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Abstract. In this paper we test different approaches to the
statistical post-processing of gridded numerical surface air
temperatures (provided by the European Centre for Medium-
Range Weather Forecasts) onto the temperature measured
at surface weather stations located in the Italian region of
Puglia. We consider simple post-processing techniques, like
correction for altitude, linear regression from different input
parameters and Kalman filtering, as well as a neural net-
work training procedure, stabilised (i.e. driven into the ab-
solute minimum of the error function over the learning set)
by means of a Simulated Annealing method. A comparative
analysis of the results shows that the performance with neu-
ral networks is the best. It is encouraging for systematic use
in meteorological forecast-analysis service operations.

1 Introduction

The gridded fields produced by numerical models for
forecast-analysis of meteorological fields are currently used
in a variety of applications. It often happens that the infor-
mation contained in the direct model output is insufficient
for the proposed practical use, because the definition of some
process is missing or incomplete. It is necessary then to in-
clude in deterministic or statistical form, information derived
from other sources (geography, climatology, additional ob-
servations, etc.), in order to achieve the necessary detail con-
cerning the process in question. This procedure is known as
post-processing of model output. A very common type of
post-processing is the so-called down-scaling, i.e. interpolat-
ing the gridded fields in some area to a higher resolution than
that of the original grid. This paper deals with the problem of
down-scaling two-meter temperatures (T2m),1 produced by
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1This is the temperature adopted by the World Meteorological
Organization as standard surface temperature: it is assumed to cor-
respond to temperatures measured by thermometers at surface me-

the operational European Centre for Medium Range Weather
Forecasts (ECMWF) model onto the location of a number
of meteorological stations spread over the Italian region of
Puglia (Fig. 1). More specifically, our research consists of the
comparative examination of different post-processing meth-
ods as applied to T2m post-processing over Puglia.

Several post-processing techniques are commonly em-
ployed in the operative forecasting centres and we refer to
them as standard techniques. Since the results of their appli-
cation are often not reported in the open literature, we refer
here only to some papers containing information useful for
our work.

An initial post-processing can be performed by applying
altitude corrections. This technique has been applied to good
effect, for example, by Deidda et al. (2000) in the Chilean
Andes region, at an altitude of about 2600 m, where elevation
errors were of obvious relevance.

Kalman Filters (KF) are widely used for post-processing.
Previous work by Cacciamani (1993) on the use of such a
technique in post-processing ECMWF numerical T2m onto
stations located in Emilia-Romagna (another Italian region)
was useful in our analysis. The use of the thickness between
isobaric surfaces as an input parameter, rather than the two-
meter temperature, is another common practice. An appli-
cation that was instructive for us is discussed in a paper by
Massie and Rose (1997).

Neural Networks (NN) do not address the problem of ac-
cess to information remarked above with the standard tech-
niques: an ever increasing number of papers have been pub-
lished on the subject (see, for example, Hsieh and Tang,
1998; Marzban and Stumpf, 1998; Shao, 1998; Hall et al.,
1999; Koizumi, 1999; Narasimhan, 2000; Tang et al., 2000)
and new results are readily available in the open literature.
However, obtaining a better performance by a NN than with
standard techniques may be not simple. For example, a ma-
jor shortcoming of back-propagation neural networks (as the
one proposed in Tang et al., 2000) is the trapping in local

teorological stations.
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Fig. 1. Map of Puglia. The selected meteorological stations are marked: circles indicate SYNOP stations, crosses indicate SIMN stations.

minima of the error function. In this case, the ability of the
learning algorithm in reaching the lowest values of the er-
ror strongly depends on the initial values. The approach that
we propose in this paper for the global minima of the error
function is through a procedure called Simulated Annealing
(Geman and Geman, 1984): starting from a random initial
state, the minima is reached after a suitable number of steps.
In our case, we did not encounter any computational problem
due to the convergence rate.

