dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Empirical correction techniques: analysis and applications to chaotically driven low-order atmospheric models
VerfasserIn I. Trpevski, L. Basnarkov, D. Smilkov, L. Kocarev
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 20, no. 2 ; Nr. 20, no. 2 (2013-03-07), S.199-206
Datensatznummer 250018958
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-20-199-2013.pdf
 
Zusammenfassung
Contemporary tools for reducing model error in weather and climate forecasting models include empirical correction techniques. In this paper we explore the use of such techniques on low-order atmospheric models. We first present an iterative linear regression method for model correction that works efficiently when the reference truth is sampled at large time intervals, which is typical for real world applications. Furthermore we investigate two recently proposed empirical correction techniques on Lorenz models with constant forcing while the reference truth is given by a Lorenz system driven with chaotic forcing. Both methods indicate that the largest increase in predictability comes from correction terms that are close to the average value of the chaotic forcing.
 
Teil von