A Short Note on the Occurrence of the Upper Triassic Oyster *Umbrostrea? montiscaprilis* (KLIPSTEIN, 1843) (Mollusca: Bivalvia) in the Northern Alpine Raibl Beds of the Schafberg, Salzburg, Austria

ISTVÁN SZENTE¹, HARALD LOBITZER² & FELIX SCHLAGINTWEIT³

3 Text-Figures, 1 Plate

Contents

Zusammenfassung

Abstract

Introduction

Geological Setting and Localities

Bivalves

Acknowledgements

References

Plate

Eine kurze Mitteilung über das Vorkommen der obertriassischen Auster *Umbrostrea? montiscaprilis* (KLIPSTEIN, 1843) (Mollusca: Bivalvia) in den Nordalpinen Raibler Schichten des Schafbergs, Salzburg, Österreich

Zusammenfassung

Aus den Nordalpinen Raibler Schichten des Schafberg-Nordfußes wird eine für das Karnium charakteristische Bivalven-Faunula, die drei Arten umfasst, beschrieben. Trotz Rekristallisation weisen die Schalenstrukturen einiger Exemplare von *Ostrea* *montiscaprilis* KLIPSTEIN, 1843 darauf hin, dass diese Art der Gattung *Umbrostrea* HAUTMANN, 2001 angehört.

Abstract

Northern Alpine Raibl Beds exposed at the northern foot of the Schafberg yielded a bivalve faunula consisting of three species characteristic of the Carnian stage. Although the shells are generally recrystallized, preserved structures of some valves of *Ostrea* *montiscaprilis* KLIPSTEIN, 1843 indicate that this species belongs to the genus *Umbrostrea* HAUTMANN, 2001.

Introduction

Oysters are a distinct and successful group of marine bivalves. Due to the predominantly calcitic composition of their shells, they have a good fossil record especially from the early Jurassic onwards. By contrast, key characters of classification such as inner features as well as mineralogy and structure of the valves are much less known in Triassic oysters, as a consequence of the frequent loss or recrystallization of their inner, presumably aragonitic shell layers (HAUTMANN, 2001a, 2006a, b). In fact, generic assignment of several Triassic species is still debated. The last decade saw the publication of a remarkable series of papers dealing with the origin and early evolution of oysters (CHECA & JIMÉNEZ-JIMÉNEZ, 2003; CHECA et al., 2006; HAUTMANN, 2001a, b, 2004, 2006a, b; MALCHUS, 2008; MÁRQUEZ-ALIAGA et al., 2005). In the light of this renewed interest, the occurrence of *Ostrea montiscaprilis* – originally described by KLIPSTEIN (1843) from the Carnian of the Monte Caprile (Goat Hill, if translated) of the Southern Alps – in the Northern Alpine Raibl Group of the Schafberg (Sheep Mountain, if translated) seems worth describing.

¹ ISTVÁN SZENTE: Eötvös Museum of Natural History, H 1117 Budapest, Pázmány P. s. 1/c, Hungary. szente@ludens.elte.hu
² HARALD LOBITZER: Lindaustraße 3, A 4820 Bad Ischl, Austria. harald.lobitzer@aon.at
³ FELIX SCHLAGINTWEIT: Lerchenauerstraße 167, D 80935 München, Germany. EF.Schlagintweit@t-online.de
Geological Setting and Localities

Since the paper by Mojsisovics (1866) fossiliferous exposures of the Northern Alpine Raibl Formation are known from the surroundings of the Eisenaueralm on the northern slope of Mt. Schafberg, south of the eastern end of the lake Mondsee. The outcrops form a largely WNW–ESE striking, approx. 2 km long, wedge-shaped patch on the northern slope of the hill Weinkogel. A good and easily accessible succession of Raibl Beds usually strikingly poor in fossils is exposed along a creek (Sch 1 in Text-Fig. 1, see also Šíblík, 2008). It comprises an alternation of limestones with grey marl and marly sandstones beds. At some places, however, bivalves occur in large quantities in limestone beds. Two localities were studied (Text-Fig. 1). Already Mojsisovics (1866) mentions fossil findings from there: in the grey sandstones of the Lunz Formation “Equisetites” fragments and from the overlying “Cardita Beds” Avicula aspera Pichler, “Cidaris” spines, Pecten, Plicatula and a bed with Ostrea Montis Caprilis.

