

On-going transboundary geothermal exploration projects in the Pannonian Basin

Annamária Nádor

Geological Institute of Hungray

Pannonian basin

Average terrestrial heat flow: 100 mW/m²

Geothermal gradient: 45 m/℃

Lenkey et al., 1999

Main geothermal reservoirs	1. fractured, karstified basement rocks (Palaeozoic-Mesozoic)	2. porous multi-layered sandstones, shales (Upper Miocene-Pliocene basin fill)
thickness	80-100 m (upper part)	200-300 m
depth, temperature	>2500 m, >100-120 ℃	800-2000 m, ~60-70 ℃
porosity	< 5%	20-30%
permeability	500 -1500 mD	500 -1500 mD

Joint evaluation of transboundary hydrogeothermal systems, recommendations for sustainable utilization and management

- **>** focus on Upper Pannonian hydrogeothermal reservoirs
- >shallow geothermal (heat pumps) also included
- >single-well concept: to determine amount of extractable thermal water
- → delineate joint SI-HU porous thermal groundwater body

- ➢ focus on porous basin AND basement reservoirs
- **>**no shallow geothermal
- **>** single AND double-well concept: focus on energetic utilization
- >steady state and scenario models for cross-border pilot areas
- >web-based decision support tool

Dande basin Constitution Con

SLO-A-HU cross border region

Questions addressed:

- ▶ preneogene carbonate reservoir of the Radgona-Hodos area role
 of hydraulic barriers on possible recharge
- → modelling of a narrow fissured aquifer (Rába fault zone)
 - >cross-border utilization problems (Bad Radkensburg and vicinity)

Nedschartzeite werden bestin bestin er in der Schartzeite Geschlichen Geschlic

A-HU cross-border region: Lutzmannsburg Zsira

Maximum basin depths ~2.000m Maximum reservoir temp. ~70℃ Heat flow 70-110 mW/m²

Zsira-1 - Abszolút vízszint (mBf)

A-SK cross-border region: Vienna basin

A-HU-SK cross-border region: Danube basin

SK-HU cross-border region: Komarno-Sturovo

Questions addressed:

mining related karstwater withdrawal vs.hydrogeothermal systems

>possible utilization according to different withdrawal scenarios

depression in karst water level 1990's

http://transenergy-eu.geologie.ac.at

harmonised geological, hydrogeological, geothermal datasets multi-lingual JOINT DATABASE

Multi-lingual joint database (MS-Access)

basic data (name, coordinates, depth, screened intervals, etc.) purpose of drill (hydrogeological, geothermal, oil prospection, reinjection) utilization (heating, balneology, agriculture, reinjection, no, etc.) geology (lithology from-to, facies, etc.) hydrogeology (permeability, porosity, pressure logs, etc.) **FIELD TEST** geothermics (BHT, T-outflow, thermal conductivity, etc.) **GEOCHEM** isotopes (O, C, Rn, Ra, noble gases) **GEOTHERMIC** organic components **HYDROGEOL** trace elements **GEOLOGY** field measurements (pH, conductivity, redox) **UTILIZATION** pumping test (yield, level) **PURPOSE BASIC** senergy-eu.geologie.ac.at

Hungary		Slovenia	
Expert	Public	Expert	Public
792	158	404	99

www.t-jam.eu

Number of boreholes (March 31, 2011)

SK: 284

SLO: 455

AT: 223*

HU:1797

SUM: 2759

Geological model: bounding surfaces of hydrostratigraphic units

- ➤ Quaternary covered (surface) geological map
- **▶** Base of the Quaternary formations (Pre-Quaternary)
- **▶** Base of the Upper Pannonian formations (base of delta front sands)
- **▶** Base of the Lower Pannonian formations (Pre-Pannonian)
- **▶** Base of the Sarmatian formations (Pre-Sarmatian)
- **▶** Base of the Badenian formations (Pre-Badenian)
- **▶** Base of the Neogene formations (Pre-Neogene)
- **≻**Base of the Cenozoic formations (Pre-Cenozoic)
- **▶** Base of Cretaceous formations (Pre-Creatceous)
- >Surface of basement formations

Late Miocene palaeoenvironment

Pannonian delta-front sands Újfalu / Lower Mura Formations

Late Miocene palaeoenvironment

Location of the geothermal users identified in the **TRANSENERGY** project area

	Organi- zations	Forma- tions	Boreholes
SLO	23	27	35
SK	28	31	39
AT	20	26	50
HU	104	131	184
Total	175	215	308

http://transenergy-eu.geologie.ac.at

Only harmonized, multi-national management strategies can lead to sustainable utilization of transboundary geothermal resources

Results (uploaded continuously according to the progress of the projects) are available at:

www.t-jam.eu

http://transenergy-eu.geologie.ac.at