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The handling of numerical ages and 
their random uncertainties

MEBUS A. GEYH*)

Abstract: The correct handling of numerical ages and their standard deviations and a proper introduction to 
error propagation or propagation of uncertainty and statistical evaluation are important to avoid misleading 
chronological conclusions and statements even though based on properly determined and reliable numerical 
dates. The conclusions may also be erroneous if dates were taken from databases without sufficient back-
ground information on the origin of the dated material and the applied analytical techniques. This paper is 
an introduction into the field of mathematical handling and testing of numerical ages. The most common and 
simple calculations and statistical tests that are needed are described and the steps involved are demonstrated 
on examples. The problems involved in the visualization of numerical dates in the form of normal histograms 
and dispersion histograms are discussed.

[Der Gebrauch numerischer Alter und ihre Standardabweichungen]

Kurzfassung: Die korrekte Auswertung numerischer Alter mit ihren Plus-Minus-„Fehlerangaben“ oder bes-
ser Standardabweichungen und die Anwendung der damit verbundenen statistischen Auswerteverfahren sind 
für Geowissenschaftler und Geographen oft eine schwierige Aufgabe, weil ihnen dafür die Ausbildung fehlt. 
Entsprechend finden sich in der Literatur viele nur schwer nachvollziehbare geochronologische Folgerungen. 
Sie können allerdings auch dann falsch sein, wenn sie sich auf Ergebnisse aus Datenbanken ohne ausreichen-
de Angaben über den Ursprung des datierten Materials und die angewandten analytischen Techniken bezie-
hen. Diese Arbeit führt in die Beurteilung und Handhabung numerischer Altersangaben ein. Mit ihr können 
elementare Rechnungen und einfache statistische Tests korrekt ausgeführt werden. Entsprechende Beispiele 
veranschaulichen den Weg dazu. Die mit der Visualisierung von numerischen Altern in Form von einfachen 
und Dispersions-Histogrammen verbundenen Probleme werden diskutiert.
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1 Introduction

Owing to the growing number of databases 
open to the public and the increasing produc-
tion of numerical ages using different dating 
methods and semi-automated equipment. Qua-
ternary scientists are thus faced with the task 
of handling large sets of numerical ages with 
their random uncertainties rather than dealing 
with single numerical ages. Reliability checks 
based only on the values themselves are indis-

pensable as in many cases information on the 
dated material and the analytical techniques is 
insufficient or not accessible.
Unqualified handling of numerical ages may 
result in conspicuously erroneous scientific 
conclusions. An example is a statistically eva-
luated cycle in the formation of speleothem and 
calcareous tufa in Europe which appeared to 
correlate with the 25-ka cycle of the precession 
of the Earth‘s axis (BRUNNACKER & HAUSMANN 
1987; GEYH 1991). Reliable calculation of error 
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propagation avoids such conclusions and also 
allows manipulated numerical ages to be identi-
fied (GEYH 1991). This paper provides the basics 
necessary for proper mathematical treatment 
of geochronological and analytical data of any 
origin with their random uncertainties. Compli-
cated mathematical functions are not discussed.
This paper uses the terminology of HUNTLEY 
(2001) in which „age“ refers to a range of 
time something has existed, while a „date“ is 
a particular time on a time scale. The functions 
given below are valid for any data, not only 
numerical ages.

2  Precision, accuracy and reporting of data

Precision and accuracy have distinct meanings 
as illustrated in Figure 1.
1) The precision of a result is a measure of 

the reproducibility of an observation and 

corresponds to the uncertainty of a result. 
It is expressed as random error or random 
uncertainty and is mainly determined by the 
analytical technique and equipment used.

2) The accuracy is a measure of the correct-
ness of an observed value and its approxi-
mation to the „true“ value. It depends on a 
large number of often unknown systematic 
errors, which may be eliminated by carrying 
out routine measurements on standard ma-
terials. Aliquots of the same set of samples 
of different standard materials are analyzed 
by laboratories throughout the world and 
the results compared. Reducing systematic 
errors increases the accuracy rather than the 
precision.

The expression ± σA is termed random or sta-
tistical uncertainty and has to be distinguished 
from systematic errors. A systematic error 
arises from a specific physical or chemical 

Fig. 1. The meanings of accuracy and precision: Accuracy describes the approximation of a mean to the 
„true“ value; precision is a measure of the reproducibility of a result.

