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Abstract. Several methods exist for the detection of nonlin-
earity in univariate time series. In the present work we con-
sider riverflow time series to infer the dynamical characteris-
tics of the rainfall-runoff transformation. It is shown that the
non-Gaussian nature of the driving force (rainfall) can distort
the results of such methods, in particular when surrogate data
techniques are used. Deterministic versus stochastic (DVS)
plots, conditionally applied to the decay phases of the time
series, are instead proved to be a suitable tool to detect non-
linearity in processes driven by non-Gaussian (Poissonian)
noise. An application to daily discharges from three Italian
rivers provides important clues to the presence of nonlinear-
ity in the rainfall-runoff transformation.

1 Introduction

The processes that control the rainfall-runoff transformation
contain nonlinear deterministic components: examples of
such processes include the unsteady flow in the channel net-
work, the infiltration in the vadose zone, the control of veg-
etation on transpiration, and the presence of several thresh-
old processes governing the dynamics such as interception,
deep infiltration, etc. (Porporato and Ridolfi, 2003). How-
ever, the presence of nonlinear components in a system does
not imply that all signals measured from the system are them-
selves nonlinear (e.g.Schreiber and Schmitz, 2000). For ex-
ample, the local nonlinearities can act in opposite directions
and compensate one another, or they can be quantitatively
small compared to other stochastic components.

As a result, despite a remarkable amount of literature on
this topic (seePorporato and Ridolfi(2003) for a review),
the linearity or nonlinearity of the rainfall-runoff transfor-
mation remains an open question. For example, some re-
searchers reported a higher degree of nonlinearity in small
catchments, where overland flow and unsaturated subsurface
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flow are predominant (Pilgrim, 1976; Wang et al., 1981),
while other studies supported opposite conclusions (Robin-
son et al., 1995; Goodrich et al., 1997). Other works linked
the evidence of nonlinearity to the value of discharge, de-
tecting a stronger nonlinearity during periods of high (Liu
and Brutsaert, 1978) or low (Pilgrim, 1976) discharges. Still
other authors related the nonlinearity to the time scale un-
der analysis, observing that linearity dominates in the annual
and monthly discharges (Rao and Yu, 1990; Chen and Rao,
2003). It can be certainly stated that the problem deserves
further investigations, also because of its practical implica-
tions in the formulation of efficient models for forecasting
and simulating the evolution of river flows (Amorocho, 1967;
Weiss, 1977; Rogers, 1982; Pilgrim and Cordery, 1993; Mur-
rone et al., 1997; Chen and Rao, 2003).

Nonlinearity in the rainfall-runoff transformation is in-
vestigated here in a univariate setting, by considering daily
river flow time sequences. To this aim, we benefit from
phase space reconstruction methods, originated in the frame-
work of nonlinear time series analysis (Takens, 1981; Sauer
et al., 1991; Abarbanel, 1996; Kantz and Schreiber, 1997;
Schreiber, 1999), which provide the possibility to recover
the dynamics from univariate time series. Several applica-
tions of these techniques in the hydrological field have been
proposed (see the review papers bySivakumar(2000) and
Sivakumar(2004)). Clues to the existence of nonlinear de-
terministic components have emerged, but great caution is
necessary to distinguish real nonlinearity from spurious re-
sults (Schreiber, 1999). In fact, each method to detect non-
linearity in a time series has its peculiarities and drawbacks
especially when applied to real data (Porporato and Ridolfi,
1997).

The non-Gaussianity of the data and the presence of a sea-
sonal component are possible causes of distortion produc-
ing misleading results of the nonlinearity tests. The scope of
this paper is to draw the attention to the effects of these fac-
tors, with particular regard to non-Gaussianity, and to cau-
tion against the widespread use of surrogate data techniques,
which are prone to produce spurious results in the presence
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Fig. 1. Samples from(a) a linear shot noise model (1) and (b) a
correspondent surrogate series.

of these effects (Sect. 2). Deterministic versus Stochastic
(DVS) plots (Casdagli, 1991), conditionally applied to the
phases of decay of the time series, are shown to be a versatile
and robust tool to discriminate between linear and non-linear
time series, even when the Poissonian (or, in general, jump)
components dominate, as often happens in daily discharge
time series (Sect. 3). An application to three daily discharge
time series from Italian rivers confirms these findings, and
demonstrates the practical usefulness of the tool (Sect. 4).

