dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The l1/2 law and multifractal topography: theory and analysis
VerfasserIn S. Lovejoy, D. Lavallée, D. Schertzer, P. Ladoy
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 2, no. 1 ; Nr. 2, no. 1, S.16-22
Datensatznummer 250000362
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-2-16-1995.pdf
 
Zusammenfassung
Over wide ranges of scale, orographic processes have no obvious scale; this has provided the justification for both deterministic and monofractal scaling models of the earth's topography. These models predict that differences in altitude (Δh) vary with horizontal separation (l) as Δh ≈ lH. The scaling exponent has been estimated theoretically and empirically to have the value H=1/2. Scale invariant nonlinear processes are now known to generally give rise to multifractals and we have recently empirically shown that topography is indeed a special kind of theoretically predicted "universal" multifractal. In this paper we provide a multifractal generalization of the l1/2 law, and propose two distinct multifractal models, each leading via dimensional arguments to the exponent 1/2. The first, for ocean bathymetry assumes that the orographic dynamics are dominated by heat fluxes from the earth's mantle, whereas the second - for continental topography - is based on tectonic movement and gravity. We test these ideas empirically on digital elevation models of Deadman's Butte, Wyoming.
 
Teil von