Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian

ROSEMARIE CHRISTINE BARON-SZABO*

2 Text-Figures, 2 Tables, 2 Plates

Abstract

Introduction.

Material.

Lithology and occurrence of the Garschella Formation.

Albian scleractinian corals of western Austria and eastern Switzerland

Systematic Paleontology.

Order Scleractinia BOURNE, 1900

Suborder Favina VAUGHAN & WELLS, 1943

Family Dermosmilidae KOBY, 1887

Genus Calamophyllipopsis ALLOITEAU, 1952a

Calamophyllipopsis compressa ('D'ORBIGNY, 1850)

Calamophyllipopsis cf. cervina (ETALLON, 1864)

Family Merulinidae VERRILL, 1865

Genus Cladocora EHRENBERG, 1834

Cladocora cf. brevis SEGUEIN, 1882

Suborder Fungiina VERRILL, 1865

Family Haplaearidae VAUGHAN & WELLS, 1943

Genus Podoseris DUNCAN, 1869

Podoseris elongata DUNCAN, 1869

Podoseris mammilliformis DUNCAN, 1869

Family Siderastreidae VAUGHAN & WELLS, 1943

Genus Synhelia MILNE EDWARDS & HAIME, 1849

Synhelia gibbosa (MÜNSTER, in GOLDFUSS, 1829).

Genus Enallhelia D'ORBIGNY, 1849

Enallhelia cf. tubulosa BECKER, 1875.

Enallhelia sp.

Family Micrabaciidae VAUGHAN, 1905

Genus Stephanophyllia MICHELIN, 1841

Stephanophyllia plattenwaldensis n. sp.

Suborder Caryophylliina VAUGHAN & WELLS, 1943

Family Caryophylliidae DANA, 1846

Genus Caryophyllia LAMARCK, 1801

Caryophyllia konincki (MILNE EDWARDS & HAIME, 1848)

Genus Stylocyathus D'ORBIGNY, 1850

Stylocyathus cf. dentalinus D'ORBIGNY, 1850

* ROSEMARIE CHRISTINE BARON-SZABO: Department of Invertebrate Zoology, Smithsonian Institution, NMNH, W-205, MRC 163, P.O. Box 37012, Washington, D.C., 20013-7012, USA, and Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany. rosemarie_baronszabo@yahoo.com; Rosemarie.Baron-Szabo@senckenberg.de

Contents

Abstract .. 242
Zusammenfassung .. 242
Introduction. .. 242
Material. .. 243
Lithology and occurrence of the Garschella Formation. ... 244
Albian scleractinian corals of western Austria and eastern Switzerland 245

Systematic Paleontology. ... 246
Order Scleractinia BOURNE, 1900 .. 246
Suborder Favina VAUGHAN & WELLS, 1943 ... 246
Family Dermosmilidae KOBY, 1887 ... 246
Genus Calamophyllipopsis ALLOITEAU, 1952a .. 246
Calamophyllipopsis compressa ('D'ORBIGNY, 1850) .. 246
Calamophyllipopsis cf. cervina (ETALLON, 1864) ... 246
Family Merulinidae VERRILL, 1865 .. 247
Genus Cladocora EHRENBERG, 1834 ... 247
Cladocora cf. brevis SEGUEIN, 1882 ... 247
Suborder Fungiina VERRILL, 1865 .. 247
Family Haplaearidae VAUGHAN & WELLS, 1943 .. 247
Genus Podoseris DUNCAN, 1869 .. 247
Podoseris elongata DUNCAN, 1869 .. 247
Podoseris mammilliformis DUNCAN, 1869 .. 248
Family Siderastreidae VAUGHAN & WELLS, 1943 .. 248
Genus Synhelia MILNE EDWARDS & HAIME, 1849 ... 249
Synhelia gibbosa (MÜNSTER, in GOLDFUSS, 1829). ... 249
Genus Enallhelia D'ORBIGNY, 1849 .. 249
Enallhelia cf. tubulosa BECKER, 1875. .. 249
Enallhelia sp. ... 249
Family Micrabaciidae VAUGHAN, 1905 .. 250
Genus Stephanophyllia MICHELIN, 1841 .. 250
Stephanophyllia plattenwaldensis n. sp. ... 250
Suborder Caryophylliina VAUGHAN & WELLS, 1943 ... 250
Family Caryophylliidae DANA, 1846 ... 250
Genus Caryophyllia LAMARCK, 1801 .. 250
Caryophyllia konincki (MILNE EDWARDS & HAIME, 1848) .. 250
Genus Stylocyathus D'ORBIGNY, 1850 ... 251
Stylocyathus cf. dentalinus D'ORBIGNY, 1850 .. 251

2 Text-Figures, 2 Tables, 2 Plates

241
Abstract

For the first time, scleractinian corals are taxonomically described from Albian sediments of the Garschella Formation (lower Aptian–lower Cenomanian) of western Austria (Vorarlberg) and eastern Switzerland (Canton of Appenzell). Fifteen species belonging to eleven genera from seven families were determined: Calamophylliopsis compressa (d’Orbigny), C. cf. cervina (Étallon), Cladocola cf. brevis Seguenza, Podosera elongata Duncan, P. mammiformis Duncan, P. sp., Synhelia gibbosa (Münster, in Goldfuss), Enallhelia cf. tubulosa Becker, Enallhelia sp., Caryophyllia konicinii (Milne Edwards & Hame), Styloocythus cf. dentalinus d’Orbigny, Trochocyathus antarianensis Collignon, Bathycyathus laevigatus (Milne Edwards & Hame), Fungiastrea cotteaui (De Fromentel), and Stephanophyllia plattenwaldensis n. sp. The coral fauna of the Garschella Formation is composed nearly equally of solitary (eight species belonging to six genera) and colonial forms (seven species belonging to five genera). With regard to the colonial corals, with the exception of one thamnasterioid (-submeandroid) species, only branching forms were found. Among the solitary corals cupulate, patellate, and conical growth types were present.

Scleractine Korallen aus dem unteren Aptium–Albium der Garschella-Formation in Mitteleuropa (Westösterreich; östliche Schweiz): Das Albium

Zusammenfassung

Aus den Sedimenten des Albiums der Garschella-Formation (unteres Aptium bis unteres Cenomanium) in Westösterreich (Vorarlberg) und der östlichen Schweiz (Kanton Appenzell) werden erstmalig scleractinische Korallen taxonomisch beschrieben. Insgesamt wurden fünfzehn Arten aus elf Gattungen und sieben Familien festgestellt: Calamophylliopsis compressa (d’Orbigny), C. cf. cervina (Étallon), Cladocola cf. brevis Seguenza, Podosera elongata Duncan, P. mammiformis Duncan, P. sp., Synhelia gibbosa (Münster, in Goldfuss), Enallhelia cf. tubulosa Becker, Enallhelia sp., Caryophyllia konicinii (Milne Edwards & Hame), Styloocythus cf. dentalinus d’Orbigny, Trochocyathus antarianensis Collignon, Bathycyathus laevigatus (Milne Edwards & Hame), Fungiastrea cotteaui (De Fromentel), und Stephanophyllia plattenwaldensis n. sp. Die Korallenfauna der Garschella-Formation setzt sich fast gleichmäßig aus solitären (acht Arten aus sechs Gattungen) und kolonialen Formen (sieben Arten aus fünf Gattungen) zusammen. Unter den kolonialen Korallen finden sich bis auf eine thamnasterioid (-submeandroid) Art nur ästige Formen. Bei den Einzelkorallen finden sich cupulata, patellata und konische Wuchsformen.

