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Abstract. Electromagnetic phenomena associated with
crustal activities have been reported in a wide frequency
range (DC-HF). In particular, ULF electromagnetic phenom-
ena are the most promising among them because of the
deeper skin depth. However, ULF geoelctromagnetic data
are a superposition of signals of different origins. They
originated from interactions between the geomagnetic field
and the solar wind, leak current by a DC-driven train (train
noise), precipitation, and so on. In general, the intensity
of electromagnetic signals associated with crustal activity is
smaller than the above variations. Therefore, in order to de-
tect a smaller signal, signal discrimination such as noise re-
duction or identification of noises is very important. In this
paper, the singular spectrum analysis (SSA) has been per-
formed to detect the DC-driven train noise in geoelectric po-
tential difference data. The aim of this paper is to develop an
effective algorithm for the DC-driven train noise detection.

1 Introduction

There are many reports on seismo-associated electromag-
netic phenomena in a wide frequency range (Hayakawa
and Molchanov, 2002; Molchanov and Hayakawa, 2008).
Measurements of electromagnetic phenomena can be clas-
sified into three types; (1) passive ground-based observa-
tion, (2) active ground-based observation using transmitter
signals, and (3) satellite observation (e.g. Hattori, 2004).
Among these observational methods, one of the most promis-
ing, is ULF (ultra low frequency, with a frequency of less
than 1Hz) electromagnetic observation on ground because
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of skin depth (Fraser-Smith et al., 1990; Molchanov et al.,
1992; Kopytenko et al., 1993; Hayakawa et al., 1996; Hattori
et al., 2002; Hattori, 2004). ULF electromagnetic data (fre-
quency range 0.001∼ 1 Hz) are considered a superposition
of signals of different origins. Figures 1–3 show an exam-
ple of ULF electromagnetic variation associated with a ge-
omagnetic storm, precipitation, and train noise. The typical
amplitude of them is introduced in Table 1. In the case of
electric data, the first one is due to precipitation. The second
one originated from the external source field associated with
the solar-terrestrial interactions such as geomagnetic pulsa-
tions or geomagnetic storms and their induced fields which
appear on a global (hundreds of km) scale. The third one is
artificial noise associated with the leakage current from DC-
driven trains. And the fourth one is propagating under the
ground and are considered earthquake-related signals and are
to be detected. The third and fourth ones are regional (a few
tens of km) signals. In order to detect the weak, earthquake-
related signals, an effective signal discrimination will be re-
quired (Hayakawa et al., 1996, 2000; Hattori et al., 2002,
2004a, b, 2006; Hattori et al., 2004; Harada et al., 2004,
2005, Telesca and Hattori, 2007; Telesca et al., 2008). In this
paper, the singular spectrum analysis (SSA) (Golyandina et
al., 2001) has been adopted to develop a signal discrimina-
tion method for detecting DC-driven train noises, which are
considered the more intense component in the electric field
data (Ishikawa et al., 2007). In this paper, the principle of
SSA will be given and a simulation has been performed to
evaluate the detection of modeled train noise in various pa-
rameters. The results of the simulation show the ability to
detect train noise. Therefore, the developed method has been
applied to the observed data.
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Table 1. ULF electromagnetic changes associated with some sources.

Geomagnetic storm Train noise Precipitation

Geomagnetic field (nT) 150∼ 350 0.5∼ 2.0 –
Geoelectric field (mV m−1) 0.01∼ 0.07 0.001∼ 0.005 0.1∼ 0.15

Fig. 1. An example of ULF electromagnetic variation associated
with a geomagnetic storm.(a) Ex component (mV m−1), (b) Ey
component (mV m−1), (c) Bx component (nT),(d) By component
(nT), (e)Bz component (nT), and(f) Kp index.

Fig. 2. An example of ULF electromagnetic variation associated
with precipitation.(a) Ex component (mV m−1), (b) Ey component
(mV m−1), (c) Bx component (nT),(d) By component (nT),(e) Bz
component (nT), and(f) precipitation.

Fig. 3. An example of ULF electromagnetic variation associated
with the DC-driven train noise. (a) Ex component (mV m−1),
(b) Ey component (mV m−1), (c) Bx component (nT),(d) By com-
ponent (nT), and(e)Bz component (nT).

2 Principle and procedure of SSA

SSA is a kind of periodic analyses. The resolution is one
data point and it is a model-free tool for detecting impulsive
changes in the time series data. In this sense, SSA has an
advantage in comparison with the Fourier and wavelet trans-
form, although a large scale matrix should be handled. In this
section, the procedure of SSA and its performance are briefly
described.

