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Abstract. Contemporary tools for reducing model error in equations of its evolution (if they exist) have more complex
weather and climate forecasting models include empiricalstructure than those of the atmospheric models. Furthermore,
correction techniques. In this paper we explore the use oBubgrid-scale atmospheric processes such as cloud formation
such techniques on low-order atmospheric models. We firsare not resolved by the models. Instead, they are approxi-
present an iterative linear regression method for model cormated by different parametrization schemes, the choice of
rection that works efficiently when the reference truth is sam-which mainly depends on the preference of the investiga-
pled at large time intervals, which is typical for real world ap- tors at a weather forecasting center. The uncertainties coming
plications. Furthermore we investigate two recently proposedrom model errors limit our ability to make useful predictions
empirical correction techniques on Lorenz models with con-with any individual model, and current tools that account for
stant forcing while the reference truth is given by a Lorenzmodel error are typically called empirical correction tech-
system driven with chaotic forcing. Both methods indicate niques Leith, 1978 DelSole and Hou1999 Danforth et al.
that the largest increase in predictability comes from correc2007 Allgaier et al, 2012 Basnarkov and Kocare2012).
tion terms that are close to the average value of the chaotic The simplest form of model error occurs in the perfect
forcing. model scenario where the model and the truth belong to the
same class. The model structure is correct but the true param-
eter values are unknown, and the goal of eliminating model
error is the same as that of parameter estimatonith et al,
1 Introduction 2010. One of the difficulties in reducing model error in this
setting comes from infrequent observation of the truth. For
In forecasting the state of the atmosphere, the occurrenCgyckling this problem we provide a new iterative linear re-
of two fundamental types of errors is inevitablealmer  gression technique that works efficiently even when the sam-
2000. The first type, often callethternal error growth re-  pling interval between two successive observations of the
sults from the amplification of initial condition uncertainties yth is very large.
due to atmospheric instabilitie#Inay, 2002. The present When the model is structurally different from the truth,
tools for tackling internal error growth include data assimila- gne can modify the dynamical equations of the model based
tion techniques and ensemble forecastiAgderson 2001, on the statistics of the forecast errors between the model
Hunt et al, 2004 Merkova et al. 2011). The second type and the truth. The question arises as to how different meth-
is called external or model error and comes from the factyqg compare to each other in this approach, and this paper
that atmosphere has larger complexity and resolution tha'&ttempts to address it by investigating two promising tech-
its representations by model®itell et al, 2001 Judd and  pjgques on a chaotically driven toy climate model. Both of

Smith 2004. With mathematical language, the atmospherethese methods aim to optimize the average model tendency
has (many) more degrees of freedom, or variables, and the
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200 I. Trpevski et al.: Analysis and applications to chaotically driven atmospheric models

error (i.e., the difference between the true change of the vari2  An iterative linear regression method for model

ables and the model tendency over a time series of observa- correction

tions) in terms of some linear parameters. The first method

was originally proposed byeith (1978 with the aim to  Forecast errors originate from both initial condition errors
correct the model tendency equations by add|ng a Statea.nd model errors, and it is often assumed that one domi-
independent or model bias term, and a state-dependent line&@tes over the other, although in general this need not be
operator. A version of Leith’s correction method has been apirue. Shadowing timeQrrell, 2007) for example depends on
plied successfully on a low-dimensional atmospheric modelthe interplay between the two types of errors. Here we as-

with 0(10%) degrees of freedonDelSole and Hop1999, sume that one can get a goadalysisof the true state in
while a modification of the technique has given promising terms of the model variables with current state-of-the-art data

results on atmospheric models with as muchoad 0°) de- assimilation methods so that model error dominates short-

grees of freedonffanforth et al.2007). Recently, it has been term forecast errors. This allows us to focus on improving
shown for a toy climate system that the increase in the avihe model by reducing its model error. In the following we
erage forecasting accuracy comes at the cost of substantidlenote the analysis of the truth witly and the model state
qualitative differences between the dynamics of a correctedector withx. Also, assume that the model tendency is given
model and its reference truth systeAllgaier et al, 2012). by