Introduction

Scleractinian corals from the Albian have been reported from various localities worldwide. They have been described from western Europe (Duncan, 1869; Baron-Szabo et al., 2010), southern Europe (Alloiteau, 1948; Baron-Szabo, 1993; Baron-Szabo & Fernández-Mendoia, 1997; Morryanowa & Marcopolou-Diakonarri, 2002; Löser, 2013; Löser et al., 2013), eastern Europe (Sikhurulidze, 1979), North Africa (Abdel-Gawad & Gameil, 1995), North and Central America (Wells, 1933; Reyeros de Castillo, 1983; Baron-Szabo & González-León, 1999, 2003; Tunskek et al., 2003), South America (Wells, 1944), South Asia (Stoliczka, 1873; Baron-Szabo et al., 2003; Pandey et al., 2007), East Asia (Eguchi, 1951; Liao & Xia, 1994), Central Asia (Kuzmicheva, 1972), and Australasia (Squires, 1958).

Albian corals from central Europe, however, were only mentioned in a very small number of works: Beckon et al. (1984) listed from the Swiss Cantons of Valais (southern Switzerland) and Vaud (western Switzerland) the solitary coral species Trochocyathus cornutus (Phillips), and mentioned the solitary coral Trochosmilia ionii Koby from the Swiss Canton of Valais (southern Switzerland). Recently, Bolliger (2015) illustrated from eastern Switzerland (Canton of St. Gallen) one solitary coral ("Einzelkoralle"), one colonial
coral ("Korallenstock"), and a rock sample containing coral fragments. Information about scleractinian corals from Albian sediments of the Garschella Formation of Austria was only given in two publications: HEIM et al. (1934) mentioned the occurrence of an unspecific turbinolid ("Turbinolide") solitary coral from various localities in the greater Dornbirn area in Vorarlberg and, most recently, the first more detailed taxonomic information was given by BARON-SZABO (2014), presenting one solitary and two colonial corals from the Albian of the Austrian Garschella Formation.

The purpose of this paper is to taxonomically describe for the first time the Albian coral fauna of the Garschella Formation of western Austria and eastern Switzerland, and provide a revision of the previously recorded corals of the Garschella Formation (Text-Figs. 1, 2, Tab. 1).

Material

In the current paper, 64 corals of the Albian sediments of the Garschella Formation from western Austria and eastern Switzerland were identified by examining the corallum surface, and using polished surfaces. The majority of the corals is present in mould or ‘steinkern’ preservation. The size of the specimens ranges between a few millimetres to several centimetres. Microstructural features are not preserved.

The corals of the Garschella Formation from western Austria were (most likely all) collected during the first part of the 20th century by the museum’s founder Siegfried Fussenegger (1894–1966) who was a manufacturer’s son and amateur paleontologist (FRIEBE, 1999). An informal determination of the material was carried out by the late Prof. Erik Flügel (1934–2004; University of Erlangen, Germany; formerly associated with the Natural History Museum of Vienna, Austria). The first illustrations of three of the corals from the Albian (Garschella Formation, Plattenwald Bed) of the Austrian state of Vorarlberg were presented by BARON-SZABO (2014). The Vorarlberg specimens illustrated in the current work are housed in the collections of the “Inatura” Museum, Dornbirn, Vorarlberg, Austria (inventory acronym VNS).

The corals of the Garschella Formation from eastern Switzerland and one specimen from the upper Aptian of the Garschella Formation of western Austria were collected fairly recently by various Swiss colleagues (Bolliger, Föllmi, Furrer, and Tschanz) and are housed at the following institutions: Paleontological Institute and Museum of the University of Zurich (inventory acronym PIMUZ) and the Natural Museum St. Gallen (inventory acronym NMSG).
Lithology and occurrence of the Garschella Formation

The Garschella Formation commonly overlies the Schrattenkalk Formation (Barremian–lower Aptian), starting with a hardground and/or phosphoritic crust (FÖLLMI & OUWEHAND, 1987; Text-Fig. 2). The Garschella Formation (lower Aptian–lower Cenomanian) covers the entire Helvetic shelf, including inner shelf, shelf margin, and slope (FÖLLMI & OUWEHAND, 1987; LINDER et al., 2006; FÖLLMI et al., 2007). Because it consists of different stages of stratigraphic condensation, its lithology includes glauconitic sandstones, marls, limestones, and phosphorites. Scleractinian corals are generally represented by small solitary or dendroid-branching types.

In western Austria (Vorarlberg), coral-bearing sediments of the Garschella Formation are predominantly represented by the Albian Plattenwald Bed (FÖLLMI & OUWEHAND, 1987; FÖLLMI et al., 2007) (Text-Fig. 2). In the southwestern part of Vorarlberg (Feldkirch area), upper Aptian sediments (Luitere Bed) containing corals are found (FÖLLMI, 1986; FÖLLMI et al., 2007). Fossils are abundant in both the Luitere and Plattenwald Bed. In addition to scleractinian corals, ammonites, bivalves, gastropods, nautiloids, echinoids, brachiopods, sponges, fish remains, and others fossils have been reported (e.g., HEIM et al., 1934; FÖLLMI, 1986; SULSER & FRIEBE, 2002; FÖLLMI & OUWEHAND, 1987; BOLLIGER, 2015).

In eastern Switzerland, coral-bearing Albian sediments of the Garschella Formation have been found in the Säntis