2.1 Procedure of SSA

1. Prepare a time series data;

xj = x1,x2,···xN . (1)

2. Create the matrixX with k rows andL columns with
shifting 1 data as shown in Eq (2). Here,L is called the
window length (L =N −K +1);

X =


x1 x2 x3 ··· xL

x2 x3 x4 ··· xL+1
...

...
...

. . .
...

xk xk+1 xk+2 ··· xN

. (2)
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Fig. 4. An example of SSA. A variation of the monthly average of air temperature at Chiba from January 1967 to December 2007 has been
investigated.(a) The monthly average of air temperature and its trend,(b) the reconstructed annual component,(c) the reconstructed seasonal
component (4-month period),(d) the reconstructed components of a six-month period, and(e) the noise component reconstructed from the
residuals.

Fig. 5. Schematic view of the electric circuit for a DC-driven train
system.

3. Make a covariance matrixS of matrixX;

S= XXT . (3)

Here,T means transpose.

4. Perform the eigenvalue decomposition of theS;

S= U3UT . (4)

Then, the eigenvector matrixU (Eq. 5) and the eigen-
value matrix3 (Eq. 6) are obtained as follows;

U =


u11 u21 ··· uk1
u12 u22 ··· uk2
...

...
. . .

...

u1k u2k ··· ukk

 (5)

3 =


λ1 0 ··· 0
0 λ2 ··· 0
...

...
. . .

...

0 0 ··· λk

. (6)
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Fig. 6. The DC-driven train noise model for the simulation.(a) an
example of the DC-driven train noise model,(b) white noise to be
added to the simulated data, and(c) an example of simulated data
(a + b).

WhereasU = [uT
1 , . . . ..,uT

k ] whereui with i = 1,.....,k,
are eigenvectors ofS. And λi with i = 1,....,k, corre-
spond to eigenvalues

5. Compute a matrixV from matricesX, U and3. The
collection (

√
3i,Ui,Vi) is called theith eigentriple of

Singular Value Decomposition.

V =
XT U
√

3
=


v11 v21 ··· vk1
v12 v22 ··· vk2
v13 v23 ··· vk3
...

...
. . .

...

v1L v2L ··· vkL

. (7)

Here,vij (i = 1,....,k;j = 1,....,L) is an element of the
matrixV.

6. Using the eigentriple, the following elements are ob-
tained;

XT
=

√
3UVT

=

√
31U1VT

1 +

√
32U2VT

2 +···+

√
3LULVT

L

= X1
+X2

+···+XL (8)

The decomposed matrixXi is given by as follows:

Xi
=

√
3iUiVT

i =


xi

11 xi
21 xi

31 ··· xi
L1

xi
12 xi

22 xi
32 ··· xi

L2
...

...
...

. . .
...

xi
1k xi

2k xi
3k ··· xi

Lk

, (9)

wherexi
ij with i = 1,.....,k andj = 1,....,L.

Fig. 7. Decomposed components using SSA.(a) 20 decomposed
components for Fig. 6a.(b) 20 decomposed components for Fig. 6c.
The number shown in each panel indicates the ith principal compo-
nent of SSA decomposition.

7. Theith principal componentsGi
j are given by the diag-

onal averaging in the following;

Gi
1 = xi

11

Gi
2 = (xi

12+xi
21)/2

...

Gi
N−1 = (xi

L,k−1+xi
L−1,k)/2

Gi
N = xi

Lk (10)

8. Then, the original time series is divided intoN compo-
nents.

Gi
j = (Gi

1,G
i
2,···,G

i
N ). (11)
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Fig. 8. The correlation diagram. The horizontal and the vertical
axes correspond to the number of the principal component of the
simulated data and the model data, respectively.(a) The correla-
tion diagram between Fig. 6a and c. The brightness shows the cor-
relation. (b) The correlation diagram with the correlationr > 0.7
between Fig. 6a and Fig. 6c.

2.2 Example of the application of SSA

Figure 4 shows an example of the application of SSA for
temperature data. A red line in Fig. 4a shows the variation
of the monthly average of temperatures at Chiba, Japan from
January 1967 to December 2007. The monthly average val-
ues are input data for SSA. The decomposed components are
given in blue lines in Fig. 4. Blue lines in (a), (b), (c), and
(d) correspond to reconstructed trend component, the annual
variation, the seasonal variation (the 4-month period), and
the variation of the 6-month period, respectively. We can
see changes of intensity of periodic components in time se-
ries clearly and this is a strong advantage of SSA. Figure 4e
shows the residuals regarded as a noise component.

