The Cryosphere, 9, 81–81, 2015 www.the-cryosphere.net/9/81/2015/ doi:10.5194/tc-9-81-2015 © Author(s) 2015. CC Attribution 3.0 License.

Corrigendum to "Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness" published in The Cryosphere, 8, 1839–1854, 2014

J. Stroeve¹, A. Barrett¹, M. Serreze¹, and A. Schweiger²

¹National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

²Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA

Correspondence to: J. Stroeve (stroeve@nsidc.org)

In this article, unfortunately the incorrect version of Fig. 6 was published on page 1849.

Please find the correct version of the figure below.

Figure 6. Mean annual sea level pressure and geostrophic wind from 27 CMIP5 models and from ERA-Interim spanning 1981–2010. Contour interval is 1 hPa. Near-surface geostrophic wind is used as a proxy for sea ice motion and is shown by red vectors. Vector length is proportional to wind speed. Vectors are curved tangents to the instantaneous flow.