<table>
<thead>
<tr>
<th>Corals of the Garschella Formation</th>
<th>Species [general type of corallite integration]</th>
<th>Geographical and stratigraphical distribution (excluding Albian occurrence of Garschella Formation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>western Austria</td>
<td>eastern Switzerland</td>
<td></td>
</tr>
<tr>
<td>Calamophylliopsis compressa</td>
<td>Valanginian of Ukraine, lower Hauterivian of France, Hauterivian of Turkmenistan, Aptian of Switzerland, Aptian-lower Albian of Spain, Albian of Georgia (in Caucasus)</td>
<td></td>
</tr>
<tr>
<td>Calamophylliopsis cf. cervina</td>
<td>Oxfordian of France and Switzerland, upper Oxfordian–lower Kimmeridgian of Portugal, upper Oxfordian–Kimmeridgian of Slovenia, upper Oxfordian–Tithonian of Poland, lower Tithonian of Germany, upper Tithonian of the Czech Republic, lower Aptian–lower Cenomanian (possibly from the upper Albian “Girenspitz-Kalk”) of eastern Switzerland</td>
<td></td>
</tr>
<tr>
<td>Cladosora cf. brevis SEGUENZA</td>
<td>Cenomanian of Italy</td>
<td></td>
</tr>
<tr>
<td>Podoceras elongata DUNCAN</td>
<td>Middle to upper Albian of England</td>
<td></td>
</tr>
<tr>
<td>Podoceras mammilliformis DUNCAN</td>
<td>Middle to upper Albian, Campanian–Maastrichtian of eastern Switzerland (this paper)</td>
<td></td>
</tr>
<tr>
<td>Podoceras sp. [solitary]</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Synhelia gibbosa (MÜNSTER)</td>
<td>Cenomanian–Turonian of the Czech Republic and Germany, Turonian of England and Ukraine</td>
<td></td>
</tr>
<tr>
<td>Enallhelia cf. tubulosa BECKER</td>
<td>Kimmeridgian of Portugal, lower Tithonian of Germany, Tithonian of Poland, upper Tithonian of the Czech Republic, upper Hauterivian–lower Barremian of Switzerland</td>
<td></td>
</tr>
<tr>
<td>Enallhelia sp. [dendroid-sympodial]</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Canophyllia konincki (MILNE EDWARDS & HAIMIE) [solitary]</td>
<td>Senonian of England, upper Campanian of Bulgaria, Germany, Maastrichtian of Belgium, Senegal, the Netherlands, Libya, India, ?Germany, upper Maastrichtian of USA, Campanian-Danian of Pakistan, Paleocene of Egypt, Ukraine, Danian of Denmark, upper Danian of Poland, Turkmenistan</td>
<td></td>
</tr>
<tr>
<td>Synhelia cf. phaceloid [solitary]</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Synhelia cf. thoracica [solitary]</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Synhelia sp. [dendroid-sympodial]</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Crandallia cf. dentatula [solitary]</td>
<td>Cenomanian of France</td>
<td></td>
</tr>
<tr>
<td>Trochocyathus antistranensis</td>
<td>Cenomanian of Madagascar</td>
<td></td>
</tr>
<tr>
<td>Bathycyathus laevigatus (MILNE EDWARDS & HAIMIE) [solitary]</td>
<td>Turonian of Ukraine, Senonian of England</td>
<td></td>
</tr>
<tr>
<td>Fungiastraea coteau (DE FROMENTEL) [thamnasterioid (to submeandroid)]</td>
<td>Hauterivian of Ukraine, lower Aptian of eastern Serbia, upper Cenomanian of Germany</td>
<td></td>
</tr>
<tr>
<td>Stephanoplylla plattenwaldensis n. sp. [solitary]</td>
<td>Upper Aptian of western Austria (Vorarlberg; Garschella Fm.)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1. Corals of the Garschella Formation of western Austria (Vorarlberg) and eastern Switzerland (Canton of Appenzell) and their stratigraphical-geographical distributions.
area (Alpstein, Appenzell Alps; Text-Figs. 1, 2). Solitary and colonial scleractinians were collected from the so-called “Girenspitz-Kalk” (sensu Bolliger, 2015). The “Girenspitz-Kalk” represents isolated biosparitic-biomicritic lenses, containing phosphoritic peloids. In addition to scleractinian corals, a large number of fossils have been reported, including orbitolinids, sponges, bivalves, gastropods, echinoids, crustaceans, belemnites, serpulids, ammonites, nautiloids, and fish remains. These sediments also contain the ammonitid Hysteroceras cf. varicosum, indicating an upper Albian (inflatum zone) age for the “Girenspitz-Kalk” (Bolliger, 2015: 344–345, Tab. 2).

Albian scleractinian corals of western Austria and eastern Switzerland

Among the corals examined, fifteen species belonging to eleven genera from seven families were determined (Tab. 1). However, considering that over 30 % of coral fragments could not be taxonomically identified due to insufficient preservation but seemed to differ from the determined taxa (based on corallite integration and other skeletal elements), it is suggested that the actual taxonomic diversity of the Albian fauna is much higher. Noteworthy is the presence of patellate solitary forms, none of which, however, was preserved sufficiently enough to carry out a taxonomic determination.

The coral fauna of the Garschella Formation presented in the current work nearly evenly consists of solitary (eight species belonging to six genera) and colonial species (seven species belonging to five genera). In addition to the unidentified solitary patellate corals, the Garschella fauna is represented by cupolate (Podoseras elongata, P. mammilliformis, and Stephanophyllia plattenwaldensis n. sp.) and conical forms (Caryophyllia konincki, Stylocyathus cf. dentalinus, Trochoxyathus antiravanensis, and Bathycyathus laevigatus). With regard to the colonial corals, with the exception of one thamnasteriid (-submeandroid) species (Fungiastraea cotteaui), only branching forms were found (Calamophylliopsis compressa, Cladocora cf. brevis, Synhelia gibbosa, Enallhelia cf. tubulosa, Enallhelia sp.).

The Garschella corals show affinities to corals that have only been reported from the Cretaceous period with the exception of three species (Calamophylliopsis cf. cervina, Stylocyathus cf. tubulosa: both already occurred in the Upper Jurassic; and Caryophyllia konincki, Bathycyathus laevigatus: has its latest occurrence in the Paleocene) (Tab. 2). Furthermore, 40 % (six out of the 15 species) of the Garschella corals were formerly known from strata younger than the Albian: Cladocora cf. brevis, Synhelia gibbosa, Caryophyllia konincki, Stylocyathus cf. dentalinus, Trochoxyathus antiravanensis, and Bathycyathus laevigatus.

Tab. 2. Stratigraphical distributions of the corals of the Garschella Formation of western Austria (Vorarlberg) and eastern Switzerland (Canton of Appenzell).

<table>
<thead>
<tr>
<th>Species</th>
<th>Upper Jurassic</th>
<th>Upper Cretaceous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calamophylliopsis compressa (D’Orbigny)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calamophylliopsis cf. cervina (Étallon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladocora cf. brevis (Seguenza)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podoseras elongata Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podoseras mammilliformis Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podoseras sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synhelia gibbosa (Münster)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enallhelia cf. tubulosa Becker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enallhelia sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllia konincki (Milne Edwards & Haime)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylocyathus cf. dentalinus (D’Orbigny)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochoxyathus antiravanensis Collignon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathycyathus laevigatus (Milne Edwards & Haime)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungiastraea cotteaui (De Fromentel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanophyllia plattenwaldensis n. sp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Epoch/Age

Berriasian Valanginian Hauterivian Barremian Aptian Albian Cenomanian Turonian Coniacian Santonian Campanian Maastrichtian Paleocene

<table>
<thead>
<tr>
<th></th>
<th>Upper Jurassic</th>
<th>Upper Cretaceous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calamophylliopsis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladocora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podoseras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podoseras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podoseras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synhelia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enallhelia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllia konincki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylocyathus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochoxyathus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathycyathus laevigatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungiastraea cotteaui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanophyllia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2. Stratigraphical distributions of the corals of the Garschella Formation of western Austria (Vorarlberg) and eastern Switzerland (Canton of Appenzell).
The scleractinian corals of the Albian sediments of the Garschella Formation were collected from the following localities:

Western Austria (State of Vorarlberg) (Text-Fig. 1):
- **Bezaub**: located about 15 km southeast of Dornbirn.
- **Gütle-Beckenmann**: located in the outskirts of Dornbirn, about 4 km southeast of the city center of Dornbirn.
- **Hohenems**: located about 5 km southwest of Dornbirn.
- **Kraftwerk Ebensand**: located about 5 km southwest of Dornbirn.
- **Plattenwald**: located in the outskirts of Klaus, about 0.4 km northwest of the city center of Klaus (located about 20 km southwest of Dornbirn).
- **Sattelberg**: located in the outskirts of Klaus, about 0.3 km west of the city center of Klaus (located about 20 km southwest of Dornbirn).
- **Schuttannen**: located in the outskirts of Klaus, about 2 km east of the city center of Hohenems.
- **Strahlkopf**: mountain peak in the Hohenems area, located about 3 km northeast of the city center of Hohenems.
- **Weißenfluhalpe**: located in the outskirts of Dornbirn, about 6 km southeast of the city center of Dornbirn and about 10 km northeast of the city center of Hohenems.