Abb. 1. Bedeutung von Genauigkeit und Präzision: Genauigkeit beschreibt die Annäherung an den „wahren“ 
Wert. Die Präzision ist ein Maß für die Reproduzierbarkeit eines Ergebnisses.
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process, only changing the measured values in 
one direction or the other. If the process is un-
derstood and the relevant parameters are known, 
the result can be corrected. As an example, the 
relevant processes that affect 14C and 230Th/U 
ages are shown in Figure 2. Contamination 
with material older than the sample to be dated 
(e.g. with coal, fossil lime or detrital thorium) 
increases 14C and 230Th/U ages, respectively. 
Five percent matter containing no radiocarbon 
increases the 14C ages by around 400 years. The 
same amount of uranium of a material in which 
the 238U series is in radioactive equilibrium will 
increase the 230Th/U ages by around 5000 years. 
A correction of these ages is possible if the pro-
portion of the contaminating material is known.
The conventional rules for reporting of quanti-
tative data are often neglected. One rule is that 

any quantitative result should be accompanied 
by a statement of the intrinsic uncertainty. The 
precision of the random uncertainty (the measu-
re of its uncertainty) is usually not better than 
± 10 %. An example illustrates this rule. A ran-
dom uncertainty of ± 213 a has an uncertainty of 
about ± 21 a. Hence, it is reasonable to report the 
uncertainty as ± 210 a rather than ± 213 a. This 
means that the uncertainty should be rounded to 
two digits only (TAYLOR & KUYATT 1994). Ano-
ther rule is that a set of values should always 
have the same number of places behind the 
decimal point. Hence, an age of 2.87 ± 0.20 ka 
should not be given as 2.87 ± 0.2 ka. This rule is 
especially important for the compilation of data 
in a table. Another rule is that only the final re-
sult should be rounded off rather than the values 
used in a calculation.

Fig. 2. Scheme for the correction and calibration of radiometric and mass spectrometric 14C and 230Th/U ages, 
in order to correlate them with the absolute time scale (GEYH & GROSJEAN 2000). TA – true age; NA – nume-
rical age, cNA – corrected numerical age

Abb. 2. Schematische Darstellung der Korrektur und Kalibration radiometrischer und massenspektrome-
trischer 14C- und 230Th/U-Alter zur Korrelation mit der absoluten Zeitskala (GEYH & GROSJEAN 2000). TA 
– wahres Alter; NA – numerisches Alter, cNA – korrigiertes numerisches Alter
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3 Numerical age, random uncertainty 
and frequency distribution

Any geochronological framework has to be 
based on numerical ages determined with sui-
table physical dating methods (GEYH & SCHLEI-
CHER 1990; WAGNER 1998; GEYH 2005). The 
resulting ages are often inappropriately termed 
„absolute“ ages. If an age date is obtained, for 
example, from stratigraphic or palynological 
studies it is a relative age. Physical age dating 
also does not yield absolute ages; the results are 
better called „numerical ages“. The term abso-
lute age should be reserved only for age dates 
related to the solar time scale.
The collected samples have to fulfill numerous 
criteria to be suitable for reliable dating. Diffe-
rent kinds of numerical ages have to be corrected 
for different sources of systematic error (e.g., 14C 
ages for contamination, reservoir effect, and 13C 
isotope fractionation; and 230Th/U ages for det-
rital 230Th; e.g., GEYH & GROSJEAN 2000; Fig. 2) 

and in the case of dating with cosmogenic isoto-
pes calibration is needed (e.g., 14C dates). This 
is particularly important when numerical ages 
obtained from different materials and methods 
are compared with each other and/or with the 
absolute time scale (GEYH & SCHLEICHER 1990; 
WAGNER 1998; GEYH 2005).
When dealing with numerical ages, it is very 
important to understand the meaning of the 
common expression A ± σA, e.g., 2000 ± 
50 a before present (BP). Standard deviation, 
1-sigma interval, random uncertainty, and sta-
tistical uncertainty are used as synonyms for 
± σA. It defines the precision of the calculated 
value, and represents a frequency distribution. 
Theoretically it is assumed that the age of the 
sample was determined an infinite number of 
times. In practice, however, the standard devi-
ation is precisely determined on the basis of a 
finite number of measurements. The ages deter-
mined on the same sample deviate from each 
other, even under most exacting measurement 
conditions, and scatter around a mean value 
Â, which is assumed to approximate the „true“ 
age of the sample. The frequency distribution 
of values is obtained by plotting all these va-
lues with the x-axis representing „age“ and the 
y-axis representing the frequency of occur-
rence of each value. The resulting curve looks 
like a vertical cut through a bell and is know 
as a Gaussian distribution, normal distribution 
or bell-shaped curve (Fig. 3). It is symmetrical 
around the mean value of all values.
In reality only a finite number of results are avai-
lable and the frequency distribution is not per-
fectly symmetrical. In this case the curve peak 
is given by the median rather than the mean. It 
divides a frequency distribution into two equal 
areas. This case will, however, not be discussed 
here as it is of minor importance in geochronolo-
gical studies due to the relatively small number 
of ages obtained from coeval samples.
The area enclosed by the bell-shaped curve, ex-
tended to infinity in both directions, represents 
the total number of values or 100 % probabili-
ty. The area between the two inflection points, 
shown in light grey, contains nearly 68 % of all 
values (68 % probability) (1-sigma interval or 

Fig. 3. Gaussian frequency distribution (also bell-
shaped curve, normal distribution): The 1-sigma 
confidence interval lies between the two inflection 
points of the frequency distribution. The light gray 
area corresponds to nearly 68 % of the total area, the 
2-sigma confidence interval represents a probability 
of about 95 %.

