PETROLOGY AND GEOCHEMISTRY OF APATITE ± WHITLOCKITE-BEARING MANTLE XENOLITHS FROM SOUTHERN LAOS

Konzett, J.¹, Hauzenberger, C.A.², Gröbner, K.¹, Sieberer, A.-K.¹, Hoang, N.³ & Khoi, N.N.⁴

¹Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria ²Institute of Earth Sciences, Karl-Franzens-University Graz, Universitätplatz 2, 8010, Graz, Austria

³Institute of Geological Sciences, Vietnam Academy of Science & Technology, 84 Chua Lang, Dong Da, Hanoi, Vietnam

⁴Deptartment of Geology, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam juergen.konzett@uibk.ac.at

Cenozoic basalts are widespread throughout Southeast Asia and form what is called a "diffuse igneous province (HOANG et al., 2013) mostly consisting of shield-building tholeiites that may be replaced by late-stage and small-volume alkali basalts, the latter often containing mantle xenoliths together with sapphire and/or zircon megacrysts. Here we report the results of a petrological and geochemical study of a suite of spinel-lherzolites and ortho/clinopyroxenites sampled by nepheline±leucite-bearing alkali basalts of the Bolaven Plateau/southern Laos. Both lherzolites (ol+opx+cpx+sp+FeNi-sulfide) and pyroxenites (opx+cpx+FeNi-sulfide) in part show evidence for cryptic or modal metasomatism characterized by a strong enrichment of Li in cpx and opx with respect to ol (cryptic) and by the appearance of apatite rarely associated with minor phlogopite \pm calcic amphibole. Two compositional types of apatite are present: (1) apatite characterized by low P₂O₅ (37.9-41.0 wt%) and low analytical totals (93.8-97.4 wt%) combined with high Na₂O (0.9-1.6 wt%) indicative of a significant type-A carbonate-apatite component and (2) apatite with high P_{2O5} (40.5-42.4 wt%) and high analytical totals (97.7-100.9 wt%) combined with low Na₂O (0.3-0.7 wt%). In addition low-P₂O₅ apatites show a much more restricted range in F and Cl (0.2-0.9 wt% F, 0.6-1.6 wt% Cl) compared to high-P₂O₅ apatites (0.3-3.1 wt% F, 0.3-4.1 wt% Cl). One apatite-bearing sp-lherzolite sample contains trace amounts of whitlockite-merrillite solid solution [Ca18Mg2(PO4)12[PO3(OH)]2-Ca18Na2Mg2(PO4)14] (HUGHES et al., 2008) in addition to apatite + phlogopite + calcic amphibole. Whitlockite-merrillite is extremely rare in mantle rocks and has been known so far from only one locality in Siberia where its formation was ascribed to a distinct type of ±anhydrous REE-metasomatism (IONOV et al., 2006). In the sample from Laos, whitlockite-merrillite is always intergrown with apatite and was unambiguously identified using EMPA and micro-Raman spectroscopy. It contains 3.5-3.9 wt% MgO and 2.4-3.1 wt% Na₂O, respectively, which is very similar to values reported by IONOV et al., 2006. Thermometry of the apatite-(whitlockite-merrillite)-sample yields ~900-950°C for a pressure of 1.5 GPa.

HOANG, N., FLOWER, M.F.J., CHI, C.T., XUAN, P.T., QUY, H.V., SON, T.T. (2013): J. Geodyn. 69, 65-83.
HUGHES, J.M., JOLLIFF, B.L., RAKOVAN, J. (2008): Am. Min. 93, 1300-1305.
IONOV, D.A., HOFMAN, A.W., MERLET, C., GURENKO, A.A., HELLEBRAND, E., MONTAGNAC, G., GILLET, P., PRIKHODKO, V.S. (2006): Earth. Planet. Sci. Lett. 244, 201-217.

55