dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Data assimilation experiments using the diffusive back and forth nudging for the NEMO ocean model
VerfasserIn G. A. Ruggiero, Y. Ourmières, E. Cosme, J. Blum, D. Auroux, J. Verron
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 1, no. 2 ; Nr. 1, no. 2 (2014-07-16), S.1073-1131
Datensatznummer 250115114
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-1-1073-2014.pdf
 
Zusammenfassung
The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iterative data assimilation method based on the well-known Nudging method. It consists in a sequence of forward and backward model integrations, within a given time window, both of them using a feedback term to the observations. Therefore in the DBFN, the Nudging asymptotic behavior is translated into an infinite number of iterations within a bounded time domain. In this method, the backward integration is carried out thanks to what is called backward model, which is basically the forward model with reversed time step sign. To maintain numeral stability the diffusion terms also have their sign reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to control a primitive equation ocean model is investigated. In this kind of model non-resolved scales are modeled by diffusion operators which dissipate energy that cascade from large to small scales. Thus, in this article the DBFN approximations and their consequences on the data assimilation system set-up are analyzed. Our main result is that the DBFN may provide results which are comparable to those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU time for convergence.
 
Teil von