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Abstract. This study uses a combination of field measure-
ments and Natural Resource Conservation Service (NRCS)
operational snow data to understand the drivers of snow den-
sity and snow water equivalent (SWE) variability at the basin
scale (100s to 1000s km2). Historic snow course snowpack
density observations were analyzed within a multiple lin-
ear regression snow density model to estimate SWE directly
from snow depth measurements. Snow surveys were com-
pleted on or about 1 April 2011 and 2012 and combined with
NRCS operational measurements to investigate the spatial
variability of SWE near peak snow accumulation. Bivariate
relations and multiple linear regression models were devel-
oped to understand the relation of snow density and SWE
with terrain variables (derived using a geographic informa-
tion system (GIS)). Snow density variability was best ex-
plained by day of year, snow depth, UTM Easting, and el-
evation. Calculation of SWE directly from snow depth mea-
surement using the snow density model has strong statisti-
cal performance, and model validation suggests the model
is transferable to independent data within the bounds of the
original data set. This pathway of estimating SWE directly
from snow depth measurement is useful when evaluating
snowpack properties at the basin scale, where many time-
consuming measurements of SWE are often not feasible. A
comparison with a previously developed snow density model
shows that calibrating a snow density model to a specific
basin can provide improvement of SWE estimation at this
scale, and should be considered for future basin scale analy-
ses. During both water year (WY) 2011 and 2012, elevation
and location (UTM Easting and/or UTM Northing) were the
most important SWE model variables, suggesting that oro-
graphic precipitation and storm track patterns are likely driv-

ing basin scale SWE variability. Terrain curvature was also
shown to be an important variable, but to a lesser extent at
the scale of interest.

1 Introduction

A majority of earth’s moving freshwater originates in snow-
dominated mountainous areas (Viviroli et al., 2003), with 60
to 75 percent of annual streamflow in the Rocky Mountain re-
gion of the western United States originating from snowmelt
(Doesken and Judson, 1996). A comprehensive understand-
ing of the distribution of the seasonal mountain snowpack
and estimation of its snow water equivalent (SWE) is essen-
tial to improve hydrologic models used for forecasting wa-
ter availability. Additionally, the recent shift towards earlier
snowmelt in regions of the western US (e.g., Stewart, 2009;
Clow, 2010) necessitates a more accurate accounting for fu-
ture water resources planning. Mountainous landscapes have
complex topography as well as strong and highly variable cli-
matic gradients, yielding spatial and temporal (seasonal and
interannual) variability in snowpack properties. Determining
the meteorology and related feedbacks that drive hydrologic
processes in these areas is challenging, as the resolution of
available SWE measurements is often much coarser than the
scale needed to characterize the correlation length of its spa-
tial variability (Blöschl, 1999), and requires spatial scaling
(Bales et al., 2006).

Across the western US, the Natural Resource Conserva-
tion Service (NRCS) SNOwpack TELemetry (SNOTEL) and
snow course network provide operational snowpack mea-
surements of snow depth and SWE from which snow density
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can be calculated at a daily and monthly time step, respec-
tively. Hourly SNOTEL data are also available, but were not
used in this study. NRCS operational stations were estab-
lished to measure the snowpack for water supply forecasts,
yet, they have been shown to represent SWE only as a point
location rather than surrounding area (Molotch and Bales,
2005). Nonetheless, SNOTEL and snow course sites are the
most widely available and utilized ground-based measure-
ments of SWE and relied upon heavily for estimating basin
scale snow distribution.

Research on the spatial distribution of snow has empha-
sized the statistical relation between snow properties and ter-
rain characteristics, the latter as a surrogate for the driving
meteorology. These studies have used SNOTEL data to inter-
polate SWE over large basins (e.g., Fassnacht et al., 2003),
as well as manual field snowpack measurements over small
catchments (e.g., Elder et al., 1991). However, few studies
have analyzed snow’s spatial variability at the basin scale
using both operational and field-based measurements. Op-
erational measurements can provide regional knowledge on
the spatial distribution of snow (e.g., Fassnacht et al., 2003),
yet cannot accurately characterize the basin scale variabil-
ity that vitally impacts snowmelt and runoff (Bales et al.,
2006). It has been recommended that future research should
focus on more accurate estimation of SWE at the basin (100s
to 1000s km2) and regional (10 000s to 100 000s km2) scale
to effectively assess and manage mountain water resources
(Viviroli et al., 2011). There is a need to supplement oper-
ational data with additional field-based snowpack measure-
ments at this scale of interest to evaluate the spatial vari-
ability of SWE and provide additional ground-truth measure-
ments within the scale extent of remote sensing observations.
At the basin scale, an approach to reducing the sampling
effort is to use snow depth as a surrogate for SWE by de-
veloping a model for snow density, as manual snow density
measurements require more time and effort than snow depth
measurements. Recent studies have attempted to character-
ize the spatiotemporal characteristics of snow density (e.g.,
Mizukami and Perica, 2008; Fassnacht et al., 2010), or to de-
velop reliable methods for modeling snow density and thus
estimating SWE from snow depth measurements (e.g., Jonas
et al., 2009; Sturm et al., 2010).