Abb. 3. Gauß’sche Häufigkeitsverteilung (auch 
Glockenkurve, Normalverteilung): Das 1-Sigma 
Vertrauensintervall liegt zwischen den beiden Wen-
depunkten der Glockenkurve. Die graue Fläche ent-
spricht nahezu 68 % der Gesamtfläche, das 2-Sigma 
Vertrauensintervall repräsentiert eine Wahrschein-
lichkeit von 95 %.
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1σ  confidence interval). The 2-sigma confi-
dence interval contains approximately 95 % of 
all values (95 % probability), corresponding to 
a probability of error of 5 %. Hence, one and 
two sigma means that 2 out of 3 or 19 out of 20 
results fit the 1σ and 2σ confidence intervals, 
respectively, provided a sufficiently large num-
ber of ages from coeval samples are available. 
The 1σ confidence interval for the age A = 
2000 ± 50 BP is 1950 BP to 2050 BP; one third 
of the values should be greater or smaller than 
these two values (2050 > A > 1950 BP).
The convention in science and engineering is 
to give the 1-sigma confidence interval for the 
uncertainty of a value. An exception is mass 
spectrometric ages in geochronology, for which 
the uncertainty is often given as the 2-sigma 
confidence interval.
The decision whether the 1-sigma or 2-sigma 
confidence interval is used depends on the 
question to be answered. An increase of the 
width of the confidence interval enlarges the 
probability that the true age is included, but 
it decreases the ability to distinguish two ages 
or to decide whether they belong to the same 
or different frequency distributions. Thus, it is 
indispensable to state in each publication whe-
ther the given uncertainty is 1σ or 2σ.
An example demonstrates this case. Two ages 
of 1850 ± 50 a and 2000 ± 50 a do not appear 
to belong to coeval samples due to the gap 
of 150 a between the 1σ confidence limits. In 
contrast, samples with the same ages but twice 
as large standard deviations – 1850 ± 100 a and 
2000 ± 100 a – might have been considered as 
coeval as their confidence intervals overlap. 
The next chapter describes how such cases are 
correctly handled.

4 Arithmetic and weighted means

The arithmetic mean age Â (normally simply 
called the mean) of a set of n numerical ages 
(A1 to An) with the same precision is given by 
the following equation:

.

The standard deviation σA of the age values Ai 
in a set of ages A is calculated as follows:

Using the three ages 2000 ± 50 a, 2050 ± 50 a 
and 2200 ± 100 a as an example, Equations 1 
and 2 yield (for which the standard deviations 
of the individual ages are not used) a mean and 
standard deviation of 2083 ± 104 a. As explai-
ned above, this has to be reported as 2080 ± 
100 a. (Contrary to the conventional rule for 
reporting values given in Chapter 2, the values 
and their uncertainties in this paper are given as 
calculated and not as they should be reported. 
This enables the reader to follow the calculati-
ons with the corresponding equations).
The larger the number of ages determined for 
the same sample, the higher the probability that 
the calculated mean approximates the „true“ 
age. This is reflected in the standard deviation 

of the mean (σÂ), which decreases with  
as follows:

Our example yields ± 60 a, while that of a sin-
gle measurement is ± 104 (Eq. 2).
Numerical age values usually have differing 
precision, requiring the introduction of a 
weighting factor w. It is calculated from the 
standard deviation as follows:

The weighting factors of our example given 
above are 0.0004, 0.0004 and 0.0001, respec-
tively. This means the weighting factor for the 
two 14C ages with a precision of ± 50 years is 
four times larger than the weighting factor of 
the 14C age with a precision of ± 100 years. This 
is not only a mathematical artifact. The third ra-
diometric 14C measurement required four times 
the time needed for the first two.
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The weighted mean Âw is obtained using the 
following equation:

Equation 5 reduces to Equation 1 if the measu-
rements were done with the same precision: 
wi = constant.
The standard deviation of the weighted mean 
σÂw is obtained by

The weighted mean of our example yields 2044 
± 33 a (to be reported as 2040 ± 30 a), devia-
ting by 35 years from the arithmetic mean of 
2083 ± 104 a (to be reported as 2080 ± 100 a) 
given above. The weighted mean and its stan-
dard deviation are shifted towards the more 
precise results.
Analogous to Equation 3 the weighted mean 
standard deviation of a single value is given by

The example yields ± 57 years.

According to Equations 3 and 6 the precision 
of the mean values σÂ and σÂw theoretically 
approaches zero for an infinite number of ages. 
In reality the precision has an (often unknown) 
upper limit resulting from the technical limi-
tations of the method: for example, varying 
contamination of coeval samples that cannot be 
removed and slightly deviating measurement 
conditions (temperature, differing calibration 
of the equipment in different laboratories, im-
pure chemical reagents, etc.). Ages above the 
upper limit of the method are given, for examp-
le, as >40,000 a. They express the minimum 
age of a sample or the maximum age which can 
be determined by the method.