2 Nonlinearity and non-Gaussianity

Some confusion between nonlinearity and non-Gaussianity
arises from the widespread adoption of surrogate data tech-
niques in testing for nonlinearity. Surrogate data are time
series generated by a stationary Gaussian linear stochastic
process (i.e. an autoregressive moving-average, or ARMA,
process) and possibly distorted through an invertible, static,
nonlinear observation function in such a way that they have
similar spectrum (or autocorrelation function) and probabil-
ity density function to the original time series to test (Theiler
et al., 1993; Schreiber and Schmitz, 2000; Kugiumtzis,
2002). They are used according to the following logical
steps: (i) a significant set of surrogate series is artificially
generated, for example using the TISEAN 2.1 package (Heg-
ger et al., 1999); (ii) statistics sensitive to nonlinearity are
determined for both surrogate and original series; and (iii)
if the statistics of the surrogate are significantly different
from the original series, the null hypothesis that the orig-

inal data are generated by an ARMA process is rejected.
The tests differentiate according to the nonlinear statistics
used in the second step. This is a key point (Schreiber
and Schmitz, 1997, 2000) and several criteria have been
proposed; e.g. predictability (Chang et al., 1995; Basu and
Foufoula-Georgiou, 2002), characteristics of the exceptional
events (Kaplan, 1994; Chang et al., 1995; Barnett et al.,
1997), structure of the volatility (Ashkenazy et al., 2003),
and time reversibility (Schreiber and Schmitz, 1997).

In the last years the surrogate data approach has become
so popular that the surrogate series have often become syn-
onymous with linearity. In reality, this is correct only if the
random component of the dynamics is known to be a Gaus-
sian noise, which is seldom the case for daily discharge time
series. Other types of noise can produce misleading results:
an example is provided by a linear shot noise process (e.g.
Cox and Isham, 1986; Laio et al., 2001)

dx(t)

dt
= −x(t) + Np(t), (1)

whereNp(t) =
∑t

−∞
δ(t −τi)1i is white Poisson noise, i.e.

a marked point process where both the events’ inter-arrival
times,τi − τi−1, and the jump sizes,1i , are exponentially
distributed (δ(·) is the Dirac delta function). The process
is linear, but the series is evidently very different from its
surrogate counterpart (see Figs.1a and b), since no ARMA
process, even nonlinearly distorted with a static transforma-
tion, can reproduce the jump-decay structure of the original
process.

These differences can easily lead to a rejection of the test
null hypothesis, even if the process is linear: in fact, when
surrogate data techniques are adopted, the null hypothesis
is Gaussian-linearity rather than linearity alone. For exam-
ple, the time series in Fig.1a exhibits a clear temporal ir-
reversibility, that contrasts with the reversibility characteris-
tic of linear Gaussian processes (Weiss, 1975; Diks et al.,
1995; Daw et al., 2000). In fact, the simple third order statis-
tic r proposed bySchreiber and Schmitz(2000) to test for
reversibility produces a value ofr=0.34 for the linear shot
noise process, well above the maximum value ofr=0.095
obtained from 20 surrogate series. The test works correctly,
since it allows one to reject the null hypothesis of linear-
Gaussianity, but the results should not be misinterpreted as
a clue to nonlinearity. As a consequence, in all cases when
the presence of non-Gaussian noise is suspected, the surro-
gate data technique (as presently formulated) is useless to
detect possible nonlinearities. Similar considerations apply
to other highly regarded tests for nonlinearity, like the BDS
test (Brock et al., 1996), which are based on fitting a linear
Gaussian model to the data and analyzing the residuals (see
alsoBarnett et al., 1997).