The second method compared in this paper stems from a
more recent idea that one can combine the advantages of dif = 1 *-P) - @)

ferent impetrfect.models to produce an improved forecast of hare the parameters appear linearly in the equations.
the truth Piegerinck et al.2011 van den Berge et a2011). We present an iterative linear regression (ILR) method that

In particular this approach constructs a model whose tent,, effectively estimate all the parameters appearing in the

dencies are given by a weighted combination of the te”de”fnodel equationslj when the sampling interval between

cies of the imperfect models. Akin to the Leith’'s method, the , g,ccessive observations of the truth is large. The effi-

weights are determ_lned so as to minimize the average mOd'g'éiency of the technique is demonstrated in the perfect model
tendency error. This method has not been tested as exteRgenario where “true” or optimal values of the parameters of
sively as Leith's method on larger models, but a recent study, gy stem exist but are unknown. In the imperfect model sce-
shows that it offers improved forecast on a Iow-dimensionalnario, one needs to define a goal (such as best forecast lead
Lorenz '96 systemiasnarkov and Kocare2012). time) in terms of which one hopes to find the best parame-
The experimental test bed on which we test these two techf,ar values Du and Smith2012. Standard linear regression

nigues is given by a chaotically driven Lorenz 63 SyStemtechniques work by minimizing the Mean Square Tendency
(Lorenz 1963 — essentially capturing the fact that at a more g, (MSTE) with respect to the parameters
fundamental level the atmosphere is an open system subject

to a vanab_le fo_rcmg in time. The external forcing is given p, () =l (;Ca_ T (xa, P)) 12), @)
by a chaotic drive signal obtained from the variables of an-
other Lorenz 63. We assume that we cannot resolve the drivg here () denotes time average oveN observations
ing process and model it using a standard parametrizatiorilxa(to)’xa(to+t)’m,xa(tojL(N_ 1)7)} sampled with
scheme, namely by adding constants in the Lorenz 63 modetrequencyr. The estimated tendency of the truth at time

We note that this type of on-line empirical correction ; can pe obtained using standard interpolation techniques or
methods considered in this paper differs from a posteriorisinite differences from the observations.
correction methods (offline), such as subtracting the bias \we now modify method2) to be used as a model correc-
from the forecast itself, in that they modify the dynami- ii5n method:
cal equations of the moddbanforth and Kalnay2008 re-
cently pointed out that online correction reduces not only E5 (p) = (| (i:a—fc —c(xa p)) %, (3)
the growth of the bias but also the nonlinear growth of non-
constant (state-dependent and random) forecast errors duringhere ¢ (x, p) is the correction of the initial model
the model integration. (1) and x(¢r) is estimated from time series observation

The rest of the paper proceeds as follows. In S2ate {x(t0),x (to+ h)...} of frequencyh obtained by integrating
first look at the new method for estimating the parameters otthe initial model Eq. ). A question that arises naturally is
a perfect model in the case of infrequent observational datawhy to estimate the model tendencies from time series in-
We then describe the two empirical correction techniques instead of directly evaluating the model equations. The reason
Sect.3. Their forecasting properties on the chaotically driven is to reduce the effect of the error that occurs, because we
Lorenz 63 system are analyzed in SéctWe provide a dis- observe the truth at infrequent discrete times. Suppose the
cussion and conclusion in Sebt. sampling intervat is not small enough; thefy(r) will be an