5 Chi square test

Calculation of the arithmetic or weighted 
means Â or Âw of a set of n ages Ai ± σAi makes 
sense only if the σ Ai values were determined 
for coeval samples and therefore belong to the 
same frequency distribution. To test for this, 
there are two alternative but equivalent mathe-
matical approaches:
a) The uncertainty ± σΑ of the ages is calcu-
lated using Equation 2 and compared with the 
standard deviation σAw of a single measure-

x y sy y-sy y+sy
0,00 3,0 0,50 2,50 3,50
0,05 3,1 0,48 2,62 3,58
0,10 3,2 0,45 2,75 3,65
0,15 3,3 0,43 2,87 3,73
0,20 3,4 0,40 3,00 3,80
0,25 3,5 0,38 3,12 3,88
0,30 3,6 0,36 3,24 3,96
0,35 3,7 0,33 3,37 4,03
0,40 3,8 0,31 3,49 4,11
0,45 3,9 0,29 3,61 4,19
0,50 4,0 0,27 3,73 4,27
0,55 4,1 0,25 3,85 4,35
0,60 4,2 0,23 3,97 4,43
0,65 4,3 0,22 4,08 4,52
0,70 4,4 0,21 4,19 4,61
0,75 4,5 0,20 4,30 4,70
0,80 4,6 0,19 4,41 4,79
0,85 4,7 0,19 4,51 4,89
0,90 4,8 0,19 4,61 4,99
0,95 4,9 0,19 4,71 5,09
1,00 5,0 0,20 4,80 5,20

2,5

3,5

4,5

5,5

0,0 0,2 0,4 0,6 0,8 1,0

mixing line: y = 2·x + 5

Fig. 4: Linear regression of values to obtain a binary mixing line.

Abb. 4: Lineare Regression von Werten, die einer Zweikomponenten-Mischgerade entsprechen.
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The weighted mean of our example yields 2044 � 33 a (to be reported as 2040 � 30 a), 
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laboratories, impure chemical reagents, etc.). Ages above the upper limit of the method are 

given, for example, as >40,000 a. They express the minimum age of a sample or the 

maximum age which can be determined by the method. 
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Calculation of the arithmetic or weighted means � or �w of a set of n ages Ai ± �A i makes 

sense only if the � Ai values were determined for coeval samples and therefore belong to the 

same frequency distribution. To test for this, there are two alternative but equivalent 

mathematical approaches: 

a) The uncertainty ± ���of the ages is calculated using Equation 2 and compared with the 
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ment (Eq. 7). The uncertainty of ages of diffe-
rent precision is obtained (in analogy to Eq. 2) 
as follows:
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w = 
3.2, confirming the three ages do not belong 
to the same frequency distribution and thus a 
mean value would have no validity.
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rates, mathematical function
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e.g., y = f(xi …). Such functions have a depen-
dent variable y and one or more independent 
variables x1, …xi, ….xn. The most simple case 
is calculation of the difference between two 
ages which equals the duration of a process. 
More complicated is, for example, calculation 
of the sedimentation rate for a certain time in-
terval (Eq. 11). If the uncertainties for the inde-
pendent variables σxi are known, the standard 
deviation of the dependent variable σy can be 
calculated using Equation 10. 
The standard deviation σf of the function f(x1, 
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When geological sections are studied, deposi-
tion periods and sedimentation rates r between 
two levels a and b (e.g., at a depth of 100 and 
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years) are of interest. The function is given by:
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95 % (2σ) because a negative age difference is 
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The standard deviation of y is obtained as fol-
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the first two standard deviations differ so much from �Aw that the samples cannot be 

considered to be coeval and the mean should not be calculated. 
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A mean can be calculated only if �2 and �2
w � n-1 for n < 15. For n > 15 the �2 value can be 

taken from any textbook on statistics (e.g., SACHS 1999). Our example yields �2 = 4.4 and �2
w

= 3.2, confirming the three ages do not belong to the same frequency distribution and thus a 

mean value would have no validity. 

6 Error propagation: difference, rates, mathematical function 

There are tasks for which more or less complicated mathematical functions are necessary, 

e.g., y = f(xi �). Such functions have a dependent variable y and one or more independent 

variables x1, �xi, �.xn. The most simple case is calculation of the difference between two 

ages which equals the duration of a process. More complicated is, for example, calculation of 

the sedimentation rate for a certain time interval (Eq. 11). If the uncertainties for the 

independent variables �xi are known, the standard deviation of the dependent variable �y can 

be calculated using Equation 10.

The standard deviation � f  of the function f ( x 1, x2 � xn) is calculated by the law of 

propagation of uncertainty: 
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When geological sections are studied, deposition periods and sedimentation rates r between 

two levels a and b (e.g., at a depth of 100 and 150 cm and ages of 2000 ± 50 and 2200 ± 100 

years) are of interest. The function is given by: 
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When geological sections are studied, deposition periods and sedimentation rates r between 

two levels a and b (e.g., at a depth of 100 and 150 cm and ages of 2000 ± 50 and 2200 ± 100 

years) are of interest. The function is given by: 
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To solve this equation, the difference S  between two ages (A2 � A1 = 2200 ± 100 � 2000 ± 50 

years) has to be calculated. Neglecting the standard deviation, this example yields a difference 

of 200 years and a sedimentation rate of 0.25 cm/a. The standard deviation of a sum S =

x1 + x2 or a difference ��= x2 � x1 is obtained from Equation 12: 
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Our example yields an age difference of 200 ± 112 years. The ���and 2��confidence intervals 

are 88 to 312 and -24 to +424 years, respectively. The sample ages differ by at least 88 a with 

a 68 % probability (1�), but they may be considered as similar with a probability of 95 % 

(2�) because a negative age difference is meaningless. 

