dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Linear and nonlinear post-processing of numerically forecasted surface temperature
VerfasserIn M. Casaioli, R. Mantovani, F. Proietti Scorzoni, S. Puca, A. Speranza, B. Tirozzi
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 10, no. 4/5 ; Nr. 10, no. 4/5, S.373-383
Datensatznummer 250007838
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-10-373-2003.pdf
 
Zusammenfassung
In this paper we test different approaches to the statistical post-processing of gridded numerical surface air temperatures (provided by the European Centre for Medium-Range Weather Forecasts) onto the temperature measured at surface weather stations located in the Italian region of Puglia. We consider simple post-processing techniques, like correction for altitude, linear regression from different input parameters and Kalman filtering, as well as a neural network training procedure, stabilised (i.e. driven into the absolute minimum of the error function over the learning set) by means of a Simulated Annealing method. A comparative analysis of the results shows that the performance with neural networks is the best. It is encouraging for systematic use in meteorological forecast-analysis service operations.
 
Teil von