incorrect estimation of 5 (7). If %(7) is used instead 0¥ (1),
then there is going to be a non-zero correcit@m, p) even
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though the initial model is equivalent to the truth, becauseprocedure converges after 13 iterations, and the largest error
x(t) = xa(t) # xa(t) due to the error introduced by any es- in any of the final estimated parameters is less than 1 %.
timation scheme of the tendency. Howeverxif) is used The iterative correction method cannot be applied straight-
instead and estimated by matchihg= 7 (i.e., we observe forward to the imperfect model scenario since the im-
our current model the same way we observe the truth (withperfections in general cannot be resolved. One direction
frequencyr)), thenx (1) = xa(¢) will hold and no correction  that is probably worth exploring is the use of stochastic
is needed. parametrizations to account for the model imperfections. A
Once we obtain the correctian(x, p), we can apply itto  recent approach that iteratively constructs inverse stochas-
our initial model () and run a new iteration of the proce- tic models with multilevel stochastic forcing has been ef-
dure with the corrected model. The convergence criteria carfectively applied in explaining climate variabilitjK(avtsov
be decided depending on the model and application. In theet al, 2005 Kondrashov et al2005. This approach and the
following experiment we stop the iteration when the changeone presented in this section are algorithmically similar in
in any of the estimated coefficients between two iterations ishat they apply least-squares iteratively to determine better
smaller than 10%. model coefficients.
For testing the method we use the Lorenz system with
standard parameter values as a reference truth. The time se- o ) ) )
ries from the reference truthxa(r)} is obtained by running 3 Empirical correction techniques for imperfect models
fourth-order Runge—Kutta with timestep 0.01 frong: 0to 31 Leith's correction method
t =20 and then taking every seventh observation — thus

T= 0.07. We start the_ iteration procedure with a null model Leith (1978 proposed a technique that reduces model ten-
x = 0, and the correction term has the general quadratic fomHency error by adding both a state-independent (constant)
term and a state-dependent (linear) term to the model ten-

3 3 dency equations. He pointed out that for short forecast times
cj(x,p)=po,;+ Zpi,jxi + ZZpik,jxixk (4) the model errors can neither interact nor compound nonlin-
i=1 i=1k>i early so a linear equation that approximates the model error

might be useful. The state-independent term accounts for the
difference in the time average between the model and the
truth, while the state-dependent term accounts for the dif-

o o - . Yerence between the variances of the model and triti (
better derivative estimation than finite differences, although aier et al, 2012. For a general dynamical system given

for higher-order models this need not be true. We estimat . :
%(t) by first generating time seriel( — kh) ...x( — ), Egy Eqg. @), the proposed improved model has the following

for j =1,2,3. The estimation of the tendency of the truth
xa(t) is done by using spline interpolatioRress et al2007)
on the time series, because for the Lorenz system it give

x(@), x(t+h)...x(t+kh)} from the initial model by run- form

ning backward and forward Runge-Kutta foisteps start- 3 — 7(x, p) +Lx +b. (6)
ing with the initial statexa(¢) = x(z). We found that a local

time series withk = 6 is sufficient for good estimatiaf(r). The operatot. and the constant forcing terinare obtained

When backward integration is not applicable due to instabil-by least squares optimization of the mean square tendency
ities, one can use a concentrated finite differencing schemerror (e’ e) where the model tendency erreoat a particular
(Kravtsov et al, 2005: timer is given by

f(t):%(—3x(t)+4x(t+h)—x(t+2h)). () e=Xalt) =T (xa(r) —Lxa(t) —b. )

. . o . We follow (Allgaier et al, 2012 and first calculate the state-
On model time series we use spline interpolation and es- C
. z . . . oz independent correction:

timatex () at timez. Using the differences, — x as target

variables, we finally solve Eq3J using least squares to ob- 5 _ (Ax)/T, (8)

tain the correction term. We can then recursively construct

anew model',11(x,p)=T,(x,p)+c(x, p). Theresults where(Ax) denotes the average of forecast errors over the
from the 1st, 2nd and last iteration of the procedure are sumentire training period. Note that the average forecast error
marized in Tablel. For the first iteration there are signifi- has to be divided by the length of the sampling interval to
cant errors in the estimation of the bias terms and modesbbtain the instantaneous model correction term. This average
errors for the parameteys and 8. Note that the first itera-  provides an estimate for the systematic model error generated
tion is equivalent to applying standard multiple polynomial during the observation window, and adding it to the model
regression. In the second iteration we can see significant imequations should produce a model with less bias:

provement in the estimation of the three Lorenz parameters,

but the errors in the bias (constant) terms remain large. Thd' © (x) =T (x) +b. 9)
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Table 1.Estimated coefficients in the quadratic ford) for the 1st, 2nd and last iteration of the procedure.

