Its grid dimensions are 360×150 and the temporal span is from Jan-
uary 1979 to the present (GLDAS V1). The number of cells in each GLDAS monthly
grid is N = 14 540. The GLDAS TWS is defined as the sum of water mass from all four20

soil layers represented by NOAH (up to 2 m depth) and snow water equivalent. Thus,
GLDAS TWS mainly includes surface and root zone storages. The GRACE grids are
masked using the smaller GLDAS coverage during network construction. To ensure
a fair comparison, the GLDAS dataset was processed using the same truncation and
filtering techniques applied to the GRACE data, which has been a standard practice in25

the literature (e.g., Chen et al., 2010; Rodell et al., 2009).
Monthly time series contains high-frequency noise. Because the main interest in this

study is on interannual correlations of TWSA, the high frequency noise in each TWSA
time series are removed. Several methods have been used for such purpose. The z-
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score method has been employed in the CCN literature to remove seasonal variability
(Donges et al., 2009b; Steinbach et al., 2003; Tsonis et al., 2006). It entails normal-
izing each monthly data point using the mean and standard deviation calculated for
the corresponding month and over the entire record length. The least squares method,
which is extensively used in the GRACE literature (e.g., Yeh et al., 2006; Crowley et al.,5

2006), models the intraannual variability using Fourier series (two annual sine/cosine
terms and two semi-annual sine/cosine terms) and then removes the variability, to-
gether with a slowly moving trend. Our numerical tests show the two methods give
very similar results. Lags existing between time series may weaken linear correlation.
Thus, to examine the effect of temporal lags, the same interannual correlation analy-10

sis is repeated using a temporal window of 36 months (i.e., the maximum correlation
observed within ±1.5 years of the zero lag).

4 Results and discussion

4.1 Edge density

The number of possible edges represented by the TWS datasets is more than 10015

million for N = 14 540. After removing seasonal trends from GRACE and GLDAS and
calculating the correlation coefficient R for all node pairs, the edge density method
is applied to determine a similarity threshold τ. Note in the discussion below, R is
calculated at zero lag unless otherwise specified.

Figure 1a shows edge density functions constructed using GRACE and GLDAS TWS20

data, respectively, both are monotonically decreasing (i.e., fewer connected edges at
higher τ values) and are similar in shape. As mentioned in Sect. 2, edge density pro-
vides an indicator of the fraction of connected edges at different threshold values. Fig-
ure 1b plots the maximum correlation coefficient as a function of edge length, which
is defined as the shortest physical distance between a pair of nodes in this work. To25

arrive at Fig. 1b, all R values are first sorted according to nodal separation distances,
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a bin width of 250 km is applied to the resulting distribution, and the maximum R value
within each bin is recorded. Figure 1b suggests that the maximum correlation stays rel-
atively high (> 0.7) for most distances. Recall that the main purpose of network pruning
is to improve the computational efficiency of network characterization while preserving
the most important network features. In this study, the threshold τ is set to 0.57 be-5

cause (a) the corresponding fraction of connected edges is relatively small (0.036), at
which level more than 96 % of edges is removed, (b) the edge densities of GRACE and
GLDAS happen to be the same at that level; and importantly (c) the cutoff τ threshold is
still below the maximum correlation exhibited at all separation distances, as suggested
by Fig. 1b. Thus, the selected τ value ensures that all important network features are10

represented by the constructed networks.

4.2 Basin analyses

A basin analysis is useful for helping visualize the TWSA connection patterns at the
basin level. Figure 2 shows the results for six river basins around the world. To gener-
ate a plot in Fig. 2, a cell is first fixed, and all its edges are colored according to the15

actual R (not the absolute values). For our purpose, the centroid of each basin is used.
While the basin centroid may not be representative of the connection patterns of an
entire basin (especially when the basin spans several climatic regions), it serves as
a basis for comparing multiple basins at a qualitative level. Figure 3 applies the cut-
off threshold τ defined in Fig. 1 to all plots in Fig. 2. Results suggest that interannual20