Eastern Switzerland (Canton of Appenzell) (Text-Fig. 1):
- **Girenspitz**: mountain peak at the northern flank of Säntis (see there).
- **Säntis** (= mountain of the Appenzell Alps; Canton of Appenzell [-Innerrohden]): located about 18 km south of St. Gallen.

Systematic Paleontology

Order Scleractinia Bourne, 1900
Suborder Faviina Vaughan & Wells, 1943
(= Atraceolina Alloiteau, 1952a; = Meandriina Alloiteau, 1952a)
Family Dermosmiliidae Koby, 1887
(= Felixaridae M. Beauvais, 1982)

Genus Calamophylliopsis Alloiteau, 1952a

Type species: *Calamophyllia flabellata* De Fromentel, 1861, Upper Jurassic (Oxfordian) of France.

Diagnosis: Colonial, phaceloid to dendroid. Budding intracalicular-polytomomodel. Extracalicular appearance in places due to early detachment of new corallites. Centers permanently monocentric. Costosepta compact, subcompact, or irregularly perforated. Columella trabecular, often papillose. Synapticulae sparse, more frequently occurring near the wall. Endothecal disseptions often well developed, subtabulate. Small perithecal disseptions may be present between epitheca s.l. and septotheca. Wall septothecal, seoptopathal, and synapticulothecal, tending to be solid secondarily and thickened. Epithcal s.l. developments present or absent.

Pl. 1, Fig. A

*1850 Calamophyllia compressa, D’ORB., 1849; d’ORBIGNY: 91 (vol. 2).
1857 Calamophyllia compressa; De Fromentel: 25, Pl. 2, Fig. 5.
1873 Calamophyllia compressa; De Fromentel 398, Pl. 75, Fig. 1.
1897 Calamophyllia compressa, d’ORBIGNY; Koby: 39, Pl. 9, Figs. 2–4.
1966 Calamophyllia compressa, d’ORB.; Kuzmicheva: 60.
1979 Calamophyllia compressa (d’ORBIGNY, 1850); Sikharulizde: 32–33, Pl. 20, Figs. 1a–b.
1993 Calamophyllia compressa (p’ORBIGNY, 1850); Baron-Szabo: 164, Pl. 6, Fig. 4.
1997 Calamophylliopsis compressa (d’ORBIGNY, 1850); Bugrov: 33, Pl. 9, Figs. 2a–b.
2014 Calamophylliopsis compressa (d’ORBIGNY, 1850); Baron-Szabo: 37, Text–Fig. 8.

Dimensions of skeletal elements: Diameter of coralit: 7 mm; number of septa: 60.

Description: Colony fragment. Costosepta are developed in five incomplete cycles, subequal in thickness, and regularly alternate in length. About 15 septa reach corallite center. Axial edges of septa fuse with small columella.

Distribution: Valanginian of Ukraine, lower Hauterivian of France (Yonne), Hauterivian of Turkmenistan, Aptian of Switzerland, Aptian–lower Albian of northern Spain, Albian of Georgia (in Caucasus) and western Austria (Garschella Formation).

Material: VNS–P.24701 (Plattenwald).

Remarks: According to De Fromentel (1857, 1873), the species *C. compressa* is characterized by corallite diameters of 5–7 mm and septa mainly numbering between 60 and 70 in monocentric corallites.

Calamophylliopsis cf. cervina (ÉTALLON, 1864)

Pl. 1, Figs. B–C

*1864 Rhabdophyllia cervina ÉTALLON in THURMANN & ÉTAL- LON: 380, Pl. 54, Fig. 1.
1997 Calamophylliopsis cervina (ÉTALLON) 1864; Turnšek: 26, Figs. 28A–D (older synonyms cited therein).
2012 Calamophylliopsis cervina (ÉTALLON, 1860); Mory- cowa: 22, Fig. 14B.
Dimensions of skeletal elements: Diameter of corallite: 5–8 (to around 10) mm; in areas of intense budding, the corallite diameter is around 4 mm; number of septa: 44 to around 50.

Description: Fragments of a branching colony. Costosepta are developed in four complete or incomplete cycles in six systems, alternating in length and thickness. About six septa reach corallite center. Axial edges of septa fuse with small columella.

Distribution: Oxfordian of France and Switzerland, upper Oxfordian–lower Kimmeridgian of Portugal, upper Oxfordian–Kimmeridgian of Slovenia, upper Oxfordian–Tithonian of Poland, lower Tithonian of Germany, upper Oxfordian–Tithonian of Poland, upper Tithonian of the Czech Republic (Stramberk), lower Aptian–lower Cenomanian (possibly from the upper Albian of “Girenspitz-Kalk”) of eastern Switzerland (Garschella Formation, this paper).

Remarks: Because only fragments in oblique view are available, the exact corallite diameter cannot be determined. The material corresponds to specimens described from the upper Oxfordian–Kimmeridgian of Slovenia (Turnšek, 1997) and from the Tithonian of Poland (Morycowa, 2012).

Family Merulinidae VERRILL, 1865
Genus Cladocora EHRENBERG, 1834

Type species: Madrepora caespitosa LINNÉ, 1767 (= Caryophyllia caespitosa [LAMARCK, 1816]), Recent, Mediterranean Sea.

Diagnosis: Colonial, variably branching, phaceloid-dendroid to subfiabellloid, fasciculate, submassive. Budding mainly extracalicular but also intracalicular (polystomodaeal). Costosepta compact, variably granulated laterally, dentate marginally. Paliform swellings, that are often elongate in shape, can be present in front of S1 and S2. Axial structure is a variedly formed columnella or, more often, a pseudocolumella formed by trabecular extensions of axial septal ends, irregularly paretial, spongy to papillose, sublamellar deeper in corallum. Wall septothecal and septial septal ends, irregularly parietal, spongy to papillose, pseudocolumella formed by trabecular extensions of axial septal ends.

Distribution: Upper Albian (“Girenspitz-Kalk”) at Girenspitz of eastern Switzerland, Cenomanian of Italy (Palermo).

Remarks: According to SEGUENZA (1882: 197), the species C. brevis is characterized by corallite diameters generally ranging between 2–4 mm and “3 complete cycles of septa”. SEGUENZA, however, did not provide any information regarding the type of systems in which the cycles are supposed to be developed. If it is assumed that SEGUENZA was referring to the very commonly found septal development in six systems, the species C. brevis would be characterized by 24 septa.

Suborder Fungiina VERRILL, 1865
Family Haplaraeidae VAUGHAN & WELLS, 1943
(= Astraraeidae M. BEAUVAIS, 1882)

Genus Podoseras DUNCAN, 1869, emend. BARON-SZABO, 2013

Type species: Podoseras mammiliformis DUNCAN, 1869, middle to upper Albian of England (Hunstanton Cliff near Hunstanton, Norfolk).