Calculation of the deposition rate r involves a division and two subtraction steps. The 

corresponding formula involves both multiplication and division: 
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This corresponding formula for � r  is derived from Equations 10 and 12. Assuming depths a

and b were determined precisely (i.e., �a = �b = 0), the standard deviation of the deposition 

rate r is obtained by combining Equations 12 and 14 as follows: 
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This corresponding formula for σr is derived 
from Equations 10 and 12. Assuming depths a 
and b were determined precisely (i.e., σa = σb 
= 0), the standard deviation of the deposition 
rate r is obtained by combining Equations 12 
and 14 as follows:

According to Equation 15, the standard de-
viation σ r decreases with increasing diffe-
rence between the ages. The example yields 
0.25 ± 0.14 cm/a. The result has 1σ and 2σ 
confidence intervals (i.e., 68 % and 95 % pro-
babilities) of 0.11 to 0.39 cm/a or 0 to 0.53 cm/
a, respectively. Hence, the actual sedimentation 
rate can be smaller or greater than 0.25 cm/a by 
a factor of two.
It is worthwhile to note that the formulas for 
calculating numerical ages usually contain one 
or more physical parameters that are internati-
onally agreed upon – half lives are an example. 
Although they were determined with a finite un-
certainty, these uncertainties are not usually con-
sidered when the law of propagation of uncer-
tainties is applied. Indeed they are not required 
as long as only numerical ages are compared 
with each other. But when the ages relate to the 
absolute time scale, the standard deviation has 
to include the uncertainties of the internationally 
agreed parameters and is usually larger than the 
standard deviation normally reported.

7 Regression analysis and least squares fit 

Regression analyses are applied for prediction, 
testing of hypothesis, and modeling of causal 
relationships. Such analyses are carried out to 
determine correlations in numerical data con-
sisting of values of the dependent variable y 
and the independent variables xi of a function 
with one or more parameters, e.g., a and b in 
Equation (16). These parameters are adjusted 
to give a best fit of the function to the nume-
rical data. This is usually done using the least 
squares method. Either the independent variab-
le or the dependent variable is assumed to be 
a random variable with the uncertainty of the 

measurement. The other variable(s) is assumed 
to be error-free.
The simplest case is a linear function:

Quadratic, exponential and other functions may 
be transformed into a linear function with a cor-
responding recalculation of the measured data.
Both coefficients a and b are obtained by mini-
mizing the sum of the squares of the deviation 
of the values yi from a straight line (the uncer-
tainty in x is assumed to be negligible). The 
equation is obtained by a least-squares fitting 
of a straight line to the data:

The values of the parameters a and b are calcu-
lated as follows:

Thus,

The standard deviations of a and b are given by 
Equation 18 and shown in Fig. 4:
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According to Equation 15, the standard deviation ��r decreases with increasing difference 

between the ages. The example yields 0.25 ± 0.14 cm/a. The result has 1��and 2��confidence

intervals (i.e., 68 % and 95 % probabilities) of 0.11 to 0.39 cm/a or 0 to 0.53 cm/a, 
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Many computer programs include a least-squares algorithm for fitting a straight line to the 

data. Often they can also handle composite curves consisting of the superposition of more 

than one function. A cubic spline can be used to fit a function to a data set. The parameter 

values of the function are individually chosen to obtain an optimum fit of a curve to all values 

or to smooth out irregularities in the curve. 

8 Graphical presentation: normal and dispersion histograms 

Visualization of the frequency distribution of data is often more instructive than a compilation 

of the data in tables. A normal histogram is the most simple way to present ages. The x-axis is 

assigned an age scale; the y-axis represents the frequency. The x-axis is divided into classes 

of an arbitrarily chosen width which depends on the age resolution or the average precision of 

the available values. Each value is represented by a rectangle with a given area and a class 

width as base length. All rectangles are superimposed above the x-axis (Fig. 5a). The 

enveloping curve represents the frequency distribution. 

Ages with a mean sigma of ± 50 years (Eq. 7) may be optimally resolved with a class width of 

50 years as the base length of the rectangle. If a larger class width is chosen, e.g., 200 years, 
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Many computer programs include a least-
squares algorithm for fitting a straight line to 
the data. Often they can also handle composite 
curves consisting of the superposition of more 
than one function. A cubic spline can be used 
to fit a function to a data set. The parameter va-
lues of the function are individually chosen to 
obtain an optimum fit of a curve to all values or 
to smooth out irregularities in the curve.

