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Abstract. There is a large amount of organic carbon stored in

permafrost in the northern high latitudes, which may become

vulnerable to microbial decomposition under future climate

warming. In order to estimate this potential carbon–climate

feedback it is necessary to correctly simulate the physical

dynamics of permafrost within global Earth system models

(ESMs) and to determine the rate at which it will thaw.

Additional new processes within JULES, the land-surface

scheme of the UK ESM (UKESM), include a representa-

tion of organic soils, moss and bedrock and a modification

to the snow scheme; the sensitivity of permafrost to these

new developments is investigated in this study. The impact

of a higher vertical soil resolution and deeper soil column is

also considered.

Evaluation against a large group of sites shows the annual

cycle of soil temperatures is approximately 25 % too large in

the standard JULES version, but this error is corrected by the

model improvements, in particular by deeper soil, organic

soils, moss and the modified snow scheme. A comparison

with active layer monitoring sites shows that the active layer

is on average just over 1 m too deep in the standard model

version, and this bias is reduced by 70 cm in the improved

version. Increasing the soil vertical resolution allows the full

range of active layer depths to be simulated; by contrast, with

a poorly resolved soil at least 50 % of the permafrost area

has a maximum thaw depth at the centre of the bottom soil

layer. Thus all the model modifications are seen to improve

the permafrost simulations.

Historical permafrost area corresponds fairly well to ob-

servations in all simulations, covering an area between 14

and 19 millionkm2. Simulations under two future climate

scenarios show a reduced sensitivity of permafrost degra-

dation to temperature, with the near-surface permafrost loss

per degree of warming reduced from 1.5 millionkm2 ◦C−1

in the standard version of JULES to between 1.1 and

1.2 millionkm2 ◦C−1 in the new model version. However,

the near-surface permafrost area is still projected to approxi-

mately half by the end of the 21st century under the RCP8.5

scenario.

1 Introduction

The impacts of climate change in the Arctic have been much

studied in recent years. Dramatic reduction in sea-ice area

has been observed over the past few decades (Comiso, 2012;

Stroeve et al., 2012). The observed impacts of warming at

the land surface include glacier retreat and permafrost thaw

(WGMS, 2008; Romanovsky et al., 2010; Camill, 2005).

Both in models and observations, warming is amplified in

the polar region – surface air temperature warming of up to
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1.35 ◦Cdecade−1 is observed in recent years, with large po-

tential impacts (Bekryaev et al., 2010; Stocker et al., 2013).

Permafrost is of interest not only because of the physi-

cal effects of permafrost thaw, but because it contains large

quantities of stored organic carbon, approximately 1300–

1370 Pg (Hugelius et al., 2014), which may be released to

the atmosphere in a warming climate. This could have a sig-

nificant climate feedback effect, which needs to be included

in global Earth system models (ESMs) in order to account

for the full carbon budget in the future (Koven et al., 2011;

MacDougall et al., 2012; Burke et al., 2012; Schneider von

Deimling et al., 2012, 2014).

In order to simulate permafrost carbon feedbacks, the

land-surface components of ESMs should include both an

appropriate carbon cycle and a representation of the physi-

cal dynamics. The amount of carbon released from the soil is

strongly dependent on the physical state of the ground – the

temperature of the permafrost and the rate at which it thaws

(Schuur et al., 2009; Gouttevin et al., 2012b). It is therefore

important that the physical dynamics of permafrost are ad-

dressed and thoroughly evaluated in models before carbon

cycle processes are considered.

There were major problems with the permafrost represen-

tation in the majority of the CMIP5 global climate model

simulations (Koven et al., 2012). In many cases, permafrost

processes were not represented, and the frozen land area in

many of the climate model simulations differed drastically

from the observations. Koven et al. (2012) show that there is

little difference in the 0◦ air temperature isotherm between

models, suggesting that the differences are mainly caused by

the land-surface dynamics rather than by the driving climate.

Several land-surface schemes have since been modified to

better represent processes that are important for permafrost,

for example by including soil freezing, soil organic matter

and improving the representation of snow (Beringer et al.,

2001; Lawrence and Slater, 2008; Gouttevin et al., 2012a;

Ekici et al., 2014; Paquin and Sushama, 2014).

This paper demonstrates the impact of adding new

permafrost-related processes into JULES (Joint UK Land

Environment Simulator; Best et al., 2011; Clark et al., 2011),

the land-surface scheme used in the UK Earth system model

(UKESM). Although the scarcity and uncertainty of global

data on permafrost limit the detail with which it can be rep-

resented in a large-scale model like JULES, it is possible to

capture the broad spatial patterns of permafrost and active

layer thickness (ALT) and to realistically simulate present-

day conditions. Chadburn et al. (2015) describe in detail

the relevant developments within JULES. These include the

effects of organic matter, moss, a deeper soil column and

a modification to the snow scheme. Chadburn et al. (2015)

also show how these developments impact model simulations

at a high Arctic tundra site. This paper now applies them

to large-scale simulations, showing that they improve the

model performance on a large scale, and significantly impact

the simulation of permafrost under future climate scenarios.

These developments result in a more appropriate represen-

tation of the physical state of the permafrost – a necessary

precursor to considering the permafrost carbon feedback.

2 Methods

2.1 Standard model description

JULES is the stand-alone version of the land-surface scheme

in the Hadley Centre climate models (Best et al., 2011; Clark

et al., 2011) and was originally based on the Met Office Sur-

face Exchange Scheme (MOSES) (Cox et al., 1999; Essery

et al., 2003). It combines a complex energy and water balance

model with a dynamic vegetation model. JULES is a com-

munity model and is publically available from http://www.

jchmr.org/jules. The work discussed here uses a JULES ver-

sion 3.4.1 augmented with improved physical processes.

JULES represents the physical, biophysical and biochemi-

cal processes that control the exchange of radiation, heat, wa-

ter and carbon between the land surface and the atmosphere.

It can be applied at a point or over a grid and requires tem-

porally continuous atmospheric forcing data at frequencies

of 3 h or greater. Each grid box can contain several different

land covers or “tiles”, including a number of different plant

functional types as well as non-vegetated tiles (urban, water,

ice and bare soil). Each tile has its own surface energy bal-

ance, but the soil underneath is treated as a single column and

receives aggregated fluxes from the surface tiles.

Recently a multilayer snow scheme has been adopted in

JULES (described in Best et al., 2011) in which the num-

ber of snow layers varies according to the depth of the snow

pack. Each snow layer has a prognostic temperature, density,

grain size and solid and liquid water content. This scheme

significantly improves simulations of winter soil tempera-

tures in the northern high latitudes (Burke et al., 2013). In

the old zero-layer snow scheme, the insulation from snow

was incorporated into the top layer of the soil. This scheme

is currently still used when the snow depth is below 10 cm.