2 2 2

p(2) 1 X y b4 X y b4 Xy Xz vz
X —0.6286 —111669 10.8096 0.0858 0.0168 -0.0004 —-0.0031 -0.0114 0.0362 —0.0274
¥ 11.3944 25.5828 —0.0911 -1.3503 -0.1735 —-0.0598 0.0375 0.1930 —0.9332 —-0.0182
Z —8.4870 —0.9195 0.7317 -1.3070 0.3116 0.0690 —0.0471 0.6929 0.0262 —0.0233
j26) 1 x y z x2 xy xz y2 vz z2
X —0.1927 -10.2821 10.1960 0.0347 0.0077-0.0011 -0.0013 -—-0.0040 0.0086 —0.0064
¥ 4.8727 27.6313 —-0.8928 -0.5571 -0.0734 —-0.0293 0.0155 0.0867 —0.9898 —0.0017
Z —3.6866 —0.3729 0.3118 —2.1688 0.0949 0.0273 —0.0159 0.9007 0.0105 —0.0095
p(13) 1 X y b4 x?2 Xy Xz y? vz 72
b 0.0058 —-10.0008 10.0002 —0.0008 0.0000 0.0000 0.0000 —0.0000 0.0000 —-0.0000
¥ —0.0063 28.0035 -1.0019 -0.0000 -0.0003 -—-0.0001 0.0000 0.0003 —1.0001 0.0001
b4 —0.0043 —0.0061 0.0038 —2.6668 0.0000 0.0001 0.0000 0.9999 0.0002-0.0001
To calculate Leith’s operatdr, we recompute the forecast of the improved model is given by
error time seriesAx with the bias-corrected moded)(and
then produce two time series of anomalies:
(14)

x5(1) = xa(t) — (¥a);

Ax'(t) = Ax(t) — (Ax). (10)
Looking for an improved model of the form
T (x)=T" (x)+L(x—(xa), (11)

we arrive at the following expressions for Leith’s operdtor

L= CAx/xidcxglx/a : (12)

on the right-hand side is the lagged cross covariance m
trix obtained by taking the outer produstr (r + )" xa(r)'"

over the entire training period, while the second matrix is the

inverse of the cross covariance matrix of the tr@th,,, =
(xa(t)Txa(t)) 1.

3.2 Weighted combination of imperfect models

A more recent approach is to produce an improved model u

ing weighted linear combination of the tendencies of several
imperfect models. The imperfect models can be any numbe
of different models expressing the change in the same atm

spheric quantities. In general circulation models (GCMs), th
differences are typically in the parametrization of subgrid

jcl.WZZwl.”TiuzwiTTi,
"

1 2 M
Wi, W, ., Ww;

wherew; = | ]T is the vector of weights and

T, =[TYTA. .., TZ.M]T is the vector of tendencies of differ-
ent models. We are left with the task of searching for weights
wL that will give a model with improved forecast when com-
pared to the individual models. The search can be done with
respect to any cost function, but the nature of the problem
allows us to make a fast least square fit of the weights with
respect to MSTE. In general, there are different basis func-
at_ions T' for every model component, so we have to solve
a separate regression problem for each one. The mean square
tendency error for thé-th model component is

E(w') = (ih—w] T 0 ), (15)
where the angle brackets denote time average. The gradient
of the error function takes the form

E (wl’> - ((x;— wiTT,-) 7).

bnd after setting it to zero we obtain the following linear sys-

%em for the weights:

e
-Ciw,' =C;.