8 Graphical presentation: normal and 
dispersion histograms

Visualization of the frequency distribution of 
data is often more instructive than a compilati-
on of the data in tables. A normal histogram is 
the most simple way to present ages. The x-axis 
is assigned an age scale; the y-axis represents 
the frequency. The x-axis is divided into classes 
of an arbitrarily chosen width which depends 
on the age resolution or the average precision 

of the available values. Each value is repre-
sented by a rectangle with a given area and a 
class width as base length. All rectangles are 
superimposed above the x-axis (Fig. 5a). The 
enveloping curve represents the frequency 
distribution.
Ages with a mean sigma of ± 50 years (Eq. 7) 
may be optimally resolved with a class width 
of 50 years as the base length of the rectang-
le. If a larger class width is chosen, e.g., 200 
years, the optimum age resolution is lost. The 
advantage of a larger class width is that the 
number of values per class is increased, which 
reduces the random scatter of the frequency 
distribution per class. The uncertainty in a class 
population is approximated by the square root 
of the number of values. For instance, four 
values per class yield ± = ± 2 or ± 50 % 
scatter, for nine dates we obtain ± = ± 3 or 
± 33 %. As a consequence, the data density per 

Fig. 5. a) Construction of a normal histogram of five ages based on rectangles, b) Construction of a dispersion 
histogram of five ages of low (white) and high (gray) precision based on polygons and bell curves, respec-
tively.

Abb. 5. a) Konstruktion eines einfachen Histogramms mit Polygonen für fünf Alter, b) Konstruktion eines 
Dispersionshistogramms mit Polygonen und Glockenkurven für fünf ungenaue (weiß) und genaue (grau) 
Alter.
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class governs the random fluctuation of the fre-
quency distribution. If it is small, only minima 
rather than peaks provide reliable information. 
The random uncertainty of the histogram peaks 
may be larger than the actual fluctuations of the 
frequency of values per class. In contrast, lows 
always represent periods of missing values, 
which is why only they allow an unambiguous 
interpretation of a histogram. They may mirror, 
for example, arid periods without groundwater 
recharge, glacial periods without growth of 
trees, or periods of intensive erosion (see also 
Section 9.1).
A dispersion histogram (GEYH 1969; MICH-
CZYNSKA & PAZDUR 2004) provides an alter-
native visualization of values. A polygon or, 
even better, a bell-shaped curve with an area 
representing one value replaces the rectangle of 
the normal histogram. The width of the area is 
related to the standard deviation. As the area is 
constant, its height is determined by the chosen 
width or standard deviation. Hence, a precise 
value yields a polygon or bell curve with a 
short baseline and large height, while a less 
precise value is represented by a wide baseline 
and low height (Fig. 5b top).
In a dispersion histogram, the precision of 
an age represented by its weighting factor w 
(Eq. 4) is taken into account. Hence, the y-axis 
represents a density probability function with 
the dimension of 1/(time unit)2 rather than the 
class frequency with the dimension 1/(time 
unit) (MICHCZYNSKA & PAZDUR 2004).
There is a special problem with histograms of 
14C ages. The time scale is distorted with re-
spect to the solar or absolute time scale. In cer-
tain time periods, 14C years are systematically 
compressed with respect to the solar time scale, 
in others they are stretched out. This means in 
the case of a uniform frequency distribution of 
samples along the absolute time scale that the 
corresponding 14C histogram may show appa-
rent peaks and lows (GEYH 1980; Fig. 6). In 
contrast to what is expected, the distortion of 
the histogram does not disappear if calibrated 
age intervals are used instead of the 14C ages. 
Modern calibration programs (e.g., Cal 125 
Groningen Radiocarbon Calibration Program) 

allow the automated construction of histo-
grams with the calibrated 14C time scale and 
overcomes the intrinsic problem of calibration 
of single values.

9 Two case studies

Two case studies are presented which may 
demonstrate the value of a correct statistical 
evaluation of ages. It is not the intention of 
this paper to become involved in the geological 
aspects of the cited papers or problems inherent 
in dating methods used. Here, it is mainly con-
sidered whether correct handling of the ages 
gives another numerical result than discussed 
in the papers.
In the first case study, evidence is provided that 
increasing the number of numerical age values 
may not increase the precision of the obtained 
values. In the second case study, it becomes ob-

Fig. 6. The histogram between the absolute ages 
Aabs1 and Aabs2 is uniform whereas the histogram of 
the corresponding 14C dates A1 and A2 is distorted. 
This is the consequence of the wiggles in the 14C ca-
libration curve. Peaks and lows in the 14C histogram 
may be without actual relevance.

Abb. 6. Das Histogramm der gleich häufigen abso-
luten Alter Aabs1 und Aabs2 entspricht einem Recht-
eck und liefert für die entsprechenden 14C-Alter 
ein Polygon. Die Ursache sind die Windungen der 
14C-Kalibrationskurve. Gipfel und Täler im 14C-His-
togramm zwischen den Altern A1 und A2 haben keine 
wirkliche Bedeutung.
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vious that the ages were not correctly evaluated 
in the laboratory and the published standard 
deviations are meaningless.