Fig. 9. An example of the simulation results in the case of SNR = 4,
WL = 50, D = 20, N = 1. (a) The assumed DC-driven train noise,
(b) the simulated data ((a),+ white noise),(c) reconstructed data of
the model with high correlation using SSA procedure, and(d) MSE.

Fig. 10. The variation of MSE with the SNR for various WLs.

2.3 Capability of SSA for train noise detection

In this section, a simulation has been performed to check
the capability of detection of the DC-driven train noise using
SSA. Figure 5 depicts a simple model of the electric power
circuit of DC-driven train system. When a train is running
between substations A and C, it is receiving electric power
suppliesIAC andICA from substation A and C, respectively.
At this time, an electric current in a line flows through the
railway and returns back to each substation as a feedback cur-
rent. However, some of it leaks into the ground and returns
as a leak current. Therefore, geoelectric potential difference
measurements near railway tracks are strongly affected by
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Fig. 11. The variation of MSE with the WL for various SNRs.

Fig. 12. The map of ULF stations and DC-driven railway routes in
Boso Peninsula.

the current. It is important to identify the train noise at these
stations. Here, we assume a rectangular pulse as a DC-driven
train noise based on our previous experiences (Ishikawa et
al., 2007) and simplicity. The procedure of the simulation is
as follows:

Fig. 13. Configuration of KYS , UCU, and FDG stations.

1. Create time series data as modeled train noise and data
with white noise as shown in Fig. 6. Figure 6a, b and
c shows a simple rectangular pulse with some duration,
white noise adding to the modeled data, and simulated
data with some noise a + b.

2. Perform SSA to the time series modeled data (Fig. 6a)
and the simulated data (Fig. 6c) and decompose into N
principal components as given in Eq. (9). The obtained
decomposed components are described in Fig. 7a and b,
respectively.

3. Compute correlations among the decomposed compo-
nents of Figs. 7a and b. The results are displayed in
Fig. 8a .

4. Extract components with high correlation only (the cor-
relationr > 0.7 in this paper) (see Fig. 8b).

5. Reconstruct a time series by using components satisfy-
ing the above condition (Fig. 9c).

The parameters of the simulation are signal noise ra-
tio (SNR), duration of a rectangular pulse (D), number of
the rectangular pulses (P ), and window length (WL). We de-
fine SNR using amplitudes of a rectangular signal and the
white noise. In this paper, we pay attention to the SNR and
WL dependences of the results for data length = 300. Fig-
ure 9 shows an example of the simulation withD = 20,P = 1,
SNR = 4, and WL = 50. Figure 9a, b, c and d corresponds to
the train noise model, the train noise with white noise, a re-
constructed time series data with the above SSA reconstruc-
tion procedure, and mean squared error (MSE: ((a)–(c))2, re-
spectively. If MSE is within mean +σ , the reconstructed data
mostly satisfy the criteria and are identical to the model. But
at the edges of the rectangular pulse, MSE reaches high val-
ues. This means that the train noise cannot be removed com-
pletely. However, using these characteristics, the capability
to detect this type noise has been found.
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Fig. 14. ULF electromagnetic data when the first train of the day needs to cover the region near the stations.(a) Ex component (mV m−1),
(b) Ey component (mV m−1), (c) Bx component (nT),(d) By component (nT), and(e)Bz component (nT). They are observed at KYS station
on 1 September 2002.

Further investigation on the reconstruction data has been
achieved with various parameters for SSA. Figures 10 and
11 show the MSE with SNR and WL in the case ofD = 20,
P = 1, and data length of 300. The averaged MSE over the
data length is given in the figures. The lower MSE provides
better agreement between the original and the reconstructed
time series. The results indicate that SNR controls the per-
formance in the case ofD < WL. The results in the case of
D > WL also show somewhat better performance in the case
of high SNR. If SNR> 4, it is found that the results do not
depend on WL. The edge effects shown in the Fig. 9d com-
monly appear for all of the examined cases.