Sy (16)

(17)

scale processes and forcing parameters. More formally, as-

sume that we are give models and that the tendency for
thei-th component of model is given by

=Tl (x). (13)

Note that the covariance matrices between the tendencies of
different models are given bg; = (T'; T,.T). Also the covari-
ance vectors between the true tendency and those of the dif-
ferent models are; (iéT,»). To avoid over-fitting of the
weights to the training set, a regularization term can be added

This technique constructs an improved model whose tendento the error functionBishop 2000:
cies are given by a weighted combination of the tendencies

A
of the different models. The equation for théh component £ (w;) + Ew,’Twi~ (18)
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The regularization coefficient controls the relative impor- 20 -
tance of the data-dependent erfo¢w;) and the regulariza- 36
tion term3w! w; . Also, the regularization term is a quadratic
function of the weightav allowing the solution of the prob- -20
lem to be expressed in closed form:

wi = (M +C;) Yer (19) 40

The choice of the regularization parametecan influence
the results, and typically we have to run different simula-
tions for different values of in order to produce a good
result. A clever ansatz from machine learning tells us that \‘
we can start with a small value far of 0.01 and increase 0!

it by roughly three times its value in each simulation. In T

our simulations we explored the parameter space for the -20

values [0.01,0.03,0.1,0.3, 1, 3,10,30,100,300 1000 and 0 -
found that a value of = 3 gives the best results. X 20 <

. ) Fig. 1. Projection of the observations in the model space. The trajec-
4 Results on the chaotically driven Lorenz 63 system tory resembles those obtained from the ordinary Lorenz 63 system.

We now compare both empirical correction techniques in a

realistic imperfect model scenario where the forecast modelshe full attractor on the three-dimensional sp&eg y1,z1)

have different dimension and parametrization from the truth.where it is clear that it looks like the familiar Lorenz attrac-
Because atmospheric models are nonlinear and have chaotior.

behavior, we took the paradigmatic Lorenz 63 system as a The forecast model is the Lorenz 63 system with constant
model. As truth we considered a Lorenz system that is driveriforcing” terms added in the equations for the variablesd
externally by some nontrivial functions. The role of this forc- z. In most advanced atmospheric models, the additive con-
ing can be given to the variables of another Lorenz 63 sysstants are used to model the external forcing, which is due to
tem that is independent. The whole six-dimensional systenmsome unresolved processes. The models developed at differ-

is given by ent meteorological centers differ in choice of the unresolved

. processes that are parameterized and also in the parameter
X1 =0(y1—x1)+e€z2 values. In this simple example, these different choices can be
y1=x1(p—2z1) — »1, mimicked by making two models that parameterize the exter-
21 =x1y1— Bz1+8 (x2+17), nal driving at the tendencies of andz; variables separately.

It means that in the first case only the unresolved process ap-
. pearing at the tendency of variableis parameterized with

Y2 =x2(p—z22) = y2, some parameter:

Z2 = x2y2 — Bz2. (20)

X2 =0 (y2—x2),

X3 =0 (y3—x3) +a;
As can be_ seen.the subsystem 2 is the ordinary Lo_renz 633 = x3(p — z3) — y3:
system, which drives the subsystem 1. The latter is thusZ. — xayz— Bz 21)
a non-autonomous dynamical system with variable forcing. 3= 303 3
The parameters and § determine the magnitude of the The value ofe should be determined by fitting the model’s
driving, while n is some constant drift For simplicity we  output with the observations of the reality — subsystem 1 in
have taken the standard parameter values in both subsysterfi§l. 20). This optimization procedure models the parameter
o =10, p = 28 andB = 8/3. The values used in the simu- fitting that is performed by the meteorologists.
lations for the other parameters are-1, § =1 andn = 2. Similarly, one can build another model equation that will
Furthermore, we assume that only the subsystem 1 is acce§ave a parametrization of the process that drives the variable
sible for observations, and our aim is to model its time seriest:

x1(2), y1(r) andz1(¢). In Fig. 1 we show the projection of i4= 0 (ya—xa),
1Inserting the drifty seems artificial, but our aim in this toy ya = x4(p — z4) — ya,

case is to have a constant as a parameter that will represent exteg-4 = x4y4— Bza+ v, (22)

nal forces. Sinca> has both positive and negative values, we have

added drift. On the other hang, is always positive and modeling With the parametey. Thus the Egs.41) and @2) can be

its influence int, with a constant comes naturally. regarded as two imperfect models developed at different
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meteorological centers and serve as a test bed for compar-
ing the empirical correction technigques. We assumed values 45/
for @ andy of 30 and 4, respectively.

