dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Characterisation and first application of a cavity ring-down instrument for measurements of NO3 and N2O5
VerfasserIn Stephanie Schrade, Mathias Bachner, Kamil Kubik, Hendrik Fuchs
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250094742
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-10173.pdf
 
Zusammenfassung
A new instrument was built for atmospheric measurements using the cavity ringdown technique for a simultaneous measurement of nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) using a red laser diode at 662 nm. The instrument consists of two channels: The inlet and the cavity of the first one is heated up to 120 °C to force the thermal equlibrium of N2O5 and NO3 to the side of NO3, so that this channel measures the sum NO3 and N2O5. The other channel stays at ambient temperature to measure NO3 only. To prevent aerosol extinction, a filter is installed upstream of the cavities. The detection limit is within the range of a few ppt at 1 s time resolution. Measurements have an accuracy of 15 %. Instrument losses were characterized by a titration method using the conversion of NO3 to NO2 by adding NO. Two addition points where chosen, right before and after the NO3 intrument.The NO2 concentration was measured downstream of the instrument with another CRDS intrument using a blue laser diode at 405 nm. Estimated losses are within the range of 40 % due two a high point loss on the used filter housing. First application took place at the SAPHIR simulation chamber at Forschungszentrum Jülich GmbH. Experiments were made by injecting known concentrations of NO2 and ozone into the dark chamber filled with pure synthetic air to analyse the behavior of NO3 and N2O5 in the clean chamber. Possible losses were estimated from the steady-state lifetime of NO3, which can be calculated from measured NO3, NO2 and ozone concentrations. Estimated lifetimes of NO3 and N2O5 were within the range of 19 min and 44 min, respetively. During futher experiments organic compounds (isoprene, β-pinene, limonene) were additionally injected, in order to test the applicability of chamber experiments for the invertigation of oxidation processes by NO3.