This work is just a preliminary step towards the setting up
of post-processing routines for the high resolution (40 levels
in the vertical, 10 km horizontal grid-size, coverage of the
entire Mediterranean) Limited Area Model (LAM) of the Di-
partimento per i Servizi Tecnici Nazionali (DSTN). Service
operations with this model have just begun and, as a conse-
quence, a sufficiently long-term series of output data is not
yet available. In order to test different post-processing tech-
niques, therefore, it seems natural to select the ECMWF fore-
cast, which is currently used to provide the DSTN-LAM’s
initial and boundary conditions. The Italian stations of the
ground-based WMO network (SYNOP) have a density com-
parable with the ECMWF model resolution (50 km). Also
in our work, we used a higher-resolution surface network, of
the Servizio Idrografico e Mareografico Nazionale (SIMN),
which is more suitable for the set-up of a post-processing
procedure for the DSTN-LAM service output, when a suffi-
cient historical record will become available. The choice of
Puglia is due to its smooth orography (which moderates the
difficulty of the down-scaling problem) and to its climatic
regime (the occurrence of extreme temperature events), to-
gether with the availability of reliable observations from sta-
tions in the SYNOP network (9) and in the SIMN network

(70).

The paper is organized as follows: in Sect. 2 we describe
the site and in Sect. 3 the data sets used in our work; Sect. 4
provides, by means of standard techniques, some statistical
estimates against which to check the results from the applica-
tion of the neural network described in Sect. 5; in Sect. 6 we
draw our conclusions; technical details of the Monte-Carlo
method are presented in Appendix A; Simulated Annealing
is schematically described in Appendix B.

2 Site description

The geographical area considered in this paper, the Italian re-
gion of Puglia (Fig. 1), is an elongated strip of land located
at the south eastern end of the Italian Peninsula. It consists
of a plain (Tavoliere) and a steep headland (Gargano) in the
north, a hilly center (Murge), a flat peninsula (Salento) in the
south. The climate of this area is characterized by the occur-
rence of frosts. The surface observation coverage is good: 9
stations belonging to the SYNOP network and 70 stations to
the SIMN network.

3 Data sets

Our work has been performed on a forecast data set and a
control data set, consisting, respectively, of gridded ECMWF
numerically forecast data and station observed surface tem-
peratures.
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3.1 Data sets for the application of the standard statistical
post-processing techniques

In the application of standard post-processing techniques, we
used a time-series of daily (in order to filter out the daily cy-
cle) 12:00 UTC surface data, for the year 1996. The con-
trol set consists of T2m values measured at four stations in
the SYNOP network, Monte Sant’Angelo (MSA), Gioia del
Colle (GdC), Marina di Ginosa (MdG), S. Maria di Leuca
(SMdL) and three stations in the SIMN network, Bosco Um-
bra (BoU), Manfredonia (Man), Locorotondo (Loc). These
stations (their location is shown in Fig. 1) were selected
to represent mountainous, hilly and maritime environments,
respectively in the north, center, and south of the region.
The basic geographic characteristics of the seven selected
stations are summarized in Table 1. The forecast data set
includes here two-meter temperatures, geopotential height
(GPH) and temperature (T) over the three lowest pressure
levels (1000 mb, 925 mb, and 850 mb) of the ECMWF global
forecast model. For each selected station, the values of the
above fields at the four grid-points nearest to the measuring
location were considered. The ECMWF model resolution is
0.5◦ (about 50 km) for the year in question (1996). We used
the 24-hour forecast (starting at 12:00 UTC) issued daily by
ECMWF.

Two digital elevation models (see Figs. 2a, b) were used
for altitude corrections: the ECMWF model orography, with
a resolution of 0.5◦, and the U.S. National Imagery and Map-
ping Agency Digital Elevation Model (NIMA DEM), with a
resolution of 30 seconds of arc” (about 1 km).

3.2 Data sets for the neural network approach

In performing post-processing by means of a NN, a 10-year
(1986–1995) record of control and forecast data was used.
The control set consists of T2m daily (12:00 UTC) observa-
tions at the GdC SYNOP station, the forecast set of T2m
daily (12:00 UTC) 24-hour ECMWF forecast at the four grid-
points surrounding the selected station.

4 Standard post-processing techniques

The statistical relationship between forecast and observed
temperatures is most easily visualized by means of scatter-
diagrams as shown in Fig. 3. The linear regression line fit-
ting the distribution of points in the diagram allows for the
definition of the error components: systematic errors are
measured by the intercept (when different from zero) and
the slope (when different from one), while the dispersion of
points around the line represents the random error compo-
nent. Some basic statistical characteristics of the error distri-
bution are measured by the following standard indexes:

bias=
1

N

N∑
n=1

(T on − T en), (1)

Mean Absolute Deviation(MAD) =
1

N

N∑
n=1

|T on −T en|,(2)

correlation=

N∑
n=1

(T on − T o) ·

N∑
n=1

(T en − T e)√
N∑

n=1
(T on − T o)2 ·

√
N∑

n=1
(T en − T e)2

, (3)

whereT en andT on are, respectively, the forecast and ob-
served temperatures for then-th day of the series,N is the
total number of days, and the bar indicates the averaging op-
erator.