Going back to the river flow time series, the basic point
is then to understand how important the non-Gaussian com-
ponent of the noise is: a visual inspection of the time series,
and a revision of the literature on synthetic streamflow gen-
eration (e.g.Lawrance and Kottegoda, 1977), can lead to the
consideration that the degree of Gaussianity is linked to the
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Fig. 2. DVS plots for (a) a linear and(b) a nonlinear shot noise
process. The size of the testing set is 1000 data,τ=1 andT =1.

relation between the aggregation time of the data,Ta , and the
concentration time of the catchment,Tc. WhenTa�Tc (e.g.
monthly discharges) the time series is smooth and does not
have evident characteristics that contradict an eventual linear
Gaussian dynamics; in fact, ARMA process are often em-
ployed to generate monthly streamflow data (Salas, 1993).
In contrast, whenTa'Tc (e.g. daily discharges for medium-
size basins) the time series has a structure that resembles a
stochastic jump process: the intermittent occurrence of rain-
fall produces jumps that are followed by recession curves.
The series is irreversible (Lawrance and Kottegoda, 1977),
and shot noise models are often used to generate the data
(Weiss, 1977; Murrone et al., 1997). Finally, whenTa�Tc

(e.g. hourly discharges) the discharge increments cannot be
seen as instantaneous jumps, but the series is still dominated
by the random and intermittent occurrence of rainfall events,
which maintain a high degree of irreversibility in the time se-
ries. On these grounds, it is clear that the nonlinearity tests
using surrogate time series are useful only whenTa�Tc,
while they can lead to erroneous conclusions in the other two
cases (e.g.Livina et al., 2003).
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Fig. 3. recDVS plots for the same(a) linear and(b) nonlinear shot
noise process as in Fig.2.

3 Detecting nonlinearity by DVS plots

Deterministic versus stochastic (DVS) plots have been pro-
posed byCasdagli(1991) to explore time series dynamical
properties and to detect the presence of chaos in the underly-
ing system. In this work they are employed as an investigat-
ing tool which allows to avoid some problems affecting other
nonlinearity tests. The basic idea behind the use of DVS
plots to test for nonlinearity is to compare linear and non-
linear models to see which more accurately predicts the fu-
ture. Suitable linear and nonlinear prediction models need to
be defined. FollowingCasdagli(1991), the dynamics is first
reconstructed in the phase space from the measured time se-
ries{xi}, i=1,..N , by using Takens’ delay time method, with
properly chosen embedding dimensionm and delay timeτ .
Local linear models,

xi+T = a0 + a1xi + a2xi−τ + ... + amxi−(m−1)τ , (2)

where T is the forecast time, are then fitted using thek

nearest neighbors of the regressor vector[xi, .., xi−(m−1)τ ].
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Fig. 4. Samples of daily discharge time series for(a) DB, (b) TA
and(c) PO rivers.

Whenk is low, the forecasting model is the first order non-
linear prediction method ofFarmer and Sidorowich(1987),
while for k equal to the total size of the fitting set one finds
a globally linear model. A measure of the prediction errorε

can be calculated on a testing set for varyingk, and plotted
against log(k) to obtain the DVS plot: a decreasing plot indi-
cates a better aptitude of global linear models to predict the
dynamics, and it is a clue to an underlying linear stochastic
system; a curve monotonically increasing or with a minimum
at a low value ofk shows evidence of low dimensional chaos;
finally, the presence of a minimum for intermediatek val-
ues suggests a nonlinear stochastic behavior of the dynam-
ical system. Following the suggestion ofCasdagli(1993),
the mean absolute error rather then the mean squared error is
taken as an indicator of the prediction accuracy, basically for
its lower sensitivity to outliers.

The DVS technique cannot be considered a rigorous sta-
tistical test, since no test statistics is produced which al-
lows a univocal acceptance or rejection of the null hypoth-
esis of linearity. However, the DVS method is more general
than other techniques that are used in the literature, and it
is less prone to produce erroneous results, except for partic-
ular cases (Theiler et al., 1993). For example, tests which
compare linear and nonlinear prediction in an apparently for-
mal manner (e.g.Chang et al., 1995; Schreiber and Schmitz,
1997; Kugiumtzis, 2002), have the drawback of requiring to

fix a priori the number of neighborsk, with different choices
possibly leading to opposite results in terms of nonlinearity
detection. The robust and qualitative DVS technique seems
more appropriate, at least when the object of the nonlinearity
analysis are short and noisy real data time series, which are
more liable to produce ambiguous results.