Snow in the zero-layer scheme has a constant thermal con-

ductivity that is added in series to the conductivity of the top

layer of soil. In the multilayer snow model, thermal conduc-

tivity is parametrised as a function of snow density. Snow

albedo is parametrised as a function of snow grain size (Best

et al., 2011).

The subsurface temperatures are modelled via a discreti-

sation of both heat diffusion and heat advection by moisture

fluxes. The soil thermal characteristics depend on the mois-

ture content, as does the latent heat of freezing and thawing.

A zero-heat-flux condition is applied at the lower boundary.

The soil hydrology is based on a finite difference approxi-

mation to the Richards’ equation (Richards, 1931), using the

same vertical discretisation as the soil thermodynamics (Cox

et al., 1999). JULES uses the Brooks and Corey (1964) rela-

tions to describe the soil water retention curve and calculate
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hydraulic conductivity and soil water suction. The soil hy-

draulic parameters are calculated according to Cosby et al.

(1984). The default vertical discretisation is a 3 m column

modelled as four layers, with thicknesses of 0.1, 0.25, 0.65

and 2 m.

The land-surface hydrology (LSH) scheme simulates

a deep water store at the base of the soil column and allows

subsurface flow from this layer and any other layers below

the water table. Topographic index data are used to gener-

ate the wetland fraction and saturation excess runoff (Gedney

and Cox, 2003).

2.2 Recent model developments

Recent developments of permafrost-related processes in

JULES are described fully in Chadburn et al. (2015). This

development work builds on previous studies of these pro-

cesses in land-surface models (for example Beringer et al.,

2001; Lawrence et al., 2008; Dankers et al., 2011; Paquin

and Sushama, 2014). The implementation of these processes

within JULES is briefly highlighted below.

2.2.1 Extended soil depth and resolution

Firstly, the number and resolution of the soil layers were in-

creased, a functionality already available in JULES. The soil

column was extended from 3 to 10 m, with 14 layers in the

top 3 m and a further 14 layers in the lower 7 m, giving 28

layers in total. This is a high number compared with other

models, since it was our intention to simulate a well-resolved

soil (for example the maximum for the CMIP5 models is 23

layers for a 10 m soil column in GFDL-ESM2M). To make

sure that all of the freeze-thaw dynamics would be captured,

10 m was chosen as a large value.

Secondly, a subroutine was added to represent bedrock.

When this process is switched on in JULES, the bottom

boundary of the ordinary soil column is joined on to a fur-

ther column in which only thermal diffusion occurs. The heat

flux across the bottom boundary of the ordinary soil column

is now no longer 0, and the bedrock temperatures are mod-

elled via a discretised heat diffusion equation. The purpose

of this is partly to make a deeper soil column more compu-

tationally tractable, as hydrology and freeze–thaw dynamics

form a large part of the computational load and these pro-

cesses do not take place in the bedrock layers.

The number and thickness of bedrock layers are set by the

user when running the model. In this study, the bedrock col-

umn was run with 100 layers of 0.5 m each, making a 50 m

column, thus bringing the total soil column up to 60 m. There

is a zero-heat-flux condition at the base of the bedrock col-

umn, which in future could be changed to a geothermal heat

flux.

In fact, soil is often shallower than 10 m and the bedrock

should start at varying depths depending on the spatial loca-

tion, but initial tests showed that starting the bedrock at 3 m

instead of 10 m made a very small difference compared with

the impact of including a deep heat sink or not, and the same

has been shown in other models, such as in Lawrence et al.

(2008).

2.2.2 Organic soil parametrisation

The model uses an improved implementation of the organic

soil properties that were first introduced by Dankers et al.

(2011). A vertical profile of soil carbon is prescribed for each

grid cell (see Eq. 1) and the soil properties are calculated

accordingly for each model level.

For some of the properties the organic fraction was used

to provide a linear weighting of organic and mineral charac-

teristics (as in Dankers et al., 2011). However, the saturated

hydraulic conductivity, dry thermal conductivity and satu-

rated soil water suction were calculated using an appropriate

non-linear aggregation. As a result, the organic components

of the dry thermal conductivity and saturated water suction

have a larger effect than if they were calculated via a linear

weighted average.

The Dharssi et al. (2009) parametrisation of soil thermal

conductivity was extended to take account of organic soils

using a modified relationship between saturated and dry ther-

mal conductivity.

2.2.3 Moss layer at surface

In order to include the insulating effects of mosses, the ther-

mal conductivity of the top soil layer was modified to account

for their presence. The thermal parameters for the moss layer

are based on Soudzilovskaia et al. (2013). These are also con-

sistent with purely organic soils. It is assumed that the water

potential in the moss layer is in equilibrium with that of the

top soil layer. At present, hydrological processes within the

moss are not explicitly represented in JULES.

2.2.4 Change to snow scheme

In the original multilayer snow scheme, numerical stability

requires that the layered snow is only used when the snow

depth is 10 cm or greater, and the old zero-layer snow scheme

is used for shallower snow. The modification introduced in

Chadburn et al. (2015) allows the multilayer snow scheme to

run with arbitrarily thin layers, thus removing the zero-layer

snow scheme from the model altogether.

In the zero-layer snow scheme the heat capacity of snow is

neglected and melt water is passed directly to the soil model

to be partitioned into infiltration and runoff. In the multilayer

snow scheme the snow is treated as a separate layer with its

own heat capacity, and a fraction of the mass in a snow layer

can be retained as liquid water instead of passing straight into

the soil model. This water will freeze if the layer temperature

falls below 0 ◦C. Thus the snow mass will be slightly dif-

ferent in the multilayer scheme, and in general the model’s

behaviour is more realistic.

www.the-cryosphere.net/9/1505/2015/ The Cryosphere, 9, 1505–1521, 2015
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2.3 Applying model developments on a global scale

The following sections describe how the spatial distribution

of organic matter and moss was determined for a large-scale

simulation. The depth of the soil column was fixed across

the globe, although there is scope for further improvement to

this, for example using a spatially variable depth from soil-

surface to bedrock, as in recent work by Paquin and Sushama

(2014).

2.3.1 Global organic matter distribution

The organic fractions were calculated from a combination of

the Northern Circumpolar Soil Carbon Database (NCSCD)

(Hugelius et al., 2013) where available and the Harmonized

World Soil Database (HWSD) (FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2012) for the rest of the land surface. These

databases include some rather limited information about the

vertical distribution of soil carbon. Using this, an approxi-

mate vertical profile of soil carbon was prescribed for each

grid cell (see Eq. 1) and the soil properties calculated ac-

cordingly for each model level.

Organic carbon quantities can be obtained from both the

NCSCD and HWSD data sets for the top 30 cm (C30) and

top 1 m (C100). The profile of soil carbon was assumed to be

a constant plus an exponential term. The total for the top 1 m

adds up to the observed amount.