For comparison between the observed and forecast data
sets we tested two different definitions of forecast surface
temperature: bilinear interpolation of T2m at the four grid-
points nearest to the observing station in question and T2m
at the grid-point nearest to the station itself. The difference
between the results obtained with the two definitions is neg-
ligible. As a consequence, we discuss in this paper only
the results obtained by using the bilinearly interpolated T2m.
In the following Sects. 4.1–3 we describe the different post-
processing techniques and in Sect. 4.4 we discuss the results
of their application comparatively.

4.1 Vertical interpolation

Visual comparison of the ECMWF orography, in Fig. 2a,
with the higher resolution NIMA DEM orography, in Fig. 2b,
gives us an idea of how large the discrepancies arising in the
numerical evaluation of the elevation at a single point can
be. The quantitative estimate of the difference between the
two digital elevation models at the seven selected stations
is reported in Table 1. Stations characterized by a partic-
ularly large elevation difference (MSA and BoU) also ex-
hibit a large systematic error: a bias of more than 4◦C, as
reported in Table 2 and an intercept considerably different
from zero. The value of Mean Absolute Deviation (MAD)
is, correspondingly, quite large. Scatter diagrams for MSA
(Fig. 3a) and GdC (Fig. 3b) illustrate, respectively, the case
of high and low elevation difference. The other stations man-
ifest a similar behavior (basically in proportion to the magni-
tude of the elevation difference).

Under the above described conditions, an initial post-
processing improvement can be obtained by simply correct-
ing the elevation error with vertical interpolation. Starting
from the geopotential height of the pressure levels at the
four grid-points surrounding the station, we applied a post-
processing algorithm which selected the upper and lower lev-
els nearest to the station height at any given point and per-
formed, at the station altitude, a vertical linear interpolation
between the relative temperatures. This procedure can give
quite satisfactory results when there are significant differ-
ences between the real altitude and model one (see, for ex-
ample, Deidda et al., 2000 with application to the somewhat
extreme case of the stations in the Andes).
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Table 1. Geographical features of selected SYNOP and SIMN stations. ECMWF height is bilinearly interpolated from the four surrounding
grid-points

Actual-Z ECMWF-Z
Station Network Location Longitude Latitude (m) (m)

MSA SYNOP mountain, N 15◦57’ E 41◦42’ N 838 240
GdC SYNOP hill, C 16◦56’ E 40◦46’ N 345 246
MdG SYNOP seaside, C 16◦53’ E 40◦26’ N 2 194
SMdL SYNOP seaside, S 18◦21’ E 39◦49’ N 104 −16
BoU SIMN mountain, N 16◦00’ E 41◦49’ N 750 296
Man SIMN seaside, N 15◦53’ E 41◦35’ N 2 206
Loc SIMN hill, C 17◦20’ E 40◦45’ N 420 133

Z = station’s height
N = north
C = center
S = south

Table 2. Statistical comparison between T2m observations at SYNOP and SIMN stations and ECMWF forecast, post-processed using
various standard techniques

Station T2mO Post-processing method T2mP Bias MAD Correlation
(◦C) (◦C) (◦C) (◦C)

MSA 11.1 None 16.0 −4.9 5.0 0.970
Vertical interpolation 10.1 0.9 1.6 0.970

Kalman filter 11.1 0.0 1.6 0.958
GdC 16.1 None 16.5 −0.3 1.9 0.969

Vertical interpolation 14.8 1.3 2.1 0.970
Kalman filter 16.2 0.0 1.7 0.959

MdG 17.4 None 16.6 0.8 2.0 0.936
Vertical interpolation 17.9 −0.6 2.0 0.931

Kalman filter 17.4 −0.1 2.0 0.913
SMdL 16.7 None 17.5 −0.9 1.4 0.956

Vertical interpolation 16.5 0.1 1.3 0.957
Kalman filter 16.7 0.0 1.5 0.933

BoU 13.2 None 17.4 −4.2 4.3 0.952
Vertical interpolation 12.1 1.1 2.0 0.963

Kalman filter 13.2 0.0 1.9 0.951
Man 20.0 None 17.2 2.8 3.0 0.956

Vertical interpolation 18.2 1.8 2.3 0.949
Kalman filter 20.0 0.0 1.9 0.941

Loc 17.2 None 18.8 −1.6 2.2 0.964
Vertical interpolation 16.2 1.0 1.8 0.969

Kalman filter 17.2 0.0 1.7 0.956

T2mO = annual average of observed temperature
T2mP = annual average of forecast temperature

4.2 Regression from thickness

An alternative approach to post-processing consists of using
“predictors” variables that, although highly correlated with
T2m, are not linked to the surface processes which are poorly
represented in numerical models. In this type of approach, a
typical variable used as a predictor in the post-processing of
surface variables is the thickness of the atmospheric layer
between isobaric surfaces at some height above the ground.