3 Application of SSA to ULF geoelectric potential
difference data

Figure 12 shows a map of ULF electromagnetic stations and
routes of the DC-driven railway at Boso Peninsula, Japan.
We have installed 3 ULF electromagnetic stations which
measure three components of geomagnetic fields and two
horizontal geoelectric potential differences (Hattori et al.,
2004). The names of the stations are Kiyosumi (KYS),
Uchiura (UCU), and Fudago (FDG) and the inter-sensor dis-
tance is about 5 km. The distance between the stations and
the track is 5–10 km. The observed data at these stations
are found to be contaminated with noise from the DC-driven
railway system. Figure 13 shows the configuration map of

Fig. 15. The location of the stations and the traveling direction of
the first train used in Figs. 14, 16, 17, 18 and 19.

the above stations. In this paper, ULF geoelectric poten-
tial data are projected to the north-south (Ex) and the east-
west (Ey) directions. Figure 14 is an example of real ULF
electromagnetic data including the DC-driven train noise ob-
served at KYS station. The upper two panels indicate the
geoelectric field data after the projection and the lower three
panels show the variations of the three magnetic field com-
ponents. Although the original sampling rate is 50 Hz, re-
sampled data to 1 Hz are plotted and used in this study. The
time shown in Fig. 14 corresponds to the period the first
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Fig. 16.An example of the monthly averaged data for a model of a DC-driven train noise and real observed data at KYS station.(a)A monthly
averaged model of the Ex component for September 2002,(b) Ex component for 1 September 2002,(c) Ex component for 2 September 2002,
and(d) Ex component for 3 September 2002.

train of the day needs to cover the region near the station.
The train leaves the station A (Awa-Kamogawa station) at
20:12 UT for the station B (Awa-Amatsu station). The ar-
rival times at each station are given in alphabetical symbols.
The location of the stations and the traveling direction of the
first train are shown in Fig. 15. The train runs through the
southern side of our stations and finally reaches G (Katsuura
station) at 20:39 UT. Table 2 describes the timetable of the
first train. The rectangular-shaped train noises are generated
when the train accelerates and decelerates (Ishikawa et al.,
2007). Therefore, the noise pattern resembles every day in
the study region. The typical duration of the rectangular-
shaped noise is about 20 s. The other two stations (UCU and
FDG) also register similar variations. When we investigated
observed data for several years, the similar changes were rec-
ognized almost the same time in the case of the same diagram
of the railways. Since transient changes in the Ex component
were more apparent, hereafter we focussed on the Ex com-
ponent. Instead of the rectangular pulse, we took a monthly
average of the geoelectric data for a realistic model of the
train noise. Figure 16a shows an example of the monthly av-
erage model for the first train of the day in September 2002.
Figure 16b–d includes the daily variations of the geoelectric
field on 1, 2 and 3 September. Although the variation on
each day resembles others, the rectangular or sharp shape is
lost and a waveform after a low pass filtered can be seen due
to some difference of occurrence time and amplitude. This

Table 2. Railway stations and the timetable for the first train.

Station Station name Time (UT)

A Awa-Kamogawa 20:12
B Awa-Amatsu 20:17
C Awa-Kominato 20:22
D Namegawa-Island 20:27
E Kazukiokitsu 20:31
F Ubara 20:35
G Katsuura 20:39

means that characteristics of a rather discrete or intermittent
structure for the train disappear. For the simulation experi-
ments in Sect. 2.3, the simple rectangular pulse is adopted in
the train noise model, but the model for the practical applica-
tion in this section has only components with lower frequen-
cies. This also is expected to provide larger values of MSE
in investigation on detection of transient changes, such as the
train noise as shown in Fig. 9d. Since the model is made
from the monthly average, effects of random noises such as
induction of geomagnetic pulsations are depressed.

The exact same procedure described in the previous sec-
tion is performed on the above-mentioned monthly average
model and a practical variation on a certain day. The SNR
between the rectangular pulse and background variation in
Ex component for the real data as shown in Fig. 14 is rather
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Fig. 17. An example of the DC-driven train noise detection of the first train for Ex component at 20:15–20:20 UT on 1 September 2002.
(a) The model data of the monthly average and the reconstruct data using SSA decomposed components with high correlation values,(b) the
observed data and the reconstruct data using SSA decomposed components with high correlation values, and(c) MSE and the threshold
values.