Diagnosis: Solitary or colonial. Solitary forms cupulate, or tympanoid to cylindrical with a corallite diameter to around 15 mm (in specimens corresponding to the species mammiliformis). Colonial forms arranged in reptoid (as in, e.g. Rhizangia) or subplocoid-subfasciculate, sometimes encrusting clumps (as in, e.g. Brachychyphilla), connected by a lamellar coenosteum that appears unstructured and dense, or ?veicular. Solitary stage probably with a corallite height to 5 mm (in the specimens from the type locality), or, as a result of re-juvenation of the solitary stage, much higher (at least up to 40 mm). Budding extracalicular-marginal and extracalicular. Costosepta generally compact with a small number of mainly axially occurring pores. Anastomosis present. Septal thickness ranges between 65 and around 600 µm. Septal flanks covered with granules varying in size and shape (e.g. rounded, pointed, flat, long and hook-like); lateral ornamentations (conical to hook-like) and distal ones (rather regular teeth) are similar to the kinds seen in the genus Haplarea. Endothecal disseishments vesicular, thin, irregularly disposed. Columella paretial. Synapticulae present. Wall parasympaticulothecal, porous. Septothecal thickenings present or absent.

Podoseras elongata DUNCAN, 1869
Pl. 1, Figs. F, M–P

*1869 Podoseras elongata, DUNCAN: 26, Pl. 9, Figs. 16–17.
*1885 Rhizangia elongata, DUNC sp.; TOMES: 550, Pl. 14, Figs. 10–11.
v1889 Podoseris elongata, Duncan: 26, Pl. 5, Figs. 14–16.
v1889 Podoseris jessoni, sp. nov.; Duncan: 27, Pl. 5, Figs. 5–6.
v1934 Turbinolide; Heim et al.: 203, 205, 209, 221.
v2013 Podoseris elongata Duncan, 1869; Barón-Szabo: 99, Pl. 1, Fig. 6, Pl. 2, Fig. 2.
v2014 Podoseris elongata Duncan, 1869; Barón-Szabo: 57, Pl. 63, Figs. 1–2.

Dimensions of skeletal elements: Diameter of corallites: up to 12 mm; number of septa: 40–48+s5.

Description: Steinkerns of cupulate coralla, generally circular in outline. In coralla of around 12 mm in diameter, septa arranged in four complete and some of the beginning 5th cycle in six irregular systems (in a corallite with a diameter of 9 mm, usually 50–60 septa are present).

Distribution: Middle to upper Albian of England, Albian (Garschella Formation) of western Austria.

Material: VNS–P.5297; –P.5313; –P.13506; –P.13507; –P.13508; –P.14532; –P.14533; –P.14534; –P.14536; –P.17298 (Bezau at Bregenz Forest); –P.9775; –P.12604; –P.12606; –P.12607; –P.12608; –P.12609; –P.12616 (Kraftwerk Ebensand); –P.12611 (Kraftwerk Ebensand); –P.9741 (Strahlkopf); –P.9706 (Gütle-Beckenmann); –P.24351 (Sattelberg); –P.23777; –P.24580; –P.24775 (Plattenwald); –P.16270; –P.16276; –P.16293 (Schuttannen).

Remarks: Recent studies carried out on type and original material of P. elongata by Barón-Szabo (2013: 99) showed that in corallites with diameters of up to 13 mm, there are septa arranged in four complete and some of the beginning 5th cycle in six irregular systems (= in a corallite with a diameter of 9 mm, usually 50–60 septa are present; in corallites ranging between 11.5 and 13 mm in diameter there are around 80 septa in six irregular systems).

Podoseris mammiliformis Duncan, 1869

Pl. 1, Figs. E, L

v1869 Podoseris mammiliformis, Duncan: 25, Pl. 9, Figs. 2–15.
v1885 Rizhangia mammiliformis, Dunc. sp.; Tomes: 550, Pl. 14, Figs. 7–9.
1889 Podoseris affinis, sp. nov.; Duncan: 26, Pl. 5, Figs. 1–2 [topotypes studied].
v1889 Podoseris anomala, sp. nov.; Duncan: 27, Pl. 5, Figs. 3–4.
1889 Podoseris brevis, sp. nov.; Duncan: 28, Pl. 5, Figs. 7–8 [topotypes studied].
v1889 Podoseris mammiliformis, Dunc.; Duncan: 28–31, Pl. 5, Fig. 9.
1889 Podoseris dubia sp. nov.; Duncan: 28, Pl. 5, Figs. 12–13 [topotypes studied].
v1934 Turbinolide; Heim et al.: 221.
v2002 Podoseris mammiliformis Duncan, 1869; Barón-Szabo: 105, Pl. 73, Fig. 4.
v2012 Podoseris mammiliformis Duncan, 1869; Löser: 8, Pl. 1, Figs. 1–6.

Dimensions of skeletal elements: Diameter of corallite: around 19 mm; number of septa: around 60.

Description: Steinkern of cupulate solitary coral. Septa long, thin, and straight, subequal in thickness. They are developed in 4–5 size orders.

Distribution: Albian (Garschella Formation; this paper) of western Austria.

Material: VNS–P.24350 (Sattelberg).

Remarks: Because the material from western Austria is preserved as an incomplete “steinkern”, the total range of the dimensions of its skeletal elements cannot be identified. However, based on the fact that the number of septa of around 60 occurring in a rather large corallite of at least 19 mm differs from the known species of the genus Podoseris, the current specimen might belong to a new species.
Family Siderastreidae VAUGHAN & WELLS, 1943

Genus Synhelia MILNE EDWARDS & HAIM, 1849

Type species: Lithodendrum gibbosum: MÜNSTER, in GOLDFUSS, 1829, Cenomanian of Germany (Bochum, North Rhine-Westphalia).

Synhelia gibbosa (MÜNSTER, in GOLDFUSS, 1829)

Dimensions of skeletal elements: Diameter of corallite: 2–3 mm; number of septa: 16+s; width of branch: 4.5–7 mm.

Description: Dendroid-sympodial corallum, some parts of which are preserved as ‘steinkern’ while others are present as moulds. In some corallites that are preserved as ‘steinkern’ while others are preserved as moulds, a specific determination cannot be made. Because of the insufficient preservation of the material, a specific determination cannot be made.

Distribution: Albian of western Austria (this paper). Albic of western Austria (this paper).

Material: VNS–P.25401 (Bezau at Bregenz Forest).

Enallhelia cf. tubulosa BECKER, 1875

Dimensions of skeletal elements: Diameter of corallite: 2–3 mm; number of septa: 16+s; width of branch: 4.5–7 mm.

Description: Dendroid-sympodial corallum, some parts of which are preserved as ‘steinkern’ while others are present as moulds. Septa appear to be arranged in 2–3 cycles in eight systems.

Distribution: Kimmeridgian of Portugal, lower Tithonian of Germany, Tithonian of Poland, upper Tithonian of the Czech Republic (Stramberk), upper Hauterivian–lower Barremian of Switzerland (Alpstein, Appenzell Alps, NMSG–AS-O-0009 Tschanz coll.); this paper, Albian of western Austria (this paper).

Material: VNS–P.24576 (Plattenwald); NMSG–SB-DIV 1 (Bolliger coll.) (Säntis).

Genus Enallhelia d’ORBIGNY, 1849

Type species: Lithodendrum compressum MÜNSTER, in GOLDFUSS, 1829, Upper Jurassic of southern Germany (Heidenheim area).
Family Micrabaciidae VAUGHAN, 1905

Genus Stephanophyllia MICHELIN, 1841

Type species: Fungia elegans BRONN, 1838, Miocene of Italy (MILNE EDWARDS & HAIME, 1849).