Massie and Rose’s (1997) analysis of a 1995–1996 numeri-
cal model thickness forecasts for Nashville (U.S.) provides a
good example of correlation with observed T2m.

In this study, the chosen predictor for T2m is the mean
temperatureT of the layer between two isobaric surfaces,
indicated asP1 andP2. T is connected to the thickness1z

of the layer by the relationship derived from the hydrostatic
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Fig. 2 (a) ECMWF model orography over Central Mediterranean Sea (resolution: 50 km); the 

rectangle delimitates the area in fig. 2b; coastline (thick dashed line) is superimposed for clarity. (b) 

Detail over Puglia region of NIMA DEM orography (resolution: 1 km). 

 

Fig. 2. (a) ECMWF model orography over Central Mediter-
ranean Sea (resolution: 50 km); the rectangle delimitates the area
in Fig. 2b; coastline (thick dashed line) is superimposed for clarity.
(b) Detail over Puglia region of NIMA DEM orography (resolution:
1 km).

equation:

T =
g1z

R
ln

P1

P2
, (4)

whereg is the gravitational acceleration andR is the gas con-
stant. When a sufficiently long time series ofT and T2m are
known at a given location, a linear regression relationship can
be established and values of T2m can be regressed from the
forecast. To assess the effectiveness of this post-processing
method, a model forecast at the three lower isobaric levels
(1000, 925, and 850 mb) is used to calculate three different
predictors.

4.3 Kalman filters

The parameters of the regression line derived from the
scatter-diagram of the forecast-observed values at a station
can be used in order to define a linear correction for the pre-
dicted value. The slope,A, and the intercept,B, of the re-
gression line satisfy the relationship:

T en = A · T on + B + ηn, (5)

whereηn is a random error term for then-th day. A “cor-
rected” forecast temperature,T ′en, can then be constructed:

T ′en =
1

A
T en −

B

A
, (6)
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Fig. 3 Scatter-diagrams of ECMWF forecast T2m versus observed T2m: (a) MSA SYNOP station;

(b) GdC SYNOP station. The slope and the intercept of the regression line are labeled with r and t

respectively. 

Fig. 3. Scatter-diagrams of ECMWF forecast T2m versus observed
T2m: (a) MSA SYNOP station;(b) GdC SYNOP station. The slope
and the intercept of the regression line are labeled withr and t ,
respectively.

differing from observations only for an error term, since
T ′en − T on = ηn/A.

As new observations are inserted, in order to take into ac-
count time-variations of the systematic error component, KF
varies the regression line parameters. The relation (5) then
becomes:

T en = An · T on + Bn + ηn, (7)

where An and Bn values, at each instant, are calculated
by means of an algorithm which, in its simplest form, re-
quires only a few previous values of the forecast error. As
mentioned in the Introduction, an application of the above
method to surface temperature in some Italian stations can
be found in Cacciamani (1993). KF has two main practical
advantages: it does not require long historical records and it
minimises the bias over time scales, even when they are quite
short.
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Fig. 4 Annual trend of monthly bias for MSA SYNOP station: a) Kalman filter; b) a posteriori linear

regression (months numbered progressively starting from January). 

Fig. 4. Annual trend of monthly bias for MSA SYNOP station:
(a) Kalman filter; (b) a posteriori linear regression of ECMWF
T2m analysis against observed T2m (months numbered progres-
sively starting from January).

4.4 Comparative application of standard methods

Table 2 reports the results obtained by applying all the above
described post-processing procedures. As expected, vertical
interpolation proves to be quite effective as a post-processing
technique in the presence of strong elevation errors, since
it eliminates almost all the systematic error component (Ta-
ble 2). Vertical interpolation, however, may result in being
less effective, or even disadvantageous (see, for example, the
results for GdC) in other cases.