Locality Sch 1 was already reported by Šíblík (2008). At the point where the marked tourist path leading from Schaffling to the Eisenaueralm crosses the creek, dark grey limestone slabs with abundant remains of Umbrostrea? montiscaprilis can be found in the drift of the creek. Although obviously transported, these slabs were found to provide the only opportunity to collect U.? montiscaprilis by hand tools.

Two types of fossiliferous Raibl limestones could be distinguished macroscopically, which differ from each other in microfacies as well. Microfacies of the greenish-gray limestone containing abundant shells of U.? montiscaprilis is characterized by shell fragments of the fore-mentioned species (Text-Fig. 2a). The bluish-grey limestone slabs contain abundant black onkoids of up to 15 mm. Identified fossils include solenoporacean(?) algae, small agglutinated foraminifers, gastropods and echinoderms (Text-Fig. 2b–d). A similar onkolithic bindstone microfacies was reported by Belocky et al. (1999) from the Raibl Beds of the Gaisberg/Kirchberg in Tirol.

Slightly upstream, above the small waterfall exposing un-fossiliferous marl beds the bed of the creek is formed by limestone bedding planes displaying abundant bivalves among which Schafhaeutlia? sp. cf. mellangi (Hauer, 1857) and U.? montiscaprilis could be identified (Text-Fig. 3a, b).

Some tens of meters upstream, megalodontid? bivalves can be seen in large quantities in a limestone bank forming the right flank of the creek (Text-Fig. 3c, d). The specimens are preserved as internal moulds with conjoined, closed valves and can not be extracted from the compact rock with hand tools.

Raibl Beds are also exposed higher on the right flank of the creek valley, along the path leading from Kreuzstein to the Eisenaueralm (Locality Sch 2). Two bivalve specimens, representing S. mellangi and Rossiodus cf. columbella (Hoernes, 1855) were found there by Dr. Miloš Síblík, Prague.

Bivalves

Umbrostrea? montiscaprilis (Klipstein, 1843)
(Pl. 1, Figs. 1–9, 11?)

Material: about a dozen specimens, presumably all left valves, embedded in compact limestone.

Description: Inaequilateral, backward-curved, higher than long shells ornamented with up to 15 squamose, antimarginal ribs/plicae whose number increases with intercalation of new ones at the postero-ventral region. Attachment area is subordinate if compared with the height of the valve. Umbonal cavity is well defined. Internal features can not be studied in the available material.

The shell structure has been completely obscured by recrystallization in most cases (e.g. Pl. 1, Figs. 5, 6). Some sections, however, display two shell layers of different structure (Pl. 1, Figs. 7, 8). The outer one seems to be of prismatic nature while the inner one is formed by
U.? montiscaprilis differs from Actinostreon haidingerianum (EMM-RICH, 1853), a common species in the Rhaetian of the Northern and Southern Alps as well as of the NW Carpathians, by having more ribs/plicae (see e.g. ZAPFE, 1967, p. 438, Pl. 3, Figs. 7a, b; GOETEL, 1917, p. 169, Pl. 9, Figs. 4a, b.) and – probably – by its aragonitic inner shell layers (see below).

Remarks: "Ostrea" montiscaprilis, usually assigned to the genera/subgenera Lopha or Alectryonia was frequently recorded from various Carnian formations of the Northern Calcareous Alps (see TOLLMANN, 1976) but it was only rarely described and figured (e.g. WÖHRMANN, 1889, p. 200, Pl. 6, Figs. 1–3). The Schafberg specimens agree well in shape with the type (KLIPSTEIN, 1843), as well as with those more recently described and figured in the literature, e.g. by JELEN (1989) and LIEBERMAN (1979) (see also DIENER, 1923 for older references). The species was also recorded from North America (e.g. STANLEY, 1979), however, the specimens referred to have never been described or figured thus it is doubtful whether they are conspecific (McROBERTS, 1997).

U.? montiscaprilis differs from Actinostreon haidingerianum (EMM-RICH, 1853), a common species in the Rhaetian of the Northern and Southern Alps as well as of the NW Carpathians, by having more ribs/plicae (see e.g. ZAPFE, 1967, p. 438, Pl. 3, Figs. 7a, b; GOETEL, 1917, p. 169, Pl. 9, Figs. 4a, b.) and – probably – by its aragonitic inner shell layers (see below).