—=&— Leith\Danforth
—v— Lorenz alpha
—=2— Lorenz gama
—o— Weighted combination ||

ool \ B¢

4.1 Training and testing 0.85

08F
For the purpose of training of each of the techniques, we used
a set of observations comprised of 100 time units of the vari- < o7
ables of subsystem 1. Both the simulated truth and the model 0.7r
are integrated with fourth-order Runge—Kutta with a time 0.65]
step of 0.01. The sampling interval is assumed to be 1 model
time steps, so the resulting training set is 10 000 points.

To compare the methods we generated a run of 1 million
points, from which we chose randomly a set of 1000 start- 05}
ing points for which trial forecasts were performed. For ' time units
each forecast, anomaly correlation (AC) is computed Withgig 2 Anomaly correlation calculated for the two imperfect models
respect to the reference truth and then averaged over all triand the models obtained by the two model correction techniques.
als. Anomaly correlation is typically used to determine the
length of time for which a model forecast is useful, and it is Table 2. The estimated coefficients of Leith’s operatb2)and the

given by bias term 8).
X y b4
(xa— (xa)" - (x = (xa)
AC = 5 5 (23) Lx  0.0907  0.0024 —0.0459
Vixa— (xa)2lx — (xa)| Ly —00450 —0.0009  0.0159
. . . . L —0.0350 -0.0010 0.0200
for a particular time. AC is essentially the dot product of the bz 22 7862 0.0958 1.3730

anomalous model state with the anomalous true state. A fore-
cast is typically considered useful for as long as its AC re-

mains above 0.6. The AC is calculated for each imperfectsg, solving quadratic programming problems based on the
model and both of the corrected models and averaged ovghterior-reflective Newton methodpleman and L,i1996.

the 1000 random trials. The results of the forecast perfor- This indication from both methods shows that the biggest
mance in terms of the AC metric are shown in FigAs ex-  jmprovement in predictability comes from estimating the av-
pected, both correction techniques offer better performanc%rage value of the chaotic driving in the variablevhich in
when compared to the imperfect models. The first peculiargeneral is not straightforward since the driving comes from
Observation iS tha.t the parametrization in the fil’St equationsome unreso'ved processes_ When we Calcu'ated the AC met-
is more important since it gives better forecast. On the othekic for a Lorenz system with parameterizatioas= 23.5
hand, both correction techniques show very similar perfor-gng y = 2, there was virtually no difference with Leith’s
mance, with Leith's method edging out the weighted com-method. This conclusion also has implications for mod-
bination model by a small margin. A closer look at the es-g|s with stochastic parametrization. The parameters of the
timated coefficients by the two correction methods revealssiochastic forcing term should be estimated so as to align its
why this is the case. The coefficients in Leith’s operator a|0n9average value with that of the chaotic drive signal. Captur-
with the estimated bias term are shown in Tebl®bviously  ng higher-order statistics of the chaotic drive signal with the

there is little if any correction appearing before the linear stochastic parametrization might provide additional increase
terms, while the bias values are strikingly close to the averin predictability.

age values of the chaotic forcing in the truth (approximately

23.5 {:md.2). Similar resul_ts are obta_ined for the weig.hted5 Conclusions

combination where the estimated forcings have values in the

equations: andz of 20.2 and 0.76, respectively. One can no- In this work we have analyzed techniques for reducing model
tice from Table3 that the coefficients in front of the linear error by empirically correcting the dynamical equations of
and quadratic terms differ from those of the original Lorenz the models. For the case when the observations of the truth
by 15 % in the equation and by 5% in the equation be-  are infrequent, we proposed an iterative linear regression
cause the weights in front of the different models do not addmethod that effectively estimates all the parameters in the
up to one. This can be readily removed by solving Bd) (  perfect model scenario. The key insight into this method is to
with a quadratic programming technique where a linear con-match the observation time of the model to the observation
straint can be put on the weights so that they sum up to ondeime of the truth so that the error resulting from infrequent
In particular, we have used a subspace trust-region techniquebservations is reduced. An open question is how to apply
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