C(z)=
C100−C30

0.7
+

(
C30

0.3
−

C100−C30

0.7

)
exp

(
−

z

0.3

)
, (1)

when z < 3 m, and C(z)= 0 otherwise.

This form of the profile is based on the generic profiles in

(Harden et al., 2012) (Fig. 2). It assumes that an exponential

distribution of carbon is appropriate and that there is no car-

bon below 3 m. In reality some carbon will be found below

3 m, but it is not likely to have a great impact on the soil prop-

erties, which are somewhat uncertain anyway for the deeper

ground. Figure 1 shows profiles generated using this method

for a warm soil grid cell and a high-latitude grid cell.

2.3.2 Dynamic moss

There are no data sets showing the pan-Arctic distribution of

mosses. In addition in a changing climate the distribution of

moss may also change. Therefore, moss was implemented in

JULES so that it can be run either with a static map that is in-

put at the start of the run or with dynamic growth determined

by environmental conditions in the model.

In order to determine the presence of moss in any grid cell,

the model takes account of the local temperature, moisture,

light, snow cover and, in some cases, wind speed (see Ta-

ble 1). The moss cover is then determined by a “health” vari-

able, whose value is updated once a day depending on the

conditions over the past 24 h. Good conditions add to health

and bad conditions subtract from it. It is contrained within

Figure 1. Soil carbon profiles generated using Eq. (1). Left:

119.75◦ E, 72.25◦ N; a grid cell with high soil carbon (Siberia).

Right:−70.25◦ E, 4.25◦ N; a warm location with most of the carbon

near the surface (South America).

bounds that result in maximum health within a year given

optimum growing conditions. The conditions for good and

poor growth are given in Table 1. The water suction is taken

as the minimum of water suctions in the top soil layer and the

atmosphere, the temperature, Ts, is that of the top soil layer,

and the light is the radiation at the bottom of the canopy.

These values are chosen for being closest to the soil surface

where moss is located.

The temperature, moisture and light ranges for good

growth are based on the values in Proctor (1982). The light

saturation and compensation curves (Lsat and Lcomp respec-

tively) were estimated from Proctor (1982) and are given by

Lsat = 19+ exp(0.161Ts), (2)

Lcomp = 0.1exp(−0.5Ts)+ 0.4exp(0.13Ts), (3)

where light compensation is the level at which photosynthe-

sis balances respiration, and light saturation is the level at

which photosynthesis is no longer light limited (increasing

radiation levels no longer increase the rate of photosynthe-

sis).

The heat and moisture conditions that cause the moss to

die off are also taken from Proctor (1982). As well as dying

in very hot or dry conditions, moss can suffer badly from

wind damage when it is frozen (Longton, 1982). Thus the

model includes a third scenario in which moss dies off: when

it is cold, windy and there is no protective snow cover.

Snow protects moss from harsh conditions in winter, but of

course it cannot actually grow under deep snow, so a small

value is subtracted from the health under deep snow. The

same occurs when it is too dark or too cold for photosynthesis

to take place. Moss growth has been observed up to 2 weeks

before the end of snowmelt (Collins and Callaghan, 1980),

so the threshold value for growth under snow was assumed

The Cryosphere, 9, 1505–1521, 2015 www.the-cryosphere.net/9/1505/2015/
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Table 1. Conditions for moss growth and dieback. For light saturation and compensation curves (Lsat and Lcomp) see Eqs. (2) and (3).

Health Water suction Temperature Light Snow mass Wind speed

+3 < 200 m 0 < Ts < 27.5 ◦C > Lsat < 5 kgm−2 –

−3 > 1000 m – – – –

−3 – > 35 ◦C – – –

−3 – <−5 ◦C – < 0.1 kgm−2 > 12 ms−1

−1 < 1000 m < 35 ◦C – > 40 kgm−2 –

−1 < 1000 m < 35 ◦C < Lcomp –∗ –∗

−1 < 1000 m <−5 ◦C – –∗ –∗

+1 None of the above.

∗ Must not simultaneously satisfy snow mass < 0.1 kg m−2, wind speed > 12 m s−1 and temperature <−5 ◦C.

based on snow mass values in JULES 2 weeks before the

end of snowmelt. The magnitude of the values added to and

subtracted from the health variable were calibrated at several

sites where the moss cover was known.

When the moss health is positive, it is taken to have max-

imum cover in the grid cell. When the health becomes neg-

ative, the percentage cover drops off linearly to 0, and the

cover is 0 for the lowest quartile of health values. If there

is other vegetation present, the fractional cover of moss is

capped at 0.7 for those vegetation tiles. This value was prag-

matically chosen given that moss can have around 50–100 %

cover in forests (Beringer et al., 2001). Moss cover is as-

sumed to be 0 for the urban or ice fraction of a grid box.

The relationship of moss health to moss cover would benefit

from further calibration.

Figure 2 shows a moss distribution simulated by JULES

in the northern high latitudes and compares it with data from

the Euskirchen et al. (2007) land-cover map. In general the

most densely moss-covered areas correspond to the tundra

land-cover classes, which are shown in bright green. Our

scheme gives some general representation of this low veg-

etation cover, which is otherwise missing in JULES. Moss

also grows in the boreal forest (shown in purple on the Eu-

skirchen map), but in JULES it does not grow in the decidu-

ous needleleaf zone, which may require some investigation.

Evaluating the distribution in lower latitudes is a subject for

future work.

2.4 Data sets for model forcing and evaluation

2.4.1 Historical meteorological forcing data

The Water and Global Change (WATCH) project produced

a meteorological forcing data set (WATCH Forcing Data Era-

Interim, WFDEI) for use with land-surface and hydrologi-

cal models (Weedon et al., 2010, 2011; Weedon, 2013). It is

based on Era-Interim reanalysis data (ECMWF, 2009), with

corrections generated from Climate Research Unit (Mitchell

and Jones, 2005) and Global Precipitation Climatology Cen-

tre data (http://gpcc.dwd.de). It covers the time period 1979–

2012 at half-degree resolution globally and at 3 hourly tem-

Figure 2. Upper plot: land-cover map using data from Euskirchen

et al. (2007). “Shrub tundra” includes prostrate, dwarf shrub and

low shrub tundra, and “boreal forest” includes boreal evergreen

needleleaf and boreal broadleaf deciduous. Lower plot: mean moss

cover simulated in JULES for the year 2000, from orgmossD his-

torical simulation (see Table 2).

Table 2. List of JULES simulations carried out.

Simulation Soil Soil Bedrock Moss Organic Modified

layers depth soils snow

min4l 4 3 m N N N N

min14l 14 3 m N N N N

minD 28 10 m 50 m N N N

minmossD 28 10 m 50 m Y N N

orgD 28 10 m 50 m N Y N

orgmossD 28 10 m 50 m Y Y N

orgmossDS 28 10 m 50 m Y Y Y

poral resolution. Rainfall and snowfall are provided as sepa-

rate variables.