TWSA connections in Amazon and Congo Basins are dominated by local connections.
The mid-latitude basins (Ganges, Mississippi, and Tigris) generally show more telecon-
nections, although Yangtze is an exception. In the case of Tigris basin, a large number
of strongly positive and negative correlations are observed and the local connections
extend far beyond the basin boundary. A detailed interpretation of this observation will25

be given in the next section.
Extensive teleconnection is an advantage from forecasting perspective because cli-

mate indices, such as El Niño–Southern Oscillation (ENSO) and North Atlantic Oscil-
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lation (NAO), can be used as possible indicators of future changes. For those basins
without strong teleconnection, water resources planning must rely mainly on regional
data. Such distinction sheds light on the significance of GRACE data to long-term basin
planning and natural hazard mitigation strategies, as we will elaborate in the following
sections.5

As a sensitivity study, Fig. 4 (left column) shows the results of basin analysis for
Mississippi basin, the largest basin in North America, using different thresholds corre-
sponding to τ values of 0.41, 0.57 (the base case), and 0.76, respectively. The corre-
sponding edge density is labeled in the figure. Because the cutoff threshold increases
as ρ decreases, a significant reduction in number of edges can be observed. For com-10

parison, the modeled TWS connections obtained from GLDAS are provided in the sec-
ond column of Fig. 4. In general, the connections modeled by GLDAS are much weaker
(i.e., smaller in spatial extent) than those obtained from GRACE. In some cases, the
locations of connections are also different. For example, the negative correlation ob-
tained by GLDAS in North Africa for ρ = 0.1 is not seen by GRACE. The complex net-15

works thus provide a useful tool for examining the agreement, or the lack of it, between
GLDAS and GRACE.

4.3 Connectivity

Using the selected cutoff τ, a network adjacency matrix A is formed and various net-
work measures described under Sect. 2 are applied to quantify network topology. Fig-20

ure 5a shows the area-weighted connectivity map constructed using GRACE data. On
the map, red colors highlight regions of high connectivity. Recall that a high degree
of connectivity indicates that a node interacts strongly with the rest of the nodes in
a network (i.e., a supernode); however, the connectivity map itself does not tell the
type of connections per se, and needs to be analyzed jointly with the connection length25

map to be shown in the next section. The largest cluster of supernodes appears in the
Middle East region, where the connected neighbors account for more than 0.16 of the
global area. To a lesser extent, the Pacific Northwest and east coast of the US, south-
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ern Africa, southern South America, and eastern Australia show smaller supernode
regions. In contrast, most of Asia, central US, and Europe exhibit little or no connectiv-
ity (blue color). These observations are consistent with patterns observed during basin
analyses (see Figs. 3 and 4).

The supernode regions shown in Fig. 5a reflect the superposed effects of climate5

variations and anthropogenic activities. These can be explained in terms of global pre-
cipitation and atmospheric circulation patterns. In general, the poorly connected re-
gions have stronger precipitation variations over shorter spatial scales, leading to the
emergence of high precipitation gradients which, in turn, are responsible for regional
extreme events that are more localized in time and space (Scarsoglio et al., 2013).10

Those with high connectivity tend to be directly influenced by ocean and climatic oscil-
lations (e.g., ENSO and NAO). Kahya and Dracup (1993) studied streamflow variations
in the contiguous US and identified Northeast, North Central, Pacific Northwest, and
Gulf of Mexico states as regions with potentially significant streamflow responses to
ENSO forcing. These four regions can be easily identified on Fig. 5a, among which the15

Gulf of Mexico region shows the weakest connection. Similarly, Chiew et al. (1998) re-
ported that the ENSO can be used to help forecast spring runoff in south-east Australia
and summer runoff in the north-east and east coasts of Australia. This teleconnection
pattern is also indicated clearly by Fig. 5a.