Diagnosis: Solitary, cupulate with flat base. Corallum porous but sturdy. Costae have two rows of aligned granules; granules equal to or thicker than intercostal spaces. Septa of all cycles fuse with nearest ones of former cycle. Septa lamellar and perforate only near base. Marginal shelf narrow, developed regularly or irregularly, absent in some places. Synapticulae present. Pali absent. Columella solid and compact, lamellar or lenticular. Wall probably a marginotheca.

Stephanophyllia plattenwaldensis n. sp.

Pl. 2, Figs. B–C, F

v1986 Trochocyathus sp.; FÖLMLI: 372.

Holotypus: VNS–P.24623, designated here.

Derivation nominis: Refers to the location from which the material was collected (Plattenwald, Vorarlberg, Austria).

Locus typicus: Plattenwald, Vorarlberg, Austria.

Stratum typicum: Garschella Formation, Plattenwald Bed, Albian.

Diagnosis: Stephanophyllia having 96 septa, half of which (48) occur in the central part of the corallum. Corallite diameter ranging between 13–18 mm, corallite height up to around 8 mm.

Description: Cupolate corallum, partially in “steinkern” preservation, irregularly circular to subpolygonal in outline. Marginal shelf narrow (usually less than 2 mm wide) occurs irregularly, absent in places. In peripheral areas, septa irregularly alternate in thickness (often ranging between 300–650 µm). Toward corallite center they become nearly equal in thickness and much thinner (generally ranging between 150–300 µm). About 20 septa reach axial part of corallite where their axial ends fuse with lamellar segments of the columella.

Dimensions of skeletal elements: Diameter of (complete?) corallite: 18 mm; height of corallite: 8 mm; number of septa: 96.

Comparison: In having a corallite diameter of 18 mm and 96 septa, the new species differs from both S. indica DUNCAN, 1880, which has only around half the number of septa (48 [7+55]) in corallites ranging from 15–18 mm, and from S. lanquinei ALLOITEAU, 1936, which has 96 septa in a corallite of up to 11 mm in diameter. In both of the latter species, the number of septa occurring in the central part of the corallite is significantly less than half of the number occurring in the peripheral part of the corallum (around 12 septa in S. indica and around 30 in S. lanquinei).

Material: VNS–P.24623 (Plattenwald) (holotype); additional specimen (paratype): PIMUZ–32194 (FÖLMLI coll.) (Littere Bed, Brisi Member, Feldkirch, Vorarlberg, Austria; see Text–Figs. 1 and 2).

Distribution: Upper Aptian (Garschella Formation at III Gorge, Margarethenkapf, Feldkirch) to Albian (Plattenwald Bed, Garschella Formation) of western Austria.

Remarks: From the upper Aptian of the Garschella Formation in the Feldkirch area (III Gorge at Margarethenkapf, Vorarlberg, Austria), an additional specimen (paratype) having a diameter of around 13 mm was collected that closely corresponds to the holotype of S. plattenwaldensis in having both the same corallite shape and septal developments.

Suborder Caryophylliina VAUGHAN & WELLS, 1943

Family Caryophylliidae DANA, 1846

Genus Caryophyllia LAMARCK, 1801

Type species: Madaropa cyathus ELLIS & SOLANDER, 1786, Recent, Mediterranean Sea.

Diagnosis: Solitary, turbinate or cylindrical, fixed or free. Costosepta laminar, compact. Septal margins smooth or nearly smooth. Pali opposite third cycle of septa or before 2nd group of septa where hexameral symmetry is lost. Columella formed by twisted trabecular segments. Endothecal dispemiments few in number or absent. Wall septothechal.

Caryophyllia konincki (MILNE EDWARDS & HAIME, 1848)

Pl. 2, Fig. I

v1848 Caryophyllia Konincki; MILNE EDWARDS & HAIME: 290.
v1850 Caryophyllia cylindrica; MILNE EDWARDS & HAIME: 45.
v1850 Caryophyllia Bredae; MILNE EDWARDS & HAIME: 46.
1850 Caryophyllia Debeiana; MILNE EDWARDS & HAIME: 46.
v1863 Caryophyllia decemplex; DE FROMENTEL: 168, Pl. 21, Figs. 2–2b.
1873 Caryophyllia arcotensis STOLICZKA: 7, Pl. 1, Figs. 1–10 (non FORBES, 1846).
1880 Caryophyllia compressa, DUNGAN; DUNGAN: 17, Pl. 1, Figs. 1–4.
1880 Caryophyllia Indica, DUNGAN; DUNGAN: 17, Pl. 1, Figs. 5–7.
1880 Caryophyllia Feddeni, DUNGAN; DUNGAN: 18, Pl. 1, Figs. 8–10.
v1933 Caryophyllia stephensoni n. sp.; WELLS: 124, Pl. 12, Figs. 6–7, Pl. 14, Figs. 15–18.
1952b Cylindrocystus papuenguinness sp. nov.; ALLOITEAU: 11, Pl. 1, Figs. 3–4.
1955 Caryophyllia kongiei n. sp.; ROZKOWSKA: 251, Pl. 1, Figs. 1–2, Pl. 2, Fig. 4, Text–Figs. 7–8.
1970 Caryophyllia aegyptiaca sp. nov.; HASSAN & SALAMA: 82, Pl. 2, Figs. 1a–c.
1970 Caryophyllia phanerocosta sp. nov.; HASSAN & SALAMA: 83, Pl. 3, Figs. 3a–b, Text–Fig. 6.
1970 *Caryophyllia quadrigenaria* var. *vigintipalii* var. nov.; *Hassan & Salama*; 84, Pl. 2, Figs. 4a–b.

1970 *Asterosmilia decapali* sp. nov.; *Hassan & Salama*; 89, Pl. 3, Figs. 5a–c.

1972 *Caryophyllia andreasii* sp. n.; *Floris*; 40, Pl. 2, Figs. 1A–5.

1975 *Caryophyllia maresovae* sp. nov.; *Kuzmicheva*; 23, Pl. 2, Figs. 8–9.

?1995 *Caryophyllia konincki* (*Edwards & Haime*, 1847); *Tchéchméjeva*; 55, Pl. 10, Fig. 10.

1995 *Caryophyllia cylindrica* (*Edwards & Haime*, 1850); *Tchéchméjeva*; 56, Pl. 11, Fig. 7, Pl. 12, Fig. 1.

1995 *Caryophyllia debyana* (EDWARDS & HAIME, 1850); *Tchéchméjeva*; 57, Pl. 12, Figs. 2–3.

1995 *Caryophyllia bredae* (EDWARDS & HAIME, 1850); *Tchéchméjeva*; 57, Pl. 12, Fig. 4.

1996 *Caryophyllia jasmundi* *Wanner*, 1902; *Schuster*; 80.

v2002 *Caryophyllia decemplex* *Fromentel*, 1863; *Baron-Szabo*; 157, Pl. 117, Figs. 4, 7.

v2002 *Caryophyllia stephensoni* *Wells*, 1933; *Baron-Szabo*; 157, Pl. 117, Figs. 5–6.

2005 *Caryophyllia danica*, *Bernecker & Weidlich*; 16ff., Fig. 7A, Figs. 7 (2–3).

v2008 *Caryophyllia konincki* (Milne Edwards & Haime, 1848); *Baron-Szabo*; 48–51, Text-Figs. 2A–I (older synonyms cited therein).

Dimensions of skeletal elements: Diameter of corallite: 5 mm; height of corallum: about 3 mm; number of septa: 24+86.

Description: Solitary corallum, nearly circular in outline. Costosepta are developed in four incomplete cycles in six systems.