The objectives of this research were (1) to evaluate basin
scale snow density variability from historic snow course
measurements and develop a snow density model specific to
our study area that can be used to estimate SWE from snow
depth measurements; this is a different domain and scale
than used in previous studies, and (2) to combine operational
SNOTEL and snow course measurements, as suggested by
Dressler et al. (2006), with supporting field-based snowpack
measurements to evaluate what is driving variability of the
snowpack at the basin scale.

2 Study area and datasets

This study was conducted in the Cache la Poudre Basin lo-
cated in the Front Range of northern Colorado and a small
portion of southeastern Wyoming (Fig. 1). We focus on the
portion of this basin that shows persistent snow cover near
peak snow accumulation; this region is responsible for the
majority of hydrologic input to the river system. To de-
fine this area, we use the Snow Cover Index (SCI) at 50 %
(Richer et al., 2013), which represents the area that was
snow-covered at least 50 % of the time from 2000 to 2010
during early April. The SCI is calculated based on the Mod-
erate Resolution Imaging Spectroradiometer (MODIS)/Terra
8-day snow cover products. The portion of the basin within
the 50 % SCI has an area of 1493 km2 and ranges in eleva-
tion from 2040 to 4125 m. Spruce-fir (Picea engelmanniiand
Abies lasiocarpa), lodgepole pine (Pinus contorta), and pon-
derosa pine (Pinus ponderosa) forests cover a majority (ap-
proximately 77 %) of this area, with the alpine community
located at the highest elevations and the mountain shrub com-
munity located at the lowest elevations. Snow is the dominant
form of precipitation within the basin, and the hydrograph
peak is driven by snowmelt generally occurring in late May
to June. The majority of winter moisture moves into this re-
gion by Pacific frontal storm tracks from the west, southwest,
or northwest, however, systems moving north from the Gulf
of Mexico can also bring substantial snowfall to the Front
Range of Colorado (Barry, 2008).

The NRCS operational stations located within the study
area and in a 15 km buffer around the basin were analyzed
(Fig. 1), yielding a total of 10 SNOTEL stations and 17
snow courses. Deadman Hill and Joe Wright, the two long-
term SNOTEL stations located within the Cache la Poudre
Basin, have a mean (1980 to 2012) peak SWE of 538 mm
and 690 mm, respectively (Fig. 2). The lowest snow year
recorded was 2002 at Deadman Hill and 2012 at Joe Wright,
while the maximum snow year was 2011 at both SNOTEL
stations. Despite the similar elevation of the two stations, his-
torically Joe Wright (3085 m) has a greater accumulation of
snow than Deadman Hill (3115 m).

Field snow surveys were conducted on and about 1 April
2011 and 2012 within the study area. At each field sampling
location, snow density (ρs) and/or snow depth (ds) measure-
ments were taken and Universal Transverse Mercator (UTM)
geographic coordinates were recorded using a global posi-
tioning system (GPS). In order to account for small-scale
spatial variability at each location (e.g., López-Moreno et
al., 2011), snow depths were sampled at 1 m intervals along
10 m transects in one of the four cardinal directions. Snow
density is a conservative variable that varies less spatially
than depth (Logan, 1973; Fassnacht et al., 2010), thus, fewer
snowpack density measurements were made across the study
area than depth. Three methods of measuring snow density
were used at each site. A cylindrical metal can with a di-
ameter of 15.3 cm was used to measure snow density if the
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Fig. 1. The Cache la Poudre Basin located in the northern Front Range of Colorado, USA. The study area is represented by the 50 % Snow
Cover Index (SCI) which is indicated by the transparent light gray color within the basin. The locations of operational and field-based snow
measurements are shown, including a detailed sampling diagram of one systematic field-based sampling transect.
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Fig. 2. Annual peak SWE and mean annual peak SWE (1980 to
2012) for Deadman Hill and Joe Wright SNOTEL stations.

snowpack was less than 50 cm. A cylindrical plastic snow
sampling tube with a diameter of 6.6 cm was used to mea-
sure snow density for snowpacks greater than 50 cm and less
than 150 cm. Additionally, a Federal Sampler (diameter of

3.77 cm) was used to measure the snow density for snow-
packs greater than 150 cm, but it was also used at some lo-
cations shallower than 150 cm. Each of the field-based sur-
veys included transects of sampling locations with a sys-
tematic spacing of approximately 500 m (Fig. 1). A total of
28 field sampling locations, including 11ρs measurements,
were monitored on and about 1 April 2011 and 104 field
sampling locations, including 12ρs measurements, on and
about 01 April 2012. The location of snow survey transects
were selected based on accessibility as well as representa-
tion of snow-producing regions within the study area. The
high-elevation areas located around the Colorado State Uni-
versity Pingree Park Campus, Cameron Pass, and Deadman
Hill were the focus within the Cache la Poudre Basin (Fig. 1).