Fig. 18. An example of the DC-driven train noise detection in Ex component. The analyzed period is 20:00–20:40, on 1 Septem-
ber 2002 (UT).(a) The observed data and the reconstructed data using SSA decomposed components with high correlation values.(b) MSE
and the threshold values.
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Fig. 19. An example of the DC-driven train noise detection in Ex component with multiple station data. The analyzed period is 20:00–
20:40, on 1 September 2002 (UT). (a, c ande) The observed data and the reconstructed data using SSA decomposed components with high
correlation values at KYS, UCU, and FDG, respectively. (b, d andf) MSE and the threshold values at KYS, UCU, and FDG, respectively.

Fig. 20. The location of the stations and traveling directions of two
trains used in Fig. 21.

high and SNR = 5 at the worst. Therefore, MSE dependence
on D and WL is not severe. As for SSA parameters, data
length = 300 and WL = 30 are chosen.

Figure 17 is an example of the results when the first train
covers the region near the stations. It shows the variations of
Ex from 20:15 to 20:20 UT on 1 September 2002. Figure 17a
shows the monthly average model and the reconstructed vari-
ations using its decomposed components with high correla-
tions. Figure 17b shows the variation on the day and the
reconstructed variation using decomposed components with
high correlations. Fig. 17c gives the variations of MSE and

its mean value + standard deviation (σ). When the MSE ex-
ceeds the criteria of mean +σ values, it seems that the detec-
tion of the train noise is successful. The red dots in Fig. 17b
indicate the anomalous MSE values and it is safe to say that
we can detect noise for the first train in the vicinity of the
station.

The developed method is applied to a longer and daytime
time series data. Figure 18a and b shows an example of re-
sults based on the one station analysis. It was found that the
train noise can be detected but it seemed to provide many
errors. In order to remove fault detections, multiple (three)
station analysis was examined for improvement. Figure 19
shows an example of the results for the three station analysis.
Figure 19a, c and e indicates the observed data of Ex at KYS,
UCU, and FDG, respectively. Figure 19b, d and f shows the
MSE and threshold values as described in Fig. 17c. The red
colored dots are given by simultaneous satisfaction of the cri-
terion of MSE> mean +σ for all the stations. It is safe to say
that the faint changes seem to be reduced and a promising de-
tection of the train noise results is achieved.

Finally, the developed method was applied to the daytime
data. Table 3 and Fig. 20 describe the timetable of two trains
and their running directions, respectively. Figure 21a and b
shows the result of one station (KYS) analysis and Fig. 21c
shows that of the three stations analysis and it is found that
multiple station analysis is essential to detect the train noise.
These results suggest that the three (multiple) station opera-
tion seems to be more effective for train noise detection.
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Fig. 21. An example of the DC-driven train noise detection in Ex component with a single station and multiple station data. The analyzed
period is 03:00–04:00, on 1 September 2002 (UT).(a) The observed data and the reconstructed data using SSA decomposed components
with high correlation values at KYS station. Red dots indicate candidates of train noise using a single station threshold.(b) MSE and the
threshold values at KYS.(c) The observed data and the reconstructed data using SSA decomposed components with high correlation values
at KYS station. Red dots show candidates of train noise using a multiple station threshold.

Table 3. Railway stations and the timetable from 02:55 to 04:10 UT.

Station Station An up A down
name train (UT) train (UT)

A Awa-Kamogawa 02:55 04:10
B Awa-Amatsu 03:01 04:04
C Awa-Kominato 03:06 03:56
D Namegawa-Island 03:11 03:50
E Kazukiokitsu 03:15 03:46
F Ubara 03:20 03:41
G Katsuura 03:24 03:37

4 Conclusion and discussion

We demonstrate the performance of the developed algorithm
for the detection of DC-driven train noise based on SSA. By
using multiple stations data, the detection of the DC-driven
train noise seems to be promising and convincing. The de-
veloped method shows the effectiveness for the daytime data
when multiple trains are in operation around the study area.
In this paper, we only show the ability to detect the train
noise. This technology does, however, provide the increase
of possible data. The developed method enables the analysis

of daytime data in time series, although we did not use them
for investigation on earthquake-related ULF electromagnetic
phenomena because of contamination from intensive train
noise so far.

A further and intrinsic problem is to remove the train noise
from the data. We extract the intense factors from the ob-
served time series data because the signal we want to inves-
tigate might be very weak. SSA has the capability to remove
the known perturbations using an adequate model. If we can
find out the possible model of the DC train current, there
is a high chance of removing the DC-driven train noise. The
possible candidates are the substation data (consumer current
data) as shown in Fig. 5 and the monitoring of leak current in
the vicinity of substations or railway tracks.
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