2.4.2 Future meteorological forcing data

Meteorological forcing for the years 2006–2100 was created

by adding modelled future climate anomalies to the histori-

cal meteorological forcing. The monthly climate anomalies

are from version 4 of the Community Climate System Model

(CCSM4) and available at a resolution of 0.9 ◦latitude×

1.25 ◦longitude. These were provided for the permafrost car-

bon model intercomparison project (MIP) (for more infor-

mation see http://www.permafrostcarbon.org/, D. Lawrence,

personal communication, 2013). Seven variables are pro-

www.the-cryosphere.net/9/1505/2015/ The Cryosphere, 9, 1505–1521, 2015
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Figure 3. CCSM4 anomalies for air temperature and precipitation.

Values given are the areal mean for the region north of 25◦ latitude

(the same region as the JULES simulations).

vided, including a combined precipitation variable rather

than separate rain and snow, for two future scenarios –

RCP4.5 and RCP8.5. As described in the protocol for the

permafrost carbon MIP, these anomalies are combined with

historical data either by addition (temperature, pressure, hu-

midity, wind speed) or multiplication (short-wave and long-

wave radiation, precipitation). The anomalies for air temper-

ature and precipitation are shown in Fig. 3. There is not a

large trend in precipitation, although in RCP8.5 there is a

small increase, along with an increase in variability. Air tem-

perature, however, shows a clear increase by the end of the

century, up to 10 ◦C in RCP8.5. The change in air tempera-

ture is much larger in winter than in summer.

For the simulations discussed in this paper, the anomalies

were re-gridded to 0.5◦ resolution and applied to a repeating

sequence of 8 years of WFDEI reanalysis data (1998–2005).

Using anomalies rather than directly using climate model

data makes the climate variability in the future simulations

more consistent with the historical data. The main disadvan-

tage is that small-scale features are not captured, since sub-

monthly variability comes from the base data set (Hempel

et al., 2013).

2.4.3 CALM Network

The Circumpolar Active Layer Monitoring Network

(CALM) (Brown et al., 2000, 2003) is a network of

over 100 sites at which on-going measurements of the

end-of-season thaw depth (the ALT) are taken. Mea-

surements are available from the early 1990s, when

the network was formed. The data are available from

http://www.gwu.edu/~calm/data/north.html.

2.4.4 Historical soil temperatures

The Russian historical soil temperature data set is described

in Frauenfeld et al. (2004). Soil temperatures were measured

at 242 stations, over different time periods starting as early

as 1890. The measurements used in this paper were taken

at depths of 0.2, 0.4, 0.8, 1.6 and 3.2 m using extraction

thermometers, with additional measurements at 0.6, 1.2 and

2.4 m. At some of the sites the natural vegetation cover was

removed and at others there is some possibility of site dis-

turbance, however the majority of these measurement sites

retained their natural vegetation and snow cover.

International Polar Year Thermal State of Permafrost (IPY-

TSP) borehole inventory data were compiled in 2007–2009

from both new and existing boreholes, achieving a wide spa-

tial coverage of soil temperature data (Romanovsky, 2010).

Data are available in the most part from 2006 to 2009 at

a daily resolution, with temperatures measured at a variety

of depths.

2.4.5 Globsnow

The European Space Agency snow water equivalent (SWE)

product, GlobSnow (Takala et al., 2011) covers the years

1978–2010 and is available on an EASE-Grid at 25 km

resolution. GlobSnow is produced using a combination

of satellite-based microwave radiometer and ground-based

weather station data. The GlobSnow documentation (Luojus

et al., 2013) records an exponentially increasing bias with

larger snow mass, which is particularly significant at snow

mass greater than 200 kgm−2.

2.4.6 Permafrost distribution data

The Circum-Arctic map of permafrost and ground-ice condi-

tions (Brown et al., 1998) gives a historical permafrost dis-

tribution, which can be compared with permafrost area in

the model. The data set contains information on the distri-

bution and properties of permafrost and ground ice in the

Northern Hemisphere (20–90◦ N), with gridded data avail-

able at 12.5, 25 km and 0.5◦ resolution. It records continuous,

discontinuous, sporadic and isolated permafrost regions, for

which the estimated permafrost area is 90–100, 50–90, 10–

50 and < 10 % respectively. In this work, an estimate of the

observed permafrost area is used to compare with the sim-

ulated area. For the maximum we assume that permafrost
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would be simulated in the whole of the continuous and dis-

continuous area, plus a fraction of permafrost in the areas of

sporadic permafrost and isolated patches – the fractions be-

ing 0.05 and 0.3 respectively. For the minimum we assume

that no permafrost would be found in the sporadic and iso-

lated regions and that in the continuous and discontinuous

zones only a fractional coverage of permafrost is found: 0.95

and 0.7 respectively for the two zones. This gives a maximum

area of 17.0 million km2 and a minimum of 13.7 millionkm2.

It is important to note that there is considerable uncertainty in

these data which means that the true value could fall outside

of this estimate.

2.5 Simulation set-up

For the historical period, JULES was driven by the WFDEI

reanalysis data at a resolution of 0.5◦ (Sect. 2.4.1). JULES

was driven by precipitation (sum of rain and snow in

WFDEI), which was converted internally within the model

to rain and snow. This maintains consistency with the future

driving data. The model was spun up for 60 years by repeat-

ing the first 10 years of driving data (1979–1988) and then

run over the period 1979–2009 for the historical runs. Af-

ter spin-up, the soil temperature and moisture contents were

fully stabilised at the vast majority of points, i.e. there was

no residual model drift. The future runs began at the start of

2006, taking their initial state from 2006 in the historical sim-

ulations and simulating both RCP4.5 and RCP8.5 scenarios

until 2100.

In order to capture all the main permafrost regions in the

Northern Hemisphere, the simulations were run for the re-

gion north of 25◦. The mineral soil properties, land-cover

fractions and topographic index data (needed for LSH, see

Sect. 2.1) were taken from HadGEM2-ES ancillary data

(Collins et al., 2008). Organic soil ancillaries were generated

using the method described in Chadburn et al. (2015), with

the spatial distribution as described in Sect. 2.3.1.

The simulations carried out are given in Table 2. This

includes the standard JULES set-up (min4l), a higher-

resolution soil column (min14l), a deeper soil column

(minD), the effects of moss and organic soils both separately

and in combination (minmossD, orgD, orgmossD) and finally

the modified snow scheme (orgmossDS). When deeper soil

is added in minD, this includes both the extension of the soil

column to 10 m and the addition of a 50 m bedrock column.

The distribution of moss was determined dynamically in the

model as described in Sect. 2.3.2.

2.6 Evaluation methods

The maximum summer thaw depth or ALT was calculated

by taking the unfrozen water fraction in the deepest layer

that has begun to thaw and assuming that this same fraction

of the soil layer has thawed. This gives significantly more

precise estimates of the ALT than temperature interpolation

(see Chadburn et al., 2015).