KF introduce a strong reduction in the systematic errors
for all stations: the filtered series show very small bias. The
filter performance is also good when monthly values of the
bias are examined (Fig. 4). KF turns out to be, however, of
little (if any) help in reducing the random error component
of the MAD.

Consecutive application of different post-processing pro-
cedures exhibits the same statistical results as the application

Table 3. Correlation between isobaric thickness forecast by
ECMWF (for different layers) and observed T2m over the selected
SYNOP stations. Correlation between forecast and observed T2m
is also shown for comparison

Forecast 1000–925 mb 1000–850 mb 925–850 mb
Station T2m layer layer layer

MSA 0.970 0.962 0.958 0.952
GdC 0.970 0.963 0.958 0.951
MdG 0.936 0.926 0.920 0.936
SMdL 0.956 0.940 0.933 0.956

of the most powerful one. All procedures, moreover, have
only a minimal effect on all (generally good) correlation val-
ues. We did not find any statistical inhomogeneity amongst
the post-processed samples of observations at SYNOP and
SIMN stations.

The results of the application of the thickness-regression
method to temperatures measured at the SYNOP stations are
also shown in Table 3. The correlation values are equal or
slightly less than those obtained by directly using the T2m
forecast. There is no evidence of different behavior, i.e. dif-
ferent correlation, in different layers.

5 Neural network post-processing technique

Neural networks are algorithms set up for solving the gen-
eral problem of finding an unknown law linking two quan-
tities. The data to be analysed may be chaotic or stochas-
tic (Hertz et al., 1993). These algorithms can be applied to
any nonlinear relationship, generating a sequence of patterns
{xi, yi

}
P
i=1 (wherexi andyi are vectors with dimensionN

andL, respectively); it is, therefore, assumed that there exists
a functionf : RN

→ RL of the form:

yi
= f (xi), (8)

where the input vectorxi is mapped onto the output vector
yi by the action of the algorithm itself. The target of the
search is the best approximation of the functionf . Note that
the functionf is generic and can also contain random terms.
Letting y be the output of the neural network, we define the
error function as:

E =
1

P

P∑
i=1

|yi
− yi

|, (9)

whereP is the number of input-output pairs (patterns) which
we present to the network during the learning phase. The
data set is divided into two subsets. One, the learning set, co-
incides with the collection of patterns on which the weights
are estimated by means of the minimisation of Eq. (9). The
generalisation skill of the NN is then evaluated by applying
the error (9) on the second subset of data, called the testing
set.
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In the application of the neural network approach to
the problem of post-processing the surface temperature, let
T 1

i , T 2
i , T 3

i , T 4
i be the ECMWF numerically forecast temper-

ature for thei-th day at the four grid points surrounding the
station andT oi the temperature measured in the same day at
the output station. Then:

T oi = f (T 1
i , T 2

i , T 3
i , T 4

i ). (10)

In the simplest version of the post-processing proce-
dure the input of the neural network would bexi

=

(T 1
i , T 2

i , T 3
i , T 4

i ), and the outputT ri , forced to be statisti-
cally as close as possible toT oi . However, the structure of
the input vector used in our work is more complex. In fact,
experimentation with different structures shows that the sim-
ple NN defined above with the four temperatures forecast by
the ECMWF for thei-th day is not sufficient to provide better
results than the standard post-processing techniques. Satis-
factory results are, instead, obtained by including in the input
vector the values of temperature measured at the considered
station over the previous six days(T oi−1, ......, T oi−6). An-
other change with respect to the basic approach expressed
by Eq. (10), which turned out to be necessary, consists of
forming the input vector with the first differences of the
ECMWF temperatures:(T 1

i − T 1
i−1, ......, T

4
i − T 4

i−1) =

(dT 1
i , ......, dT 4

i ), instead of the temperatures themselves.
The input vector then becomes:

xi
= (T oi−1, ......, T oi−6, dT 1

i , ......, dT 4
i ). (11)

This change is motivated by the fact that the slow decay
shown by the autocorrelation function of the ECMWF fore-
cast temperature (see Fig. 5a) would entail the use of the
forecast temperatures of several previous days. On the other
hand, such a long correlation time indicates the existence of a
deterministic, low-frequency component in the forecast T2m.
In our statistical application this component can be filtered
out, and this is done by taking the first differences of the
forecast temperature as in Eq. (11). The rapid decay of the
first-difference series autocorrelation function (Fig. 5b) al-
lows then the use of only one temperature difference at the
four grid points near the observing station (i.e. four addi-
tional neurons) in the input vector.