9.1 The beginning of the Younger 
Dryas in New Zealand

DENTON & HENDY (1994) tried to determine 
the beginning of the Younger Dryas in New 
Zealand, i.e., the age of a single event. They 
collected 25 pieces of wood from short-lived 
trees and covered by Younger Dryas moraines 
of the Franz-Josef Glacier in the Southern Alps 
of New Zealand. The holocellulose extract 
yielded 36 14C ages determined in three labora-
tories (Table 1). It was assumed that all samp-
les were coeval and deposited at the beginning 
of the Younger Dryas.

The weighted mean and its standard deviation 
of the 14C ages is 11,150 ± 14 BP (Eqs. 5 and 6) 
and the weighted mean standard deviation of 
a single 14C age is ± 82 a (Eq. 7). DENTON & 
HENDY (1994) published a mean of 11,170 ± 
14 BP. The difference between these age va-
lues results from the inclusion by the authors 
of a 14C date which they considered to be older 
than the target event of the Younger Dryas. The 
calibrated 14C age interval is 13,020–13,103 BP 
(12,965–13,117 BP for the 2σ interval). The 
authors give the mean 14C age as the date for 
the beginning of the Younger Dryas. The actual 
standard deviation of the weighted mean, ho-
wever, is ± 28 a (Eq. 6) and the actual weighted 
mean standard deviation of the individual ages 
is ± 169 a (Eq. 8). This finding is not compa-
tible with the assumption that the published 14C 
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14C age (BP)
Group I

14C age (BP)
Group II

10,650 ± 100 11,040 ±  90 11,150 ± 160 11,255 ±  95
10,750 ± 100 11,045 ±  85 11,190 ±  60 11,290 ± 150
10,800 ±  90 11,080 ±  60 11,200 ±  50 11,340 ± 110
10,830 ± 110 11,090 ±  70 11,200 ± 120 11,350 ±  90
10,920 ±  90 11,110 ± 110 11,225 ±  60 11,350 ±  60
10,950 ± 100 11,110 ±  90 11,230 ± 130 11,365 ±  60
10,980 ±  90 11,110 ± 130 11,240 ± 100 11,370 ± 190
10,980 ± 100 11,115 ±  90 11,250 ±  70 11,520 ± 170
11,040 ±  70 11,150 ±  60 11,250 ±  50 11,520 ± 140

11,150± 14 BP (± 28 a) χ2 = 148
13,020 – 13,103 BP (12,965 – 13,117 BP)

11,011 ± 20 BP (± 32 a) χ2 = 42
12,899 – 12,945 BP
(12,874 – 12,995 BP)

11,265 ± 19 BP (± 13 a) χ2 =17
13,125 – 13,193 BP
(13,101 – 13,223 BP)

10,862 ± 34 BP (±48 a)
χ2 = 11
12,835 – 12,871 BP
(12,818 – 12,893 BP)

11,097 ± 27 (± 9 a)
χ2 = 2
12,960 – 13,052 BP
(12,930 – 13,086 BP)

Table 1: 14C ages ordered in size from wood samples dating the beginning of the Younger Dryas in New Ze-
aland (DENTON & HENDY 1994). The standard deviation of the mean (Eq. 7) and the calibrated 14C age of the 
2σ confidence interval are given in parentheses.

Tab. 1: Die nach ihrer Größe geordneten 14C-Alter von Holzproben, die den Beginn der Jüngeren Dryas-Zeit 
in Neuseeland datieren sollen. Die Standardabweichung des mittleren Alters (Gleichung 7) und das 2-Sigma-
Konfidenzintervall seines kalibrierten 14C-Alters sind in Klammern angegeben.



ages belong to a single frequency distribution 
and, therefore, to a single event. This is suppor-
ted by the χ2

w value of 148 for the 36 values.
In order to check whether the published 14C 
ages represent more than one frequency distri-
bution, the ages were ordered according to size 
and divided into two groups of 18 values each 
and the first group into two subgroups of nine 
values (Table 1). Only the weighted means of 
the second group and the first subgroup belong 
to a single frequency distribution that repre-
sents coeval samples. The other groups repre-
sent more than one frequency distribution. The 
too low χ2 value for the second subgroup is an 
artifact of the ordering of the 14C ages accor-
ding to size.
The present consensus places the beginning 
of the Younger Dryas between 12,900 and 
12,700 BP on the basis of calibrated 14C ages 
(ALLEY 2000). The calibrated 14C-age range of 
the weighted mean of the published 14C ages 
of 12,965–13,117 BP (2σ confidence interval) 
considerably deviates from that. Only the 
first group and first subgroup with calibra-
ted 14C age ranges of 12,874–12,995 BP and 
12,818–12,893 BP, respectively, agree with 
this consensus. In both cases several 14C ages 
have to be discarded as the χ2 values of 42 and 
11 deviate from the target χ2 values of 17 and 
8, respectively.
For the purpose of this paper, it is not of interest 
to determine the events responsible for this. The 
wood samples may stem from trees in forests 
containing trees of different ages that were bu-
ried at different times by two or three separate 
glacier advances. Other causes are possible. Of 
importance is only that the assumption of the au-
thors the dated samples were coeval is not valid. 
The precision for the beginning of the studied 
event was not narrowed to ± 14 years. The actu-
al precision of the date for the beginning of this 
event is at least twice as large.
The reader may claim that the difference in 
precision between ±14 and ±26 years is small. 
However, one has to realize that as few as nine 
14C ages would have been sufficient to obtain a 
precision of ± 26 years. This means that up to 
75 % of the dating costs could have been saved.