The ALT was then used to derive the near-surface per-

mafrost extent. Our definition of near-surface permafrost is

a grid cell with ALT less than 3 m for 2 or more consecutive

years. There is no representation of sub-grid heterogeneity

in the soils so any 0.5◦ grid cell either contains 100 % near-

surface permafrost or no near-surface permafrost at all.

Koven et al. (2012) calculated a range of metrics for soil

temperature dynamics, which are also used here. They in-

clude the offset between the mean air, 0 and 1 m tempera-

tures and the attenuation of the annual cycle between each

of these levels. The values were calculated as in Koven et al.

(2012) by first calculating the annual mean and seasonal cy-

cle at the available depths and then interpolating these to 0

and 1 m depth. The annual cycle was interpolated between

layers by assuming it falls off exponentially with depth. The

model values were taken from the grid cell containing the

measurement point. All IPY-TSP sites with sufficient data

were used, along with the colder Russian soil temperature

sites (those with a mean soil temperature below 0 ◦C as an

indicator of permafrost). This gives a total of 86 sites with

reasonable circumpolar coverage (see Sect. 2.4.4 for descrip-

tion of observational data).

In order to analyse future permafrost degradation, the sen-

sitivity of near-surface permafrost area loss to climate warm-

ing was calculated via a linear regression of near-surface per-

mafrost area against the annual mean air temperature over the

historical permafrost region (region defined by the observed

map in Brown et al., 1998).

3 Results

3.1 Active layer and near-surface soil temperatures in

historical simulation

In Figs. 4 and 5, the simulated ALT from the JULES sim-

ulations (Sect. 2.5) is compared with observations from the

CALM active layer monitoring programme (Sect. 2.4.3). The

low resolution in min4l significantly impairs the capacity of

the model to simulate the active layer. This was seen for the

point site simulation in Chadburn et al. (2015) and is even

clearer in these large-scale results: the active layer in min4l

has very little variability and little apparent correlation with

the observations (see Fig. 5a).

Most of the new model processes reduce the active layer,

bringing it into much better agreement with the observations,

as shown in Fig. 4. Simulating a deeper soil column reduces

the active layer mean for the CALM sites by 0.12 m (min14l

to minD). The insulating effects of organic matter and moss

have a greater impact, reducing the ALT by a further 0.58 m

(orgmossD). The inclusion of organic matter has the single

greatest effect, reducing the mean ALT by 0.44 m. Figure 5d

shows that with the inclusion of all of the new model pro-
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Figure 4. Simulated and observed range of active layer depths for

CALM sites (Sect. 2.4.3). Black dots are means, the boxes shows

the interquartile range (IQR) and the horizontal line is the median.

The whiskers indicate the most extreme data point that is no more

than 1.5 times the IQR. Outliers are not shown. Points at which

either the simulated or observed active layer was very large (greater

than 6 m) were removed. The model point for each CALM site is

the grid box containing that site.

Figure 5. Active layer model values plotted against measurements

from CALM data set (as in Fig. 4). The dashed lines show an ALT

of 1 m. Logarithmic axes are used.

cesses, the full range of ALT values are captured and the

points fall around the one-to-one line. There is still an out-

lying block of points where the active layer in JULES is

greater than 3.5 m and much deeper than the measurements.

Many of these sites fall along the course of the Mackenzie

River in northern Canada (where JULES simulates very lit-

tle permafrost – see Fig. 7). Precipitation gauges are sparse

in this region so there may be large uncertainties in hydrol-

ogy (Weedon et al., 2011), and the observed soil tempera-

tures vary greatly from around −1 to −7 ◦C as a result of

various influences including land cover and snow (Burn and

Kokelj, 2009). This is a subject for future investigation.

The active layer thickness is determined by both the annual

cycle of soil temperatures and the thermal offset between the

air and the soil. Table 3 compares these dynamics in JULES

with observations from the IPY-TSP data set and cold sites

from the Russian soil temperature data set (see Sects. 2.4.4

and 2.6). The root mean squared error (RMSE) is calculated

using the mean value of the metric for each site, so it quan-

tifies the extent to which the variability between the sites is

correctly simulated. In this table the most relevant values are

the offset and attenuation of the annual cycle between the air

and 1 m depth in the soil, since the soil surface is not so well

defined in the observations. In the standard JULES set-up

(min4l) the total offset is approximately correct, suggesting

that the mean soil temperatures are simulated well. However,

the annual cycle is nearly 25 % too large at 1 m depth.

The introduction of a well-resolved soil has a cooling ef-

fect of approximately 0.7 ◦C, and organic soils and moss

have a further cooling effect of approximately 1 ◦C. As

in Chadburn et al. (2015), the improvements to the snow

scheme then compensate for the cooling from the other

model changes, resulting in a 1 m ground temperature ap-

proximately the same in the final simulation (orgmossDS) as

the original one (min4l). There is no significant improvement

in the RMSE between the first and last simulation (quantify-

ing the extent to which we capture the spatial variability), but

the RMSE is between 2 and 2.5 ◦C for all simulations, sug-

gesting that the mean soil temperatures are captured fairly

accurately.

The annual cycle, however, is reduced overall by the model

improvements, with the attenuation value in orgmossDS be-

ing very close to the observed value (less than 2 % different

to be exact). The RMSE in these values is also reduced (by

approximately 20 %) by the model developments, showing

that spatial patterns are better simulated. This shows a sig-

nificant improvement in the simulation.

Figure 6 shows the mean annual cycle of soil temperatures

at 90 cm for the sites used in Table 3. Figure 6a shows that

the main effect of increasing soil resolution is to reduce the

winter temperatures. This is very likely because of the way

the snow is simulated in the standard snow scheme, where the

insulating effect of shallow snow is incorporated into the top

soil layer – this means that when the top soil layer is thinner

the insulation will be less effective. The deeper soil gives

a slight attenuation of the annual cycle, which is expected of

an additional heat sink.

Figure 6b shows that the main effect of organic soils and

moss is to reduce the summer soil temperatures. Finally, the

main effect of the modified snow scheme is to increase the

winter temperatures. Overall, a reduction in summer temper-

atures and an increase in winter temperatures lead to a re-
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Table 3. The attenuation of the annual cycle and the thermal offset in the JULES simulations, between the air and the top of the soil, and

the top of the soil and 1 m depth, calculated as in Koven et al. (2012). This includes IPY-TSP and Russian data for cold sites. The RMSE

(root mean squared error) values are based on the mean value of the metric at each site and thus give an indication of how well the variability

between sites is captured. The bold numbers mark the observations as distinct from simulated values.

