dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Clever particle filters, sequential importance sampling and the optimal proposal
VerfasserIn Chris Snyder
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250100210
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-16104.pdf
 
Zusammenfassung
Particle filters rely on sequential importance sampling and it is well known that their performance can depend strongly on the choice of proposal distribution from which new ensemble members (particles) are drawn. The use of clever proposals has seen substantial recent interest in the geophysical literature, with schemes such as the implicit particle filter and the equivalent-weights particle filter. Both these schemes employ proposal distributions at time tk+1 that depend on the state at tk and the observations at time tk+1. I show that, beginning with particles drawn randomly from the conditional distribution of the state at tk given observations through tk, the optimal proposal (the distribution of the state at tk+1 given the state at tk and the observations at tk+1) minimizes the variance of the importance weights for particles at tk overall all possible proposal distributions. This means that bounds on the performance of the optimal proposal, such as those given by Snyder (2011), also bound the performance of the implicit and equivalent-weights particle filters. In particular, in spite of the fact that they may be dramatically more effective than other particle filters in specific instances, those schemes will suffer degeneracy (maximum importance weight approaching unity) unless the ensemble size is exponentially large in a quantity that, in the simplest case that all degrees of freedom in the system are i.i.d., is proportional to the system dimension. I will also discuss the behavior to be expected in more general cases, such as global numerical weather prediction, and how that behavior depends qualitatively on the observing network. Snyder, C., 2012: Particle filters, the "optimal" proposal and high-dimensional systems. Proceedings, ECMWF Seminar on Data Assimilation for Atmosphere and Ocean., 6-9 September 2011.