dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Signal discrimination of ULF electromagnetic data with using singular spectrum analysis – an attempt to detect train noise
VerfasserIn S. Saito, D. Kaida, K. Hattori, F. Febriani, C. Yoshino
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 11, no. 7 ; Nr. 11, no. 7 (2011-07-07), S.1863-1874
Datensatznummer 250009557
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-11-1863-2011.pdf
 
Zusammenfassung
Electromagnetic phenomena associated with crustal activities have been reported in a wide frequency range (DC-HF). In particular, ULF electromagnetic phenomena are the most promising among them because of the deeper skin depth. However, ULF geoelctromagnetic data are a superposition of signals of different origins. They originated from interactions between the geomagnetic field and the solar wind, leak current by a DC-driven train (train noise), precipitation, and so on. In general, the intensity of electromagnetic signals associated with crustal activity is smaller than the above variations. Therefore, in order to detect a smaller signal, signal discrimination such as noise reduction or identification of noises is very important. In this paper, the singular spectrum analysis (SSA) has been performed to detect the DC-driven train noise in geoelectric potential difference data. The aim of this paper is to develop an effective algorithm for the DC-driven train noise detection.
 
Teil von