Simulation Attenuation (fraction of amplitude) Offset (◦C)

Air–0 m 0–1 m Total RMSE Air–0 m 0–1 m Total RMSE

Observations 0.62 0.40 0.25 – 7.7 −0.25 7.4 –

min4l 0.62 0.50 0.31 0.18 8.5 −1.00 7.5 2.5

min14l 0.67 0.52 0.35 0.20 7.3 −0.57 6.8 2.3

minD 0.68 0.48 0.33 0.20 7.4 −0.72 6.7 2.2

minmossD 0.66 0.48 0.32 0.18 7.2 −0.68 6.5 2.2

orgD 0.65 0.45 0.29 0.17 6.9 −0.92 6.0 2.4

orgmossD 0.62 0.45 0.28 0.16 6.7 −0.87 5.8 2.5

orgmossDS 0.54 0.47 0.25 0.15 8.1 −0.87 7.3 2.4

Figure 6. Comparison of annual cycle of soil temperatures at 90 cm

depth, from the Russian historical soil temperature and IPY-TSP

data (Sect. 2.4.4) and JULES simulations.

duced annual cycle which matches better with the observa-

tions in Fig. 6c.

There are still significant differences between the model

and observations, shown by the size of the RMSE in Table 3.

The error in winter snow depth when compared with the clos-

est grid cells in the Globsnow data set (see Sect. 2.4.5) has

a significant correlation of 0.3 (for about 260 points) with

the error in winter soil temperatures in orgmossDS, suggest-

ing that snow explains at least some of the remaining error.

Langer et al. (2013) show that uncertainty in the simulated

active layer depth comes from the uncertainty in soil compo-

sition, particularly ground-ice contents. Some variability is

also expected when comparing a large grid cell with a point

site, and this is difficult to quantify. While the RMSE in off-

Figure 7. First two rows: mean active layer thickness in JULES

simulations, 1979–1989. All grid cells with active layer≤ 6 m are

shown, with mean ALT indicated by colour. Bottom: observed per-

mafrost map (Brown et al., 1998), based on maps made between

approximately 1960 and 1990. On all plots the 0◦ air temperature

isotherm is shown in red (1979–1989 from WFDEI air temperature,

see Sect. 2.4.1).
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set is reasonably small, the RMSE for the attenuation of the

annual cycle is a significant fraction of the value itself. This

suggests that the annual cycle is more difficult to simulate

than the mean temperature.

In this section a comparison with CALM observations has

shown that one essential feature for simulating the ALT is

the resolution of the soil column, without which the active

layer variability is not resolved (see Fig. 4). For capturing

the near-surface soil temperature dynamics, the effects of or-

ganic soils and the improved snow scheme are both particu-

larly significant in making the annual temperature cycle more

realistic (Fig. 6 and Table 3). Organic soils also greatly im-

prove the ALT (Figs. 4 and 5), so this process is a particularly

useful addition to the model. The importance of organic soils

has also been shown in e.g. Rinke et al. (2008); Lawrence

et al. (2008); Koven et al. (2009).

3.2 Permafrost distribution in historical simulation

The simulated permafrost in JULES is shown in Fig. 7, along

with observations from the Circum-Arctic map of permafrost

and ground-ice conditions (Brown et al., 1998) (Sect. 2.4.6).

The observed map shows areas with continuous, discontin-

uous and sporadic permafrost and isolated patches. There

is no equivalent of discontinuous permafrost in JULES be-

cause each grid box has only a single soil column, so in or-

der to compare the two maps we assume that a deeper active

layer in JULES may correspond to discontinuous or sporadic

permafrost. With this assumption, all the simulations match

the observations fairly well in most areas. We can see that

introducing the model developments brings in much more

spatial variability in ALT, which generally matches with the

patterns of continuous/discontinuous permafrost. The corre-

lation between the ALT in JULES and the percentage cover

of permafrost from (Brown et al., 1998) (100 % for continu-

ous, 90 % for discontinuous, 50 % for sporadic and 10 % for

isolated patches) is high, ranging between −0.37 and −0.51.

However, there are still places where continuous per-

mafrost is observed but JULES does not simulate permafrost.

Figure 8 shows that in most of these areas, JULES simulates

far too much snow, which will mean too much insulation in

winter leading to soils that are too warm. This is particularly

noticeable in north-east Canada and two areas in north-west

Russia. In north-east Canada, however, it has been shown that

the GlobSnow data set underestimates the SWE (Langlois

et al., 2014), so the over-estimation in JULES may not be as

large as Fig. 8 suggests. However, the permafrost in this re-

gion is unstable to thawing (Thibault and Payette, 2009), so

a small bias in the model could make the difference between

simulating permafrost or not. For most of the remaining land

surface, JULES slightly underestimates the SWE. Hancock

et al. (2014) showed that JULES generally underestimates

SWE when driven by reanalysis data sets.

In the observations, the edge of the permafrost-affected

zone corresponds quite closely with the 0◦ isotherm, al-

Figure 8. Comparison of Globsnow and JULES. Mean snow wa-

ter equivalent (SWE) in Globsnow was subtracted from the JULES

values over the same time periods. See Sect. 2.4.5.

though there is a gap in western Russia (red lines in Fig. 7).

In the JULES simulations this relationship is less consistent,

suggesting more spatial heterogeneity in the relationship be-

tween air and soil temperatures. For example, excessive snow

cover such as that seen in north-east Canada in Fig. 8 could

contribute to this effect.

It is also possible to consider the vertical distribution of

permafrost. Figure 9 shows a breakdown of active layer

depths for all near-surface permafrost points (a) and all

points (b) in the simulations. The first thing that is clear from

this plot is that the discretisation of the soil column has a very

large effect on the simulation of permafrost. A series of kinks

corresponding to the model discretisation is apparent in all

the curves, which for the higher-resolution simulations does

not significantly impact the overall shape of the curve, but

for the low-resolution soil changes it almost beyond recogni-

tion. For about 50 % of the near-surface permafrost points in

min4l, the active layer depth is between 1.8 and 2.2 m, where

2 m is the centre of the bottom model layer.

Figure 9 shows that the vertical distribution of permafrost

is affected by all the model improvements, but the most sig-

nificant impact is when organic soils and moss are included.

Here, the permafrost is generally found nearer to the surface.

In Fig. 9b the amount of near-surface permafrost in each

simulation is apparent from the fraction of points that thaw

to less than 3 m (generally about 30 % of points). This shows

that some simulations have a shallower active layer (so colder

soils) but less near-surface permafrost; for example, compare

min14l with min4l and orgmossDS with minD. This is re-

lated to the vertical profile of soil temperatures. For example,

due to the combination of processes, the maximum soil tem-

perature in orgmossDS compared with minD is colder near
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Figure 9. The vertical distribution of permafrost, shown by the frac-

tion of points for which the soil thaws below a given depth. (a) Near-

surface permafrost points only: this includes only those points with

ALT less than 3 m, and hence 0 % of them thaw to below 3 m. (b) All

points are included, so about 70 % thaw to greater than 3 m or have

no permafrost at all. There is one point for each grid cell for each

year of the historical simulation.

the surface but warmer in the deeper soil. This is seen in the

soil temperature profiles in Fig. 10.