Distribution: Upper Albian of eastern Switzerland ("Giren-spitz-Kalk"; this paper), Senonian of England (Northfleet), Upper Campanian of Bulgaria and Germany, Maastrichtian of Belgium (Ciplay), the Netherlands, Libya (Sofeggin), India (Arriacoor Group), ?Germany, and Senegal. Upper Maastrichtian of the USA (Navarro Formation, Mustang River, Texas), Campanian–Maastrichtian (Ladakh) and Danian of Pakistan (Laki Range, Sind), Paleocene of Egypt and Ukraine, Danian of Denmark (Greenland and Faxe [formerly Falke]), Upper Danian of Poland and Turkmenistan.

Material: NMSG–SB-DIV 7b (Bolliger coll.) (Sántis).

Remarks: For extensive discussion on the species *C. konincki* including ontogenetical features see *Baron-Szabo* (2008: 48–51).

Genus Styllocyathus D’Orbigny, 1850

Type species: *Styllocyathus dentalinus* D’Orbigny, 1850, Cenomanian of France (Le Mans, Sarthe).

Diagnosis: Solitary corallum, turbinate or ceratoid-subtrophicoid, fixed or free. Costosepta compact. Pali in one irregular crown opposite first two cycles. Columella trabecular, substyliform to lamellar, or formed by a small number of twisted to sublamellar laths. Endothecal dissepiments sparse. Wall septothecal.

Styllocyathus cf. dentalinus D’Orbigny, 1850

Pl. 2, Figs. K–L

v1850 *Styllocyathus dentalinus* *D’Orb.*, 1849; *D’Orbigny*: 181 (vol. 2).

1862 *Styllocyathus dentalinus*; *De Fromentel*: Pl. 5, Figs. 3–3a.

1863 *Styllocyathus dentalinus*; *De Fromentel*: 188.

1881 *Styllocyathus dentalinus*; *Quenstedt*: 930–931, Pl. 179, Figs. 43, 43X.

v2002 *Styllocyathus dentalinus* D’Orbigny, 1850; *Baron-Szabo*: 160, Text-Fig. 59.

Dimensions of skeletal elements: Diameter of corallite: 4.6–5.5 mm; height of corallum: up to around 5 mm; number of septa: 40–50.

Description: Solitary, turbinate, elliptical in outline. Costosepta developed in 4–5 irregular size orders. Columella made of a small number of sublamellar segments.

Distribution: Upper Albian of eastern Switzerland ("Giren-spitz-Kalk"); this paper), Cenomanian of France (Le Mans, Sarthe).

Material: NMSG–SB-DIV 7b, –c; SB-DIV 8 (Bolliger coll.) (Sántis).

Remarks: For comparison, a sketch of the cross view of the holotype of *Styllocyathus dentalinus* d’Orbigny (Natural History Museum, Paris [MNHN], Mo3643) is provided on Plate 2, Figure J.

Genus Trochocyathus Milne Edwards & Haime, 1848

Type species: *Turbinolia mitrata* Goldfuß, 1826, Campanian of Germany (Aachen, Zevenwegen beds) (see Milne Edwards & Haime, 1848).

Diagnosis: Solitary, variably conical, often turbinate to ceratoid, or discoidal, fixed or free. Costosepta compact, finely granulated laterally. Pali or paliform lobes in two crowns opposite all but last cycle. Columella fascicular or spongy. Wall septothecal. Endothecal dissepiments vesicular. Epithecal s.l. wall present or absent.

Trochocyathus antsiranensis Collignon, 1931

Pl. 2, Fig. G

v1931 *Trochocyathus Antsiranensis* nov. sp.; *Collignon*: 52, Pl. 1, Figs. 16–19.

v1958 *Trochocyathus antsiranensis* Collignon; *Alloiteau*: 153.

v2002 *Trochocyathus antsiranensis* Collignon, 1931; *Baron-Szabo*: 158, Pl. 118, Figs. 7–8.

Dimensions of skeletal elements: Diameter of corallite: 7.5–8.5 mm; number of septa: 40–48.
Genus **Bathycyathus** Milne Edwards & Haime, 1848

Type species: *Bathycyathus chiliensis* Milne Edwards & Haime, 1848, Recent, Pacific Ocean (off the coast of Chile).

Diagnosis: Solitary, turbinate or variably conical, fixed or free. Often circular in outline in juvenile stages, becoming compressed in later ontogenetical stages. Costosepta laminar, compact. Septal margins smooth or nearly smooth. Pali not distinct from columellar laths. Columella spongy. Pali absent. Synapticulae present. Endothecal dissepiments thin, vesicular to subtabulate. Generally no wall between corallites.

Description: Mould of a solitary corallum, circular in outline. Costosepta developed in four size orders irregularly alternating in length and thickness.

Distribution: Albion of western Austria (this paper), Cenomanian of Madagascar.

Material: VNS–P.10476 (Plattenwald); –P.17297 (Bezau at Bregenz Forest).

Remarks: Regarding both the dimensions of skeletal elements and axial structure developments, the material from the Garschella Formation very closely corresponds to the type material of the Madagascan species.

Suborder **Microsolenina** Morycowa & Roniewicz, 1995

Family Latomeandridae Alloiteau, 1952a

Genus Fungiastraea Alloiteau, 1952a

Type species: *Fungiastraea laganum* Alloiteau, 1952a, Upper Turonian of France (Uchaux, Vaucluse).

Description: Mould of a thamnasterioid to submeandroid colony. Septa are thin, straight to slightly wavy, nearly equal in thickness.

Dimensions of skeletal elements: Distance of corallite centers: 6–10 mm, in areas of intense budding as low as 5 mm; number of septa (monocentric corallites): 16–20.

Distribution: Lower Hauterivian of France (Yonne), Hauterivian of Ukraine, lower Aptian of eastern Serbia, Albian of western Austria (this paper), upper Cenomanian of Germany.

Material: VNS–P.21604 (Bezau at Bregenz Forest).

Remarks: According to De Fromentel (1857: 60), the species *F. cotteaui* is characterized by a corallite diameter ranging from 8–10 mm and 16–20 septa. However, based on the original illustration of the holotype in De Fromentel (1857: Pl. 9, Fig. 2), the range of corallite diameters seems to be larger than that given by him. If it is assumed that the largest corallite shown in the illustration is 10 mm, the smallest corallites would have to be as small as about 6 mm. In addition, in a few corallites the maximum number of septa appears to be up to 22 and 24?, respectively. Because repeated attempts to track down the type material of De Fromentel’s species in the collections of the Natu-
ral History Museum Paris by the author of the current work failed, the dimensions of skeletal elements of *F. cotteaui* are assumed to be as found in the original illustration of the type material (*De fromentel*, 1857: Pl. 9, Fig. 2).

In having corallite diameters of mainly 5 mm (full range of corallite diameters of 3–7 mm), the material described from the upper Aptian–Albian of Tibet by *Liao & Xia* (1994) differs from the species *cotteaui* and is, therefore, excluded.

Acknowledgements

My thanks and gratitude go to *DENNIS OPRESKO* (Knoxville, Tennessee), *DRAGICA TURNIŠEK* (Slovenska Akademija Znanosti in Umjetnosti, Ljubljana), and *STEVE CAIRNS* (Smithsonian Institution, Washington, D.C., USA) for many discussions on coral taxonomy.

