

Characterisation and first application of a cavity ring-down instrument for measurements of NO_3 and N_2O_5

Stephanie Schrade, Mathias Bachner, Kamil Kubik, and Hendrik Fuchs Forschungszentrum Jülich GmbH, IEK-8: Troposphäre, Germany (s.schrade@fz-juelich.de)

A new instrument was built for atmospheric measurements using the cavity ringdown technique for a simultaneous measurement of nitrate radicals (NO₃) and dinitrogen pentoxide (N₂O₅) using a red laser diode at 662 nm. The instrument consists of two channels: The inlet and the cavity of the first one is heated up to 120 °C to force the thermal equilibrium of N_2O_5 and NO_3 to the side of NO_3 , so that this channel measures the sum NO_3 and N_2O_5 . The other channel stays at ambient temperature to measure NO_3 only. To prevent aerosol extinction, a filter is installed upstream of the cavities. The detection limit is within the range of a few ppt at 1 s time resolution. Measurements have an accuracy of 15 %. Instrument losses were characterized by a titration method using the conversion of NO_3 to NO_2 by adding NO. Two addition points where chosen, right before and after the NO_3 intrument. The NO₂ concentration was measured downstream of the instrument with another CRDS intrument using a blue laser diode at 405 nm. Estimated losses are within the range of 40 % due two a high point loss on the used filter housing. First application took place at the SAPHIR simulation chamber at Forschungszentrum Jülich GmbH. Experiments were made by injecting known concentrations of NO2 and ozone into the dark chamber filled with pure synthetic air to analyse the behavior of NO_3 and N_2O_5 in the clean chamber. Possible losses were estimated from the steady-state lifetime of NO_3 , which can be calculated from measured NO_3 , NO_2 and ozone concentrations. Estimated lifetimes of NO_3 and N_2O_5 were within the range of 19 min and 44 min, respetively. During futher experiments organic compounds (isoprene, β -pinene, limonene) were additionally injected, in order to test the applicability of chamber experiments for the invertigation of oxidation processes by NO_3 .