The total near-surface permafrost area in each simulation

is more clearly seen by looking at the historical period in

Fig. 11. For consistency with the definition of near-surface

permafrost, these values include any grid cells where the

ALT was less than 3 m for the past 2 years (so for exam-

ple in the first year that a grid cell is frozen, it is not included

in the permafrost area but after the second year it is added

to the area, so the area changes from year to year). Com-

paring the deep-soil simulations, minD, minmossD, orgD

and orgmossD, we see that adding insulation from organic

soils and moss increases the near-surface permafrost area,

which is consistent with the cooling effect seen in Table 3. In

orgmossDS, the near-surface permafrost area is significantly

reduced compared with orgmossD, which was also apparent

in Fig. 9b. Finally, in the shallow (3 m) simulations (min4l

and min14l), the near-surface permafrost area is smaller, but

this is not really meaningful. This is because the zero-heat-

flux boundary condition is not correct at 3 m, which leads

to “edge effects” close to the soil boundary. This is seen in

Fig. 10, where the soil temperatures in the mineral soil sim-

ulations (min4l, min14l and minD) are very similar near the

top of the soil, but the annual cycle in the shallow simulations

(min4l and min14l) does not continue to fall off with depth,

resulting in a maximum temperature that is much too high at

the base of the soil. This shows that diagnosing permafrost

as the area with ALT less than 3 m requires a soil column

significantly deeper than 3 m.

A range for the observed permafrost area is also shown

in Fig. 11. This is estimated from Brown et al. (1998) us-

ing assumptions described in Sect. 2.4.6. According to this,

the simulated near-surface permafrost area in the mineral soil
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Figure 10. The annual maximum, minimum and mean of simu-

lated soil temperatures (right-hand, left-hand and centre lines re-

spectively), averaged over the period 1979–1989, for the land area

north of 50◦ latitude. Comparing the simulations with different soil

depth is of particular interest here.

simulations (min4l, min14l, minD) falls inside the observed

range, and the addition of organic soils and moss results in

a simulated near-surface permafrost area that is somewhat

too large. However, in the final simulation with all model im-

provements (orgmossDS), the near-surface permafrost area

once again falls within the observed range.

3.3 Future permafrost degradation

Section 3.1 showed that the model improvements make the

simulation of permafrost more realistic. Although further de-

velopment is needed, these are important processes to in-

clude and it is worthwhile to study their impact on long-

term permafrost dynamics; hence in this section we study the

loss of near-surface permafrost and the active layer deepen-

ing over the next century.

Figure 11 shows the time series of total near-surface per-

mafrost area over the next century. Comparing minD and

orgmossD shows that organic soils and moss reduce the in-

terannual variability of the near-surface permafrost area. Al-

though this variability cannot be measured on a global scale,

permafrost tends to degrade or form over a number of years,

so a high level of variability from year to year is proba-

bly unrealistic. In orgmossDS, although the near-surface per-

mafrost area is significantly reduced compared to orgmossD,

the interannual variability is similar. However, the shallow

(3 m) simulations (min4l and min14l) have a much higher in-

terannual variability in near-surface permafrost area than the
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Figure 11. Time series of future projections of permafrost area. Left: RCP4.5. Right: RCP8.5. The grey area represents an estimate of the

observed area from Brown et al. (1998) (see Sect. 2.4.6).

Table 4. Rate of loss of near-surface permafrost per degree of high-latitude warming in future JULES simulations. The temperature change

is calculated over the historical permafrost area (observed).

Simulation Historical area Rate of loss (106 km2 ◦C−1) Rate of loss (fraction ◦C−1)

(106 km2) RCP4.5 RCP8.5 RCP4.5 RCP8.5

min4l 15.5 −1.52 −1.47 0.101 0.097

min14l 14.3 −1.36 −1.32 0.106 0.101

minD 17.0 −1.34 −1.37 0.085 0.087

minmossD 17.7 −1.33 −1.34 0.080 0.080

orgD 18.0 −1.17 −1.21 0.069 0.071

orgmossD 18.7 −1.08 −1.19 0.060 0.066

orgmossDS 16.1 −1.15 −1.11 0.077 0.074

HadGEM2-ES 22–23a
−1.5a

−1.46b 0.065a

a Koven et al. (2012), b Slater and Lawrence (2013).

deep soil simulations, indicating the importance of the ther-

mal inertia from a deep heat sink in the soil, which has been

shown already in e.g. Stevens et al. (2007); Alexeev et al.

(2007); Lawrence et al. (2008).

Table 4 shows the rate of near-surface permafrost loss per

degree of warming (calculated by a linear regression between

future mean air temperature, averaged over the historical per-

mafrost region, and permafrost area). The sensitivity is re-

duced by the new model developments, from approximately

1.5× 106 km2 ◦C−1 in the standard JULES set-up (min4l) to

between 1.1× 106 and 1.2× 106 km2 ◦C−1 in orgmossDS:

a reduction of about 25 %. In Lawrence et al. (2008) the rate

of permafrost loss in the Community Land Model is reduced

by over 25 % by the inclusion of organic matter and a deeper

soil column, which is an even larger effect than is found in

JULES. In that study an even deeper soil column down to

125 m was used.

The loss of near-surface permafrost by the end of the 21st

century is very large in all the JULES simulations, partic-

ularly in RCP8.5. Even in orgmossD and orgmossDS, the

simulations with the lowest sensitivity to temperature, the

area with near-surface permafrost has approximately halved

by the end of the 21st century in RCP8.5 (see Fig. 11). In

orgmossDS it decreases from approximately 16 millionkm2

for the historical period down to approximately 7 millionkm2

in RCP8.5 and 12 millionkm2 in RCP4.5 by 2100.

In terms of area lost, the values for the standard JULES

set-up are approximately the same as for HadGEM2-ES.

However, the fractional loss in HadGEM2-ES is smaller, be-

cause the near-surface permafrost area itself is significantly

larger (22.3 millionkm2 for the historical period compared

with approximately 15 millionkm2 in min4l). This is pre-

dominantly because HadGEM2-ES uses the zero-layer snow

scheme, leading to significantly colder soils. This suggests

that the snow scheme does not have a great effect on the ac-

tual rate of permafrost degradation in JULES, which is sup-

ported by comparing orgmossD and orgmossDS in Table 4.

A study of historical permafrost in JULES (Burke et al.,

2013) showed a loss of 0.55–0.81 millionkm2 per decade.

In our historical simulations the loss rates generally fall

within this range except for orgmossDS, for which the mean

near-surface permafrost loss per decade is slightly lower at
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Figure 12. Coloured area shows near-surface permafrost at the start of the simulation: green regions have disappeared by the end of the

simulation (2090–2100) and other colours (reddish) show active layer deepening in the remaining permafrost.