The structure of the neural network adopted in processing
the above determined data set is the following (the architec-
ture is shown in Fig. 6):

– an input layer withN = 10 neurones;

– a hidden layer withM = 14 neurones;

– an output layer with only one neurone.

The optimal number of hidden neurons was found by running
the learning procedure several times with differentM-values;
just one output neuron is needed for computing one single
temperature as output. Since the range of temperatures over
one year is rather large (from−2◦C to 35◦C, approximately),
it is very difficult for a single neural network to reproduce the
observations throughout the entire year. As a consequence,
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Fig. 5 Time evolution of the auto-correlation function for: a) the original time-series of the summer 
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Fig. 5. Time evolution of the autocorrelation function for:(a) the
original timeseries of the first season ECMWF forecast;(b) the
timeseries of the first differences for the same case. The time is
measured in days; the functions are calculated over one of the four
grid-points surrounding GdC station.

Table 4. Computational seasons

Season Beginning End

First 21 May 20 September
Second 21 September 30 November
Third 1 December 28 February
Fourth 1 March 20 May

the year was divided into four “computational seasons”, the
temperatures of each one falling into a reduced range. For
each one of these periods, defined in Table 4, we have a dif-
ferent network. Although the architecture is almost the same,
there are differences among the four networks in:

– the number of patternsP ;

– the constants:
Is = max{T o}s − min{T o}s, ms = min{T o}s

(s = 1, 2, 3, 4),

where{T o}s indicates the set of the observation dataT oi be-
longing to the seasons. Each season has different maximum
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Fig. 6 Architecture of the multi-layer neural network for temperature forecast. 

Fig. 6. Architecture of the multi-layer neural network for temperature forecast.

and minimum values. Since the output of the neural network
has a value between 0 and 1, we must multiply by Is and add
ms to the output.

Each input neurone is connected to the neurones of the
hidden layer by “synaptic” interaction . The hidden layer’s

k-th neurone receives a signal equal to
N∑

j=1
wkjx

i
j , and gives

as output the signal:

hi
k = σ1

( N∑
j=1

wkjx
i
j − θk

)
, (12)

whereθk is a threshold andσ1(t) is the nonlinear input-output
function (logistic function) of the neurones:

σ1(t) =
1

1 + exp(−λ1t)
. (13)

The output of the hidden layerhi
k is a nonlinear, increasing

function of the signal
N∑

j=1
wkjx

i
j , so that thek-th neurone be-

comes active if the input is larger than a certain threshold
θk. The output of the single neurone of the output layer
is obtained in an analogous manner. Synaptic potentials
v1, ......, vM connect the neurones of the hidden layer to the
output neurone in such a way that the response of the neural
network is:

T ri,s = σ2
( M∑

k=1

vkh
i
k − θ0

)
· Is + ms =

= σ2
( M∑

k=1

vkσ1
( M∑

k=1

wkjx
i
j − θk

)
− θ0

)
· Is + ms,

s = 1, 2, 3, 4. (14)

The best approximation off (as defined in Eq. 8) is found
through minimization of the error (9), performed by chang-
ing the values of the synaptic weights, the thresholds, and the
parameters of the logistic functions.

In the learning phase, in order to find the global
minimum, a Monte Carlo method was used to explore
all the possible values of the free variablesW =

(w1,1, ..., wM,N , v1, ..., vM , θ1, ...θM , θo, λ1, λ2) belonging
to a discrete bounded set. The Simulated Annealing algo-
rithm (Carlson et al., 1996; Cohen et al., 1997) was adopted
as the more effective Monte Carlo method under the con-
ditions of our work. The Simulated Annealing skill in de-
termining the global minimum was theoretically stated in
the Geman and Geman theorem (Geman et al., 1984) and
has been numerically checked many times (Feng and Qian,
1993). When applying the Simulated Annealing method,
sometimes a practical problem is created by the modest al-
gorithm convergence speed. In our work, however, the con-
vergence speed was found to be adequate for operating effi-
ciently.

One of the principal reasons for using of the Simulated
Annealing method is the stability with respect to the choice
of random initial conditions. This aspect was carefully tested
during the application of the method (see Appendix A). In
fact, the possibility of falling into a secondary minimum is
the source of many difficulties encountered in applications.