The 2011 field-based snow survey was completed over the
span of three days (31 March through 2 April 2011), while
the 2012 survey was completed over four days (29 March
through 1 April 2012). Small amounts of precipitation was
recorded at SNOTEL stations within the study area during
the 2011 and 2012 survey time period, however the majority
of change to the snowpack during these periods were due to
melt, compaction, and/or metamorphism. Changes in snow
depth were accounted for using daily SNOTEL snow depth
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measurements to standardize the field-based snow depth
measurements to a single date for each survey. The average
change in snow depth among SNOTEL stations was added
to our field-based snow depth measurements outside of the
standardized date to adjust for the change in snow depth over
that period. Snow depth measurements from the 2011 survey
were standardized to 2 April, while 2012 measurements were
standardized to 31 March.

3 Background and methods

3.1 Snow density model

SWE, in millimeters, is the product of snow depth (ds) mea-
sured in meters and snow density (ρs) in kilograms per cu-
bic meter. At operational sites, the seasonal variability of
snow density is largely dictated by time of year, and inter-
annual variability is typically low (Mizukami and Perica,
2008). However, previous spatial snow surveys have shown
that snow density can exhibit inter-annual variability, par-
ticularly in continental regions (e.g., Balk and Elder, 2000;
Jepsen et al., 2012). Snow density tends to increase gradually
throughout the snow season due to crystal metamorphism,
settling, and compaction. Therefore, snow density tends to
increase with the day of year (Mizukami and Perica, 2008)
and with increasing snow depth (Pomeroy and Gray, 1995).
Elevation has also been shown to influence snow density,
with the effect often being dependent on the day of year (e.g.,
Jonas et al., 2009). Topography and tree canopy also impact
snow densification, as they can be surrogates for solar radi-
ation. However, large datasets of snow density are rare, and
not often meant to represent varying terrain and canopy con-
ditions, which limits the ability of these data to represent the
variability explained by those variables. Since the range of
variability of snow density is more conservative than snow
depth and SWE (e.g., Logan, 1973; Fassnacht et al., 2010),
estimating density from depth has been shown to provide a
reasonable pathway for estimating SWE from a snow depth
measurement. Based on the approaches presented by Jonas
et al. (2009) and Sturm et al. (2010) we have analyzed his-
toric operational snow density data for the Cache la Poudre
Basin to develop and evaluate a snow density model. We ac-
knowledge that the operational snow density data evaluated
are not representative of potential terrain and canopy controls
on the variability of snow density at the basin scale. However,
the potential drivers of snow depth, time of year, elevation,
and region are adequately represented. The development of
this type of model provides a mechanism for estimating SWE
from snow depth, and also may provide insights into regional
tendencies of snow density variability not accounted for in
these prior models.

Historical data from 17 NRCS snow courses (1936 to
2010,n = 3637; Fig. 1) were evaluated. These snow courses
range in elevation from 2408 m to 3261 m and are (generally)

measured on or about the first of the month from January
through June each year. Snow course measurements consist
of the average of approximately ten measurements that are
made with a Federal Sampler. For the analysis, snow den-
sity values greater than 600 kg m−3 and less than 50 kg m−3

were omitted. Additionally, due to the limited precision and
possibly the lack of accuracy for snow density measurements
in shallow snowpacks, data for snow depth less than 0.13 m
and/or SWE less than 50 mm were also omitted. This selec-
tion of data resulted in 3262 data records of snow depth, snow
density, and SWE, with 10.3 % of the original data being re-
moved.

A multiple linear regression model was developed to pre-
dict snow density considering snow depth (ds), Julian day
(DOY), elevation (z), UTM Easting (UTMe), and UTM Nor-
thing (UTMn) as independent variables. The statistical soft-
ware R (R Development Core Team, 2012) was used for
all statistical analyses. The final independent variables in-
cluded in the multiple linear regression model were selected
based on an all-subsets regression procedure (Berk, 1978),
which assesses a criterion statistic for every possible com-
bination of independent variables. Mallows’Cp (Mallows