Type material and additional study material was made accessible to me by *GEORG FRIEBE* (*"Inatira", Dornbirn, Austria), *HEINZ FURRER* (University of Zurich, Switzerland), *PETER KÜRSTEINER* (Naturmuseum St. Gallen, Switzerland), *GÜNTHER SCHWEIGERT* (Staatliches Museum für Naturkunde, Stuttgart, Germany), *SYLVAIN CHARBONNIER* and *CHRISTINE PERRIN* (both Museum d’Histoire Naturelle de Paris, France), *JILL DARRELL* (The Natural History Museum, London, UK), and *MARTIN SANDER* (formerly University of Bonn, Germany). *GEORG FRIEBE* (Dornbirn, Austria) provided updates of locality and stratigraphical data.

As a Research Associate of the Smithsonian Institution (SI) Washington, D.C., USA, and an Honorary Researcher at the Research Institute Senckenberg, Frankfurt, Germany, the author would like to express her deep appreciation for the continuing support from these institutions. I am especially grateful for the financial support by both the “*Inatira*”, Dornbirn, Austria, and the Encyclopedia of Life (EOL).
Plate 1

Fig. A: *Calamophylliopsis compressa* (O’ORBIGNY, 1850)
VNS–P.24701; upper surface of colony fragment, cross view, partially polished (photograph courtesy GEORG FRIEBE); Albian (Garschella Formation at Plattenwald, Vorarlberg), western Austria; scale bar: 7 mm.

Figs. B–C: *Calamophylliopsis cf. cervina* (ETALLON, 1864)
Fig. B: PIMUZ–32195 (Furrer coll.); cross view of corallite, slightly oblique, polished surface (photograph courtesy HEINZ FURRER); lower Aptian–lower Cenomanian (Garschella Formation at southwestern flank of Girenspitz, Säntis), eastern Switzerland; scale bar: 2.5 mm.
Fig. C: NMSG–SB-CE3a–1a (BOLLIGER coll.); cross view of corallite, oblique, polished surface (photograph courtesy THOMAS BOLLIGER); upper Albian (Garschella Formation [“Girenspitz-Kalk”] at Girenspitz, Säntis), eastern Switzerland; scale bar: 4 mm.

Fig. D: *Cladocora cf. brevis* SEGUENZA, 1882
NMSG–SB-CE3b1a (BOLLIGER coll.); cross view of corallite, polished surface (photograph courtesy THOMAS BOLLIGER); upper Albian (Garschella-Formation [“Girenspitz-Kalk”] at Girenspitz, Säntis), eastern Switzerland; scale bar: 1 mm.

Figs. E, L: *Podosera mammiliformis* DUNCAN, 1869
Fig. E: VNS–P.23939; “steinkern”, cross view of corallum; Albian (Garschella Formation at Plattenwald, Vorarlberg), western Austria; scale bar: 2 mm.
Fig. L: VNS–P.24830; “steinkern”, cross view of corallum; Albian (Garschella Formation at Sattelberg, Vorarlberg), western Austria; scale bar: 2.5 mm.

Figs. F, M–P: *Podosera elongata* DUNCAN, 1869
Fig. F: VNS–P.24580; “steinkern”, oblique view of corallum; Albian (Garschella Formation at Plattenwald, Vorarlberg), western Austria; scale bar: 2.5 mm.
Figs. M–N: VNS–P.12616; Albian (Garschella Formation at Kraftwerk Ebensand, Vorarlberg), western Austria.
Fig. M: “steinkern”, lateral view of corallum; scale bar: 4.5 mm.
Fig. N: “steinkern”, cross view of corallum; scale bar: 4.5 mm.
Figs. O–P: VNS–P.23777; Albian (Garschella Formation at Plattenwald, Vorarlberg), western Austria.
Fig. O: “steinkern”, oblique view of corallum; scale bar: 5 mm.
Fig. P: “steinkern”, cross view of corallum; scale bar: 5 mm.

Figs. G–H: *Podosera* sp.
VNS–P.24350; Albian (Garschella Formation at Sattelberg, Vorarlberg), western Austria.
Fig. G: “steinkern”, cross view of corallum; scale bar: 5 mm.
Fig. H: contrast inverted image of Figure G.

Figs. I–K: *Synhelia gibbosa* (MÜNSTER, in GOLDFUSS, 1829)
NMSG–SB-DIV 1 (BOLLIGER coll.); upper Albian (Garschella Formation [“Girenspitz-Kalk”] at Girenspitz, Säntis), eastern Switzerland.
Fig. I: upper surface of colony, polished; scale bar: 4.5 mm.
Fig. J: close-up of Fig. I; scale bar: 3.5 mm.
Fig. K: close-up of Fig. I; scale bar: 3.5 mm.
Plate 2

Fig. A: *Enallhelia cf. tubulosa* BECKER, 1875
VNS–P.25401; lateral view of colony, preserved either as “steinkern” or as mould; Albian (Garschella Formation at Bezau, Bregenz Forest, Vorarlberg), western Austria; scale bar: 6 mm.

Figs. B–C, F: *Stephanophyllia plattenwaldensis* n. sp.
VNS–P.24623, holotype; Albian (Garschella Formation at Plattenwald, Vorarlberg), western Austria.
Fig: B: lateral view of corallum; scale bar: 7 mm.
Fig: C: cross view of corallum; scale bar: 7 mm.
Fig: F: lateral view of corallum; scale bar: 6.5 mm.

Figs. D–E: *Bathycyathus laevigatus* (Milne Edwards & Haime, 1848)
VNS–P.23942; Albian (Garschella Formation at Plattenwald, Vorarlberg), western Austria.
Fig. D: mould of corallum, cross view; scale bar: 4 mm.
Fig. E: contrast inverted image of Figure D.

Fig. G: *Trococyathus antarctensis* COLLIGNON, 1931
VNS–P.17297; cross view of corallum; Albian (Garschella Formation at Bezau, Bregenz Forest, Vorarlberg), western Austria; scale bar: 3 mm.

Fig. H: *Fungiastraea cotteau* (De Fromentel, 1857)
VNS–P.21604; mould, cross view of colony; Albian (Garschella Formation at Bezau, Bregenz Forest, Vorarlberg), western Austria; scale bar: 7.5 mm.

Fig. I: *Caryophyllia konincki* (Milne Edwards & Haime, 1848)
NMSG–SB-DIV 7h (Bolliger coll.); cross view of corallite; upper Albian (Garschella Formation [“Girenspitz-Kalk”] at Girenspitz, Säntis), eastern Switzerland; scale bar: 2 mm.

Figs. J–L: *Stylocyathus cf. dentalinus* D’Orbigny, 1850
Fig. J: Sketch of cross view of holotype of *Stylocyathus dentalinus* d’Orbigny, 1850 (Natural History Museum, Paris [MNHN], Mo3643) (adapted from Baron-Szabo, 2002: 160, Text-Fig. 59); scale bar: 1 mm.
Fig. K: NMSG–SB-DIV 7b (Bolliger coll.); cross view of corallum; upper Albian (Garschella Formation [“Girenspitz-Kalk”] at Girenspitz, Säntis), eastern Switzerland; scale bar: 1.5 mm.
Fig. L: NMSG–SB-DIV 7c (Bolliger coll.); cross view of corallum; upper Albian (Garschella Formation [“Girenspitz-Kalk”] at Girenspitz, Säntis), eastern Switzerland; scale bar: 1 mm.