Fig. 7: Normal histogram of 36 14C ages from 25 
wood samples which were assumed to represent the 
beginning of the Younger Dryas in southern New 
Zealand (DENTON & HENDY 1994). The arbitrarily 
chosen class widths of (a) 50, (b) 100 and (c) 200 
years shows the influence on the temporal resoluti-
on and the scatter of the histogram. The optimum 
choice may be 100 years (b), which is close to the 
mean standard deviation of ± 88 years for single 
ages.

Abb. 7: Einfaches Histogramm von 36 14C-Altern, 
die von 25 Holzproben vom südlichen Neuseeland 
bestimmt worden sind. Sie sollen den Beginn der 
Jüngeren Dryas-Zeit festlegen (DENTON & HENDY 
1994). Die willkürlich gewählten Klassenintervalle 
von (a) 50, (b) 100 und (c) 200 Jahren zeigen die 
Auswirkungen auf die altersmäßige Auflösung und 
auf die Unruhe des Verlaufs des Histogramms. Eine 
optimale Wahl scheint 100 Jahre zu sein (b), ein 
Wert, der nahe der mittleren Standardabweichung 
von Einzeldaten von ± 88 Jahren liegt.
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A normal histogram was used for visualization 
of the 14C ages from New Zealand (Fig. 7). As 
there are a large number of determined ages, the 
shape of the normal histogram is very similar to 
that of a dispersion histogram. The effect of the 
choice of the class width is demonstrated using 
50, 100 and 200 years. The histogram with the 
smallest class width (Fig. 7, top) shows a large 
random scatter of up to ± 50 %, which may 
lead to incorrect statements on the temporal 
fluctuation of the sample population. The data 
density per class obviously is too small.
The histogram with a class width of 100 years 
seems to be the optimum solution. The class 
width is within the range of 82 to 169 a for 
the mean standard deviation of the individual 
ages (Eqs. 7 and 8). The asymmetry of the dis-
tribution in the middle histogram suggests the 
superposition of three frequency distributions 
with four outliers between 10,700 and 10,900 
years and two outliers between 11,600–11,700 
years. With the use of the largest class width of 
200 years considerable temporal information is 
lost, but the histogram still clearly shows that 
the samples represented more than two events.

9.2 ESR ages from mollusks

In the majority of all case studies the scatter of 
the data corresponds to that expected from the 
size of the standard deviations or is wider. The-
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re are, however, studies in which the opposite 
case occurs. In these cases, the defined criteria 
of the expression A ± σA are not fulfilled and 
calculations with such dates should be done 
without the described error algorithms.
MOLODKOV and RAUKAS (1987) published ESR 
ages from mollusks collected from an intergla-
cial layer on the coast of Estonia. The results 
are compiled in Table 2.
The actual uncertainty of the ESR ages (Eq. 3 
derived from Eq. 8) is considerably smaller 
than the expected one calculated from the gi-
ven standard deviations (Eq. 6). Consequently, 
χ2

w = 4.0 (Eq. 9), which is also considerably 
smaller than 7 (the number of ages minus 1). 
This result is evidence that the propagation of 
uncertainty of the published ESR ages was not 
done properly. This is a frequent observation in 
published ESR, TL and OSL ages. The standard 
deviations are too large or too small. A discus-
sion of the reasons for this problem would be 
beyond the scope of this article. One of the 
main problems is that the statistical uncertainty 
of several of the parameters involved can only 
be estimated or only minimum and maximum 
values are known for the parameters. In additi-
on, systematic errors are often underestimated. 
In any case, in such cases it is not justified to 
use weighting factors in the statistical handling 
of the numerical ages determined with these 
methods.

No ESR age (ka) standard deviation (ka) χ2 value
1
2
3
4
5
6
7
8

95±5
90±8
92±7
92±6
92±9
90±8
82±6
81±9

± 3.2
± 2.5
± 2.1
± 2.0
± 2.0
± 4.7
± 5.2

0.0
0.3
0.0
0.0
0.0
0.1
2.5
1.1

mean 89.9 ± 2.4 (Eqs. 5 and 6)
± 6.8 (Eq. 7)

88.6 ± 1.8 (Eqs. 3 and 8)
± 5.2 (Eq. 8)

χ2  =  4.0 target 
~ 7

Table 2: ESR ages (ka) of interglacial mollusks from Estonia (MOLODKOV & RAUKAS 1987).

Tab. 2: ESR-Alter (ka) interglazialer Mollusken von Estland (MOLODKOV & RAUKAS 1987).



10 Conclusion

It is demonstrated that the handling of nume-
rical ages with their random uncertainties re-
quires at least a minimum knowledge of simple 
statistical methods, especially the algorithms 
used to determine the propagation of uncer-
tainty. A careless or unqualified use of such 
dates bears the risk of misleading geoscientific 
conclusions.
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