0.43 millionkm2. Compared with the other CMIP5 models,

the rates of near-surface permafrost loss in the improved ver-

sion of JULES (orgmossDS) are now lower than most of

the other models (Koven et al., 2012; Slater and Lawrence,

2013).

Figure 12 shows the near-surface permafrost distribu-

tion at the end of the future simulations for the “standard”

JULES set-up (min4l) and the final improved model version

(orgmossDS). In RCP4.5 the near-surface permafrost retreats

only from the edges of the permafrost zone, but there is some

thickening of the active layer across the whole near-surface

permafrost area of the order of 0.5 m, which is a significant

change. In the more southern permafrost regions, the active

layer deepens more in orgmossDS – as much as 1 m – which

may reflect the fact that the ALT is initially shallower, so

more deepening is possible.

In RCP8.5, much of the near-surface permafrost thaws in

both simulations. However, in the improved model version,

there is significantly more near-surface permafrost remain-

ing at the end of the century, particularly in northern Russia,

reflecting the reduced sensitivity to warming. However, the

areas where near-surface permafrost remains in orgmossDS

show a strong active layer deepening, significantly more than

1 m in some areas. This suggests that although less near-

surface permafrost is lost in this simulation, with a further in-

crease in temperature it could disappear. Note that this refers

just to permafrost at depths of up to 3 m – deeper permafrost

may remain longer.

4 Conclusions

Large-scale simulations have shown improved physical per-

mafrost dynamics in JULES, thanks to a deeper and better-

resolved soil column, including the physical effects of moss

and organic soils and an improvement to the snow scheme.

The model developments reduce the simulated summer thaw

depth and the amplitude of the annual cycle of soil tempera-

tures and bring both to more realistic values. The rate of near-

surface permafrost loss under future climate warming is also

reduced, as is the interannual variability of the near-surface

permafrost area.

It is important to simulate a reasonable ALT before be-

ginning to consider permafrost carbon feedback. For this we

have shown that the depth and resolution of the soil column

and the effects of organic soils are the most important consid-

erations for the model. JULES is now able to simulate large-

scale patterns in ALT, as seen in Fig. 5, where points with

shallower ALT are now generally simulated with shallower

ALT in the model.
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A well-resolved soil is absolutely essential for simulating

active layer dynamics. With a poorly resolved soil it is not

possible to simulate ALT variability: the thaw depth depends

strongly on the model layers, Fig. 9, and there is very little

spatial variability in ALT (Fig. 7), which is unrealistic (see

Fig. 5). The importance of soil resolution has not often been

emphasised in the literature.

We have confirmed the importance of including a deep

soil column, showing that the thermal inertia from deeper

soil has a significant impact on the permafrost dynamics (see

e.g. Figs. 4 and 11). We also find that with a 3 m soil column

it is not possible to meaningfully diagnose permafrost at 3 m

depth due to the edge effects close to the bottom boundary of

the soil (Fig. 10).

Organic soils and moss both act to insulate the soil. They

reduce the ALT and increase the near-surface permafrost area

(see for example Fig. 4 and Table 4) due to their insulating

effect in summer, which helps to make the annual cycle of

soil temperatures more realistic (Fig. 6b). Of these two pro-

cesses, organic soils have the larger effect. Including moss

has a smaller but significant physical impact, as seen for

example by the increase in near-surface permafrost area of

0.7 millionkm2 when it is included (Table 4). High-latitude

vegetation is an important component that is currently miss-

ing in JULES. This simple insulating layer is only the first

step and more work is needed to fully incorporate it into the

vegetation model.

The improvement to the snow scheme has a large winter

warming effect (Fig. 6c), and as a result it warms the deep

soil and reduces the near-surface permafrost area, bringing

it closer to the observational estimate. It also contributes to

a more realistic annual cycle (Fig. 6c). However, the snow is

less important for simulating the correct ALT (Fig. 5).

Snow has a very strong effect on soil temperatures (West-

ermann et al., 2013; Ekici et al., 2015; Langer et al., 2013),

and there is certainly more scope to improve the snow model

in JULES, for example with additional compaction processes

and lateral redistribution. However, there are high uncertain-

ties associated with global precipitation data in observations,

reanalysis products and climate model output, particularly

for the Arctic (Bosilovich et al., 2008; Kattsov et al., 2007;

Hancock et al., 2014), so these limit the potential to improve

the snow representation at present.

Soil moisture is also important for soil temperatures, and

the two are linked in a complex manner. Water has a higher

thermal conductivity than air, so in wetter soils more heat

will penetrate and leave the ground. However, if there is soil

freezing and thawing, the latent heat will reduce the rate of

heat penetration, counteracting this effect. Furthermore, if

there is soil freezing the mean temperature in the deeper soil

is colder than that at the surface, since the thermal conductiv-

ity of ice is greater than that of water, so more heat moves up-

wards in winter than downwards in summer. The influence of

soil temperature on soil moisture mainly comes from freez-

ing, as this prevents moisture running out of the soil and may

also hold liquid water above a permafrost layer.

Between the runs in this paper, the main differences in

soil moisture come from organic soils, which increase the

soil moisture content overall. Disentangling the complex im-

pacts requires more specific experiments than the ones in this

study, such as an experiment where specific influences of soil

moisture on temperature are removed. Further investigation

of the hydrology in JULES is vital and this is the subject of

ongoing work.

Important improvements have been made in JULES and

other global land-surface models (e.g. Lawrence and Slater,

2008; Gouttevin et al., 2012a; Ekici et al., 2014), but these

models are now somewhat limited by their coarse spatial

resolution, since permafrost processes are heterogeneous on

small spatial scales and have non-linear effects. There is

some progress being made towards upscaling small-scale

processes (Muster et al., 2012; Langer et al., 2013), and

large-scale data sets are improving over time, which is im-

portant for simulating realistic carbon fluxes.

In this paper we have analysed the large-scale degradation

of permafrost under two future climate scenarios. This shows

a significant reduction in near-surface permafrost area, with

up to 1.5 millionkm2 of near-surface permafrost loss per de-

gree of high-latitude warming, although this is reduced to

approximately 1.1 millionkm2 in the improved model ver-

sion, showing the importance of these model developments

in assessing future permafrost thaw. The impact of organic

matter is particularly large, as this alone reduces the sen-

sitivity by approximately 15 % (Table 4). In RCP4.5, near-

surface permafrost is only lost from the edges of the per-

mafrost zone by the end of the century, but in RCP8.5 the

near-surface permafrost disappears entirely from some large

regions, with large areas of near-surface permafrost remain-

ing only in northern Canada and some parts of Russia. In

areas where near-surface permafrost remains, there is a sig-

nificant thickening of the active layer, which is relevant for

consideration of the permafrost carbon feedback.
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