M^{3+} (H₂AsO₄)₃·5H₂O (M = In, Ga), TWO SYNTHETIC ANALOGUES OF THE IRON HYDROGENARSENATE MINERAL KAATIALAITE

Schwendtner, K.¹ & Kolitsch, U.^{2,3}

¹Institute for Chemical Technology and Analytics, Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Wien, Austria

²Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Burgring 7, 1010 Wien, Austria ³Institut f
ür Mineralogie und Kristallographie, Universit
ät Wien, Althanstra
ße 14, 1090 Wien, Austria karolina.schwendtner@tuwien.ac.at

Kaatialaite, $Fe^{3+}(H_2AsO_4)_{3}$. 5H₂O (RAADE et al., 1984), is a rare iron hydrogenarsenate mineral that typically occurs as a supergene phase at very low pH. Its crystal structure is known from a synthetic analogue (BOUDJADA & GUITEL, 1981), although it appears that the water content of the natural material is variable, with 3-5 H₂O per formula unit (RAADE et al., 1984).

The Ga- and In-analogues of kaatialaite are, similar to kaatialaite itself, secondary phases grown in a highly acidic environment. They were encountered during a reinvestigation of the primary reaction products, stored in plastic boxes in air, of hydrothermal syntheses conducted about 11 years ago during an extensive study of the system $M^{1+}-M^{3+}$ -As-O-H (SCHWENDTNER, 2008).

Previously unknown $In(H_2AsO_4)_3 \cdot 5H_2O$ grew as tiny subparallel acicular crystals in small droplets of a very acidic solution formed from hygroscopic acid arsenates (syntheses in systems M^+ -In-As-O-H). The compound was characterised by a structure refinement ($R \sim$ 5.8%) from single-crystal XRD data (MoK α ; 293 K). Since the crystal was gradually decomposing during the measurement, until it was completely X-ray amorphous (probably due to dehydration), additional low-temperature measurements will be conducted.

 $Ga(H_2AsO_4)_3 \sim 5H_2O$ is a fine-grained decomposition product of synthesised Tl₃Ga₂-(HAs₂O₇)₃·*n*H₂O and formed after immersion and grinding of the latter compound in aceton for several minutes. Comparison of the powder XRD pattern gave a good fit for "Ga(H₂AsO₄)₃·5H₂O" ("blank" ICDD-PDF file; RONIS et al., 1972). Using the model of BOUDJADA & GUITEL (1981) as a starting point, a Rietveld refinement led to $R_{wp} = 10\%$.

Most hydrogen bonds in both In- and Ga-analogues appear to be split, in view of multiple possible acceptor atoms (O...O < 3.0 Å). Unit-cell parameters of all compounds are compared in the table below [¹RAADE et al (1984) for synthetic material, refined from powder XRD data; ²BOUDJADA & GUITEL (1981), single-crystal structure determination].

Compound	SG	a [Å]	<i>b</i> [Å]	<i>c</i> [Å]	β[°]	V[Å ³]
$Fe(H_2AsO_4)_3 \cdot 5H_2O^1$	$P2_1$ or	15.363(5)	19.844(5)	4.736(2)	91.77(3)	1443.2(9)
	$P2_{1}/m$					
$Fe(H_2AsO_4)_3 \cdot 5H_2O^2$	$P2_{1}/n$	15.25(3)	19.60(5)	4.72(5)	91.8(8)	1410.1(1)
In(H ₂ AsO ₄) ₃ ·5H ₂ O	$P2_{1}/n$	15.514(3)	19.901(4)	4.890(1)	91.51(3)	1509.2(5)
Ga(H ₂ AsO ₄) ₃ ·~5H ₂ O	$P2_{1}/n$	15.3206(8)	19.7843(1)	4.6850(3)	91.956(4)	1419.3(1)

BOUDJADA, A., GUITEL, J.C. (1981): Acta Crystallogr., B37, 1402-1405. RAADE, G., MLADECK, M.H., KRISTIANSEN, R., DIN, V.K. (1984): Am Mineral., 69, 383-387. RONIS, M., F. D'YVOIRE, F., H. GUERIN, H. (1972): Bull. Soc. Chim. Fr., 1972, 2575-2580. SCHWENDTNER, K. (2008): PhD thesis, University of Vienna, Austria.