At the global scale, Dai et al. (2009) studied the monthly streamflow records of the20

world’s 925 largest ocean-reaching rivers from 1948 to 2004. They concluded that (a)
the interannual variations of streamflows are correlated with the ENSO events for dis-
charge into the Atlantic, Pacific, Indian, and the global ocean as a whole and (b) the
effects of anthropogenic activities on annual streamflow are likely to be small compared
to those of climate variations; however, anthropogenic activities can create more dis-25

turbances in arid and semi-arid regions, where the discharge magnitudes are low (e.g.,
Indus, Yellow, and Tigris–Euphrates River Basin). To elaborate the latter point further,
Fig. A1 in Appendix A plots the proportion of total renewable water resources with-
drawn by country for human uses in the agricultural, municipal, and industrial sectors,

793

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/781/2015/npgd-2-781-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/781/2015/npgd-2-781-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 781–809, 2015

Global terrestrial
water storage
connectivity

A. Y. Sun et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

using long-term data compiled by the Food Agricultural Organization of United Nations.
Figure A1 indicates that the Middle East and North African countries show the highest
withdraw proportions. In a recent GRACE study focusing on north-central Middle East,
Voss et al. (2013) reported that GRACE data show an “alarming rate” of decrease in
TWS of approximately 143.6 km3 during 2003–2009. Thus, the resemblance between5

Fig. 5a and Fig. A1 in those regions is not coincidental and can be corroborated using
multiple sources. Because interannual TWS anomalies are well connected in clustered
supernode regions, these regions tend to exhibit more vulnerability to both climate and
human-induced disturbances.

Having elaborated the close relationship between GRACE TWSA and climate pat-10

terns, it is important to point out that the TWS also includes effects of soil moisture and
groundwater storage (mostly unconfined aquifers) changes that may not synchronize
with climate patterns.

Figure 5b shows the same area-weighted connectivity map, but constructed using
the GLDAS-NOAH outputs. Although GLDAS-NOAH shows many of the similar pat-15

terns detected by GRACE, it also indicates stronger connectivity in Arabian Peninsula,
North Africa, and in middle South America, and much weaker connectivity in south-
ern Africa. These discrepancies may be caused by GLDAS-NOAH’s parameterization
and other errors. The other main reason is that GLDAS does not resolve groundwater
storage well. The discrepancies highlighted here provide additional spatial calibration20

constraints for land surface models. We emphasize here the connectivity maps shown
in Fig. 5 are for TWSA. Thus, the high-precipitation areas (e.g., Amazon basin) do not
necessarily exhibit high anomaly connectivity after removing the intraannual variability.

So far, all results have been based on zero-lag correlations. The effect of temporal
lag on connectivity is examined in Fig. 6, in which the connectivity map is built using25

the maximum (absolute) correlation found between −18 and +18 monthly lags of each
node pair. The figure suggests that incorporation of lagged correlation further strength-
ens connectivity. The supernode regions are expanded in space, notably in eastern
Australia and in the Colorado River Basin and Gulf Coast states in the US.
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4.4 Connection length

Figure 7a shows maps of the physical-based average nodal connection length Li
(i = 1, . . .,N). Nodes that exhibit the longest connection lengths are mostly located in
southern part of South America (∼ 12 000 km). Other regions with relatively long con-
nections are found in Pacific Northwest, North Central, Colorado River, and North East5

regions of the US, south Africa, and eastern Australia. Interestingly, the Middle East
region is mostly characterized by connection lengths less than 5000 km; thus, the su-
pernodes in that region are dominated by local connections. The connection length
patterns observed here support the previous discussions in the context of teleconnec-
tion and forecasting potential. Importantly, the connection length map can help evaluate10

the influence of teleconnection on TWS for a particular region.
The average nodal connection length map constructed using GLDAS data suggests

much wider connections, although most are local. Again this can be attributed to model
parameterization schemes, forcing resolution, and spatial correlation constraints, as
discussed before.15

The probability distribution of the average connection length, Li , is shown in Fig. 8.
Most nodes in the GRACE network are dominated by short-range edges with lengths
less than 2000 km, although several other smaller modes appear in the 4000–6000,
6000–8000, and 8000–10 000 km ranges. In contrast, the GLDAS network shows
a weaker local connection mode in < 2000 km range, but a wider and more persis-20

tent second mode in 4000–6000 km. Interestingly, the two modes of GLDAS coincide
with those of GRACE. The characteristic path length (L) is 2300 km for GRACE and
4000 km for GLDAS, respectively.