As a check of the ability of the DVS technique to detect
nonlinearity when non-Gaussian noise is present, we apply
the DVS method to the linear shot noise model (1) (see also
Fig. 1). DVS plots take the form of Fig.2a: the plot is mono-
tonically decreasing, proving that the best predictions are ob-
tained with a global linear model. DVS plots are thus able to
recognize the linear nature of the underlying dynamical sys-
tem, without being biased by the presence of non-Gaussian
noise.

As a counterproof, the DVS method is also applied to an-
other artificial time series, similar to the linear shot noise pro-
cess (1) but characterized by a nonlinear loss function,

dx(t)

dt
= −x5(t) + Np(t). (3)

The best predictions are no more found at the right extreme
of the DVS plots (Fig.2b) but the minimum of the predic-
tion error is not as pronounced as it would be expected for
a markedly nonlinear process. The problem is that the pro-
cess is dominated by the stochastic component (the random
jumps), while the nonlinearities are somewhat hidden in the
recessions. In fact, the processes generated by (1) and (3)
do not show striking differences at a visual inspection. How-
ever, these nonlinearities can be very relevant from a physi-
cal viewpoint: for example, they would be an evident clue to
the nonlinearity of the rainfall-runoff transformation if they
were detected in discharge time series. The relevance of the
topic demands special tools for the detection of nonlinearity
in time series driven by non-Gaussian noise. One of these
tools is found in a conditional form of the DVS technique, as
detailed below.

The basic idea behind the method is to look for nonlin-
earities where they are expected to be, i.e. in the recession
curves. Linear and nonlinear predictions are thus carried out
by choosing thek nearest neighbors such that they all be-
long to recessions, which are loosely defined here by impos-
ing the conditionxi>xi+T . The prediction errorε is then
evaluated on the set of points of the testing set belonging to
recession curves. By measuringε for varying k one gets a
DVS plot which is targeted on the recession curves (in short,
a recDVS plot). Application of the recDVS technique to
the linear shot noise process (1) is reported in Fig.3a and
shows a well behaved decreasing curve from small to large
k’s, without substantial differences from the classical DVS
plot. An analogous recDVS plot for the nonlinear shot noise
process (3) produces the results in Fig.3b: the mean abso-
lute error has a clear minimum fork below 100, providing
a relevant clue to nonlinearity of the process, that was not
so evident in the classical DVS plot. The method is there-
fore unbiased and it is more powerful than the classical DVS
technique when applied to time series driven by Poissonian
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Fig. 5. DVS (left panels) and recDVS (right panels) plots for standardized daily discharges of(a) and(b) DB, (c) and(d) TA and(e) and(f)
PO rivers. For all cases, the size of the testing set is 2 years,τ=1 day andT =1 day.

noise, while it provides analogous results to the DVS dia-
gram when the noise is Gaussian. Theε values in Fig.3 are
consistently lower than those in Fig.2 for two reasons: (i)
the random jumps in the trajectory are not considered in the
forecast when applying the recDVS technique, and (ii) the
predictions in Fig.3 take advantage of the prior knowledge
thatxi+T will be lower thanxi , an information which is ob-
viously unavailable in real forecasting.

4 Application to river flows

Three daily river flow time series are considered (see Fig.4),
pertaining to the Dora Baltea river at Tavagnasco (DB), the

Tanaro river at Montecastello (TA) and the Po river at Pon-
telagoscuro (PO). The same three rivers were selected as the
object of investigation byPorporato and Ridolfi(2003), to
which the reader is referred for details regarding the main
features of the drainage basins and of the discharge time se-
ries. We remark here that the basin areas are∼3300 Km2

(DB), ∼8000 Km2 (TA) and∼70 000 Km2 (PO); for the DB
and TA rivers the concentration time can be estimated to
be close to the aggregation time of the time series (1 day),
Ta'Tc, while for the PO river one hasTa<Tc. As ex-
pected from the classification in Sect. 2, the jump-recession
structure of the time series is predominant for the DB and
TA rivers, while for the PO river the sudden jumps in the
trajectories are replaced by slower rises of discharge in
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Fig. 6. recDVS plots for daily discharges of(a) DB, (b) TA and(c)
PO rivers. In all cases the size of the testing set is 2 years,m=4,
τ=1 andT =1 day. Open circles correspond to the original curves
in Fig. 5, open diamonds to time series deseasonalized in the mean,
and stars to seasonally standardized data. In order to facilitate the
comparison, all the curves are reported to haveε=1 at the right
extreme.

correspondence to the rain events; even in this case, the role
of non-Gaussian noise is however relevant: in fact, recession
curves are easily recognizable from the rising limbs of the
hydrographs, demonstrating a lack of time-reversibility.

