dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows
VerfasserIn F. Laio, A. Porporato, L. Ridolfi, S. Tamea
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 11, no. 4 ; Nr. 11, no. 4 (2004-10-26), S.463-470
Datensatznummer 250009327
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-11-463-2004.pdf
 
Zusammenfassung
Several methods exist for the detection of nonlinearity in univariate time series. In the present work we consider riverflow time series to infer the dynamical characteristics of the rainfall-runoff transformation. It is shown that the non-Gaussian nature of the driving force (rainfall) can distort the results of such methods, in particular when surrogate data techniques are used. Deterministic versus stochastic (DVS) plots, conditionally applied to the decay phases of the time series, are instead proved to be a suitable tool to detect nonlinearity in processes driven by non-Gaussian (Poissonian) noise. An application to daily discharges from three Italian rivers provides important clues to the presence of nonlinearity in the rainfall-runoff transformation.
 
Teil von