The results of the application of the above described net-
work to the temperature of the GdC station can be quanti-
fied by means of the learning and testing errors, defined by
Eq. (9); note that this measure of the error is homogeneous
with the MAD used for the standard methods. The expres-
sions for the learning and testing errors for each season are:

EL =
1

P

P∑
i=1

|T oi − T ri |, (15a)
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Fig. 7 Scatter-diagrams of the neural network T2m versus GdC T2m: a) third season; b) first season; c) second

season; d) fourth season. The slope and the intercept of the regression line are labeled with r and t respectively. 

Fig. 7. Scatter-diagrams of the neural network T2m versus GdC T2m:(a) third season;(b) first season;(c) second season;(d) fourth season.
The slope and the intercept of the regression line are labeled withr andt , respectively.

ET =
1

PT

PT∑
i=1

|T oi − T ri |, (15b)

whereP andPT are the number of patterns used in the learn-
ing and testing processes, respectively. The algorithms pro-
duced the following results (Table 5):

– First network. In this case we obtained the smallest er-
ror of all the networks:EL = 1.3◦C with P = 600;
ET = 1.4◦C with PT = 200;

– Second network. Although this period is the longest
one and contains more fluctuations than the others,
we obtained similar results:EL = 1.6◦C with P =

900;ET = 1.6◦C with PT = 200. We also verified that
when increasing the number of elements for the learning
set, the testing error tends toward the learning error;

– Third network. In this caseEL = 1.4◦C with P = 500;
ET = 1.4◦C with PT = 200.

– Fourth network. This network is characterised by the
longest convergence-time to the minimum in the learn-
ing process:EL = 1.6◦C with P = 600;ET = 1.7◦C
with PT = 200.

Figures 7a–d show, for visual comparison with Fig. 3, the
scatter-diagrams for the testing set for each computational
season. The MAD of these four neural networks oscillates
between 1.4◦C and 1.7◦C. Further improvement can be ob-
tained by changing the input and using moving averages over
the series of temperatures at the four grid points and the GdC
station. This will be the object of future work on the imple-
mentation of NN for service operations.

A linear neural network is also applied using the identity
function, as an input-output function (Table 5). For all sea-
sons the error is about one degree larger than in the nonlinear
case.

A comparison of the neural network performance with that
of standard methods (see the annual MAD values for GdC)
shows that the nonlinear NN average testing error over a year
(1.5◦C) is smaller (Table 5). In particular, the average test-
ing error is significantly less than the MAD given by the
Kalman filter, which turns out to be the most powerful stan-
dard method (see Sect. 4). This is also true if the standard
techniques are applied for the different computational sea-
sons. In fact, except for the second (anomalous) computa-
tional season, the error of NN is consistently less than that of
KF.
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Table 5. Statistical comparison SYNOP T2m observations and ECMWF forecast, post-processed using various standard techniques and the
linear and nonlinear NN for the different computational seasons. All the numbers in the table express MAD in◦C

Post-processing First season Second season Third season Fourth season Average
method

None 2.0 1.1 1.6 1.5 1.5
Vertical 3.1 1.5 1.4 1.8 1.9

interpolation
Kalman filter 1.8 1.3 1.5 1.9 1.6
Linear NN 2.5 2.1 1.9 2.4 2.2

Nonlinear NN 1.4 1.6 1.4 1.7 1.5

Table 5 clearly shows strong non-homogeneities. For ex-
ample, the performance of the numerical model appears par-
ticularly good in the second computational season, while the
performance of all the post-processing methods, including
NN, remains comparable to that of the other seasons. We did
not investigate further this point, since the ECMWF model is
not the one that will be used in future service operations.

6 Conclusions

In this paper we present the results of a comparative study
concerning the use of linear and nonlinear statistical tech-
niques in the post-processing of gridded surface temperatures
provided by numerical forecast models.

Among standard techniques the Kalman filter is the
method yielding the least bias. This is easily minimised by
the standard methods, to the contrary of the random error
component of the MAD. As a consequence, we use the MAD
to measure the neural network performance.

Linear and nonlinear NN are trained and tested with
ECMWF T2m forecast and T2m observations over the GdC
station, utilising an innovative learning algorithm, i.e. the
minimisation of the MAD by means of a Monte Carlo
method (based on Simulated Annealing). The major advan-
tage of this procedure is its ability to reach the absolute min-
imum of the error function, by avoiding the “trapping” in
some local minimum. On the contrary, NN based on more
traditional back-propagation learning algorithms can con-
verge only to the local minimum closest to the initial state:
this can generate undesirable sensitivity to the learning ini-
tialisation, with consequent difficulties in achieving an opti-
mal training. The main drawback of the Simulated Anneal-
ing is its sometimes slow convergence to the minimum of
the error, making it necessary, in some cases, for the intro-
duction of more complex methodologies, as, for example, in
Carlson et al. (1996) and in Cohen et al. (1997), to provide
a faster convergence. In our case, however, no problem of
convergence was encountered.