Uncertainty concerning the generic assignment of "O." montiscaprilis roots in the lack of appropriate knowledge of its shell mineralogy and structure. Differences between Triassic lophate oysters and Lopha RÖDING, 1789 were already recognized by MALCHUS (1990) who erected the new genus Palaeolopha based on Ostrea haidingeriana as type species, and including – although doubtfully - Palaeolopha montiscaprilis as well. According to HAUTMANN (2001a), however, the shell of "O." haidingeriana is entirely calcitic and similar in microstructure to that of Actinostreon BAYLE, 1878 as documented by SIEWERT (1972). Thus, Palaeolopha should be considered as a junior synonym of Actinostreon. On the other hand, evidence presented by HAUTMANN (2001a, b) and MÁRQUEZ-ALIAGA et al. (2005) suggest that shells of
Middle and early Late Triassic oysters contained aragonite layers as well. On the basis of shell mineralogy, these forms should be assigned to Umbrostrea HAUTMANN, 2001, whose valves consist of an outer layer of calcitic prisms, a thin middle layer of foliated calcite and a thick, originally aragonitic inner layer. Although shell preservation of the Schafberg specimens is far from suitable, the data available make their assignment to Umbrostrea the most plausible. The almost exclusive appearance of recrystallized, presumably originally aragonitic shell parts may be due to the peeling off of the thin outer calcitic layers, in a way found by SANDERS et al. (2007) in diceratid rudists. Spalling of the outer, prismatic layer of U. iranica HAUTMANN, 2001 was also figured by HAUTMANN (2001a).

Rossiodus cf. columbella (M. HOERNES, 1855)
Pl. 1, Fig. 15
A single internal mould of a left valve may represent R. columbella, a characteristic Upper Carnian – Norian megalodontid species as described and figured by VEGH-NEU- BRANDT (1982).

Acknowledgments
Dr. Miloš Siblík (Prague) provided us with bivalve specimens he collected. His help and kindness is gratefully acknowledged here. The field-work of I. Szente and H. Lobitzer was supported on the basis of the bilateral agreement between the Geologische Bundesanstalt (Vienna) and the Geological Institute of Hungary (Budapest). This is a contribution of the OTKA Project K 81298.
Late Triassic (Norian–Rhaetian) bivalves


CHECA, A.G., JIMÉNEZ-JIMÉNEZ, A.P. (2003): Rib fabrication in Ostreoida and Plicatuloidea (Bivalvia, Pteriomorpha) and its evo-
lutionary significance. – Zoomorphology, 122, 145–159.

CHECA, A.G., JIMÉNEZ-JIMÉNEZ, A.P., MÁRQUEZ-ALIAGA, A. & HAG-

DIENER, C. (1923): Fossilium Catalogus, Pars 19, Lamellibranchia-
ta triadica. – 257 pp, Junk, Berlin.


The specimens in Figs. 2–4, 10 and 12–15 are coated with ammonium-chloride. The scale bar is 3 mm in Figs. 5–7 and 11, and 1 mm in Figs. 8, 9.

Figs. 1–9, 11: *Umbrostrea? montiscaprilis* (KLIPSTEIN, 1843).

- Fig. 1: characteristic occurrence and preservation of valves, 0.6x.
- Figs. 2–4: left valves.
- Figs. 5, 6: longitudinal section of specimen in Fig. 2, umbo is to the left, acetate peels.
- Figs. 7, 8: cross section of ribs displaying traces of an outer calcitic prismatic and an inner, originally aragonitic shell layer, acetate peel.
- Fig. 9: preserved structure of the inner, recrystallized shell layer, acetate peel.
- Fig. 11: fine foliated calcite structures associated to recrystallized shell fragments, questionably interpreted as peeled off shell layers of *U.? montiscaprilis*, acetate peel.

Figs. 10, 12–14: *Schafhaeutlia mellingi* (HAUSER, 1857).

- Fig. 10: internal mould of a left valve bearing fine commarginal and radial ornamentation.
- Fig. 12: lateral view.
- Fig. 13: frontal view.
- Fig. 14: dorsal view.

Fig. 15: *Rossiodus cf. columbella* (M. HOERNES, 1855).