DVS and recDVS techniques are applied to the standard-
ized discharge time series, with the results reported in Fig.5
for typical values of the embedding dimension and delay time
(m=2, 4 and 10 andτ=1 day, see alsoPorporato and Ridolfi
(2003)). When the classical DVS plots are employed (left
panels in Fig.5), one obtains rather ambiguous results, with
a general tendency towards having a minimum of the predic-
tion error for large values ofk, or, in particular for the DB
river, a gentle minimum fork lower than 1000. The results
are rather robust with respect to changingm, τ or the predic-
tion jumpT , and agree fairly well with the findings ofPorpo-
rato and Ridolfi(2003). When in contrast the recDVS tech-
nique is adopted (right panels in Fig.5), one obtains much
clearer results, with well-shaped minima fork around 100,
providing good evidence of nonlinear dynamics in the reces-
sion curves. Only for the PO river the results are slightly less
definite, possibly due to role of the larger concentration time.
It is noteworthy that daily river flows behave in a very similar
manner to the nonlinear shot noise model (3), with an almost
flat DVS plot and a clear minimum in the recDVS plot. This
finding has important implications for the problem of select-
ing a suitable model for synthetic streamflow generation.

Before assuming as ascertained the presence of nonlinear-
ity, a further point needs to be considered: the presence of a
seasonal component in the dynamics can dilate the coherence
times and mislead the nonlinearity tests, which are prone to
mistake seasonality for nonlinearity (Theiler et al., 1993).
Two ways for investigating if DVS plots are influenced by
seasonality can be considered: an artificial linear time se-
ries with a superimposed seasonal component can be gen-
erated and tested for nonlinearity by using DVS techniques
(Theiler et al., 1993); or one can remove seasonality from a
real time series, and re-apply the DVS method to check if
relevant differences appear between the original and desea-
sonalized time series. Both methods confirm that seasonality
may produce a fictitious impression of nonlinearity, even for
linear time series. However, the effect is not very strong: the
superimposition of a sine wave to the linear model (1) causes
an increase of the prediction error for largek values in the
recDVS plot, but the deviations of the DVS plots are not sig-
nificant. Accordingly, Fig.6 demonstrates that, even when
seasonality is removed, a clear minimum fork∼100 is re-
tained in the recDVS plots. Note that this result is robust with
respect to the method used to remove seasonality: in fact, the
open diamonds in Fig.6 correspond to a removal of season-
ality in the (monthly) mean, while the stars correspond to a
seasonal standardization, i.e. to the removal of seasonality in
the mean and variance, obtained by subtracting the monthly
mean and dividing by the monthly standard deviation. The
full deseasonalization has a stronger effect on the DVS plots,
but the nonlinear signature of the dynamics remains evident.
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5 Conclusions

The main results of this paper, related to the detection of non-
linearity in non-Gaussian time series, are listed below. The
topic is crucial for river flow time series, that at the daily time
scale are typically characterized by a non-Gaussian behavior.

(i) Surrogate data techniques are inadequate to testing non-
Gaussian time series for nonlinearity: in fact, linear
non-Gaussian systems are easily mistaken for nonlinear
Gaussian dynamical systems.

(ii) DVS plots are more robust towards non-Gaussianity,
but they show the opposite problem: nonlinear non-
Gaussian systems show a similar response as linear
Gaussian systems, since the possible nonlinearities tend
to be dominated by the stochastic component.

(iii) Nonlinearity is better detected by concentrating on
those parts of the time series that are not disturbed by
the jumps, namely the recession curves. A conditional
DVS technique is then proposed, which is shown to pro-
duce very good results when applied to synthetic non-
Gaussian (Poissonian) time series.

(iv) At the time scale of the concentration time, the dynam-
ics of river discharges show clear signatures of nonlin-
earity in the recession curves. Seasonality does not sub-
stantially modify this finding.

Edited by: B. Sivakumar
Reviewed by: H.-S. Kim and another referee
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