Nonlinear NN post-processed temperature is characterized
by an annual MAD error of 1.5◦C, significantly smaller than
the one associated with the best standard method, the Kalman
filter (Table 5).

These results are encouraging for the development and
application of our NN to the down-scaling problem in ser-
vice operations. Moreover, we foresee further improvements.
First, the network prediction error can be further reduced by
means of the so-called compensation method. This consists
of introducing into the hidden layer one or two additional
neurones for any pattern of the training set that shows a non-
decreasing contribution to the global error. Moreover, the
data sets can be improved using a higher-resolution model
output, more dense observation networks, and other sources
of information. Further studies will be devoted to the above
problems.

Appendix A

The Monte Carlo method used in our study works in the
space of all the parameters
W = (w1,1, ..., wM,N , v1, ..., vM , θ1, ..., θM , θ0, λ1, λ2) by
changing one component at each step, in agreement with a
transition probability. This probability is given bye−β1E , if
1E > 0, and 1, if1E < 0, where1E is the change in the
error function when one component of the vector is changed.
We obtainW ′ from W by taking randomly one component
of W , Wi , and adding or subtracting a minimal increment
h with probability 1/2: W ′

i = Wi ± h. 1E is then equal
to E(W ′) − E(W ). Thus, the phase space of all the pos-
sible weight vectorsW is discretised and the Markov chain
defined by this random process asymptotically visits all the
states, since it is ergodic. The parameterβ governs the prob-
ability of the amplitude of the jumps for the components of
W .

Appendix B

We offer here a schematic description of the Simulated An-
nealing method employed, in order to find the global mini-
mum of the learning error. Simulated Annealing is a Monte
Carlo method in which the transition probability changes in
the process. In our case:
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– If initially the weights, the thresholds, and the sig-
moid parameters vector are inside the domain0 =

[−10, 10]m, it will never go out during the evolution;

– The intervalI = [−10, 10] has been divided inN1 =

1000 small sub-intervals and the elementary steph of
the Monte Carlo method is:h = |I |/N1;

– The configuration vectorW contains the weights, the
thresholds and the parametersλ1, λ2 of the sigmoid
functions,σ1, σ2; so it can be represented as:

W = (w1,1, ..., wM,N , v1, ..., vM ,

θ1, ..., θM , θ0, λ1, λ2); (B1)

– All of the initial values of the components of this vector
are chosen randomly with uniform distribution in the
interval [-10,10]. The optimal initial value ofλ1 andλ2
is 1.4;

– A component ofW is chosen with uniform probability;

– The new value of thej -th componentW ′

j is selected,
with a probability of 1/2, between the possibleW ′

j val-
ues, obtained fromWj , either by an increase or decrease
in h : W ′

j = Wj ± h;

– The fluctuation1E = E(W ′)−E(W ) is computed and
we examine the possibility of replacingWj with W ′

j .
There are two cases:
a) If 1E < 0, then the new value ofWj is accepted:
Wj → W ′

j ;
b) If 1E ≥ 0, Wj → W ′

j with probability:

e−β1E

1 + e−β1E .
(B2)

This is done by extracting a random number with uniform
probability in the interval [0,1]. If this number is less than
(B2), then the transition is accepted; otherwise,Wj remains
as it is. From (B2) it is evident that comparatively smaller
values ofβ allow for bigger jumps in1E. In this sense,
T = 1/β can be regarded as a “temperature”: a “hot” sys-
tem jumps out from local minima, visiting all the parameter
space, while a “cold” system rapidly converges to the nearest
local minimum.

– The Simulated Annealing scheme is applied. According
to this scheme, the value ofb increases logarithmically:
β(n) = 1 + logn, wheren is the number of times the
process “visits” allW components. This “slow cooling”
lets the system fall in the neighbourhood of the global
minimum before converging to this one;

– This procedure is repeated until the learning error is less
than a suitable value (2◦C in our case). The logarithmic
cooling may cause a very slow convergence rate, so that,
generally, the control of the velocity of this process is a

key practical issue in applying this method. Some au-
thors deal with this problem in recent works (Carlson et
al. 1996; Cohen et al. 1997). In our case, however, the
network convergence is fast.
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