5 Summary and conclusions

In this work, the CCN theory is applied to analyzing connection patterns in TWS.25

A comparative study is conducted using two global TWS datasets derived from GRACE
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and GLDAS, respectively, with an emphasis on interannual variability. Both datasets are
large and have more than 100 million potential connections. An edge-density method
is adopted to define an appropriate network pruning threshold. The constructed net-
works are further analyzed using the classic degree of centrality and connection length
measures, which are extended for use with gridded datasets.5

Our results show that CCN theory provides a powerful tool for characterizing global
TWSA hotspots or supernode regions. The area-weighted connectivity is a local mea-
sure that reveals nodes with a large number of connections (edges), whereas the con-
nection length helps identify the dominating type of connections. In terms of connec-
tivity, the largest cluster of supernodes appears in the Middle East region, while other10

prominent ones are found in Pacific Northwest and eastern US, southern Africa, south-
ern South America, and eastern Australia. In terms of connection lengths, the Middle
East region is dominated by local connections, whereas regions such as Pacific North-
west, North Central, Colorado River, and North East regions of the US, south Africa,
and eastern Australia all have strong bimodal connections.15

While many of the TWSA network features found here can be explained by estab-
lished climate teleconnection theories, the TWS, as an integrated indicator of global
water storage, is unique in its own way. It shows the impact of both climate and anthro-
pogenic activities. Knowledge of both the strength and type of TWS connectivity can
help identify useful TWS predictors and provide insight to further improve current land20

surface models.
GLDAS outputs have been used extensively in validating GRACE results at various

scales. Less focused is the consistency of spatial correlation between GLDAS and
GRACE data. Results from this study statistically quantify the discrepancies between
the two datasets. A main conclusion is that network connectivity measures should be25

incorporated as an additional model calibration and validation criterion when develop-
ing the future-generation of GLDAS models.
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Appendix A

According to FAO, the proportion of total renewable water resources withdrawn is de-
fined as the total volume of fresh groundwater and surface water withdrawn from their
sources for human use (in the agricultural, municipal and industrial sectors), expressed
as a percentage of the total actual renewable water resources. The data used in Fig. A15

are compiled from 2005 data published by FAO http://www.fao.org/nr/aquastat. In sev-
eral cases where 2005 data are not available, 2000 data are used as best estimates.
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Figure 1. (a) Edge density function ρ(τ) of GRACE and GLDAS (the value of τ selected for
network pruning is 0.57, corresponding to an edge density 0.036); (b) maximum correlation as
a function of edge lengths.
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Figure 2. Patterns of connection inferred from GRACE TWSA for six river basins, in which
connection pattern is based on correlation between the basin centroid and all other cells in the
grid.
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Figure 3. GRACE connection patterns after cutoff threshold τ = 0.57 is applied (the green solid
line delineates basin boundaries).
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Figure 4. Sensitivity of connection patterns to cutoff threshold, demonstrated using Mississippi
River Basin’s centroid. Left column, GRACE results; right column, GLDAS results.
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Figure 5. Area-weighted connectivity map obtained using (a) GRACE and (b) GLDAS data
(zero-lag correlation).
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Figure 6. Effect of lagged-correlation on GRACE area-weighted connectivity, where the window
of lagged correlation is [−18, 18] months.

806

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/781/2015/npgd-2-781-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/781/2015/npgd-2-781-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 781–809, 2015

Global terrestrial
water storage
connectivity

A. Y. Sun et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 7. Map of average node connection lengths derived based on (a) GRACE and (b)
GLDAS.
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Figure 8. Distribution of average edge lengths in GRACE and GLDAS networks, where Li
denotes the average distance between node i and its neighbors.
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Figure A1. Proportion of total renewable water resources used by country (Data source: Food
Agricultural Organization (FAO) of the United Nations, http://www.fao.org/nr/aquastat)
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