dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Heliospheric pick-up ions influencing thermodynamics and dynamics of the distant solar wind
VerfasserIn H. J. Fahr Link zu Wikipedia, D. Rucinski
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 9, no. 3/4 ; Nr. 9, no. 3/4, S.377-386
Datensatznummer 250006552
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-9-377-2002.pdf
 
Zusammenfassung
Neutral interstellar H-atoms penetrate into the inner heliosphere and upon the event of ionization are converted into pick-up ions (PUIs). The magnetized solar wind flow incorporates these ions into the plasma bulk and enforces their co-motion. By nonlinear interactions with wind-entrained Alfvén waves, these ions are then processed in the comoving velocity space. The complete pick-up process is connected with forces acting back to the original solar wind ion flow, thereby decelerating and heating the solar wind plasma. As we show here, the resulting deceleration cannot be treated as a pure loading effect, but requires adequate consideration of the action of the pressure of PUI-scattered waves operating by the PUI pressure gradient. Hereby, it is important to take into proper account the stochastic acceleration which PUIs suffer from at their convection out of the inner heliosphere by quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in view of the most likely values of interstellar gas parameters, such as an H-atom density of 0.12 cm-3 . Solar wind protons (SWPs) appear to be globally heated in their motion to larger solar distances. Ascribing the needed heat transfer to the action of suprathermal PUIs, which drive MHD waves that are partly absorbed by SWPs, in order to establish the observed SWP polytropy, we can obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic SWP behaviour with a decreasing polytropic index at increasing distances. This also allows one to calculate the average percentage of initial pick-up energy fed into the thermal proton energy. In a first order evaluation of this expression, we can estimate that about 10% of the initial PUI injection energy is eventually transfered to SWPs independent of the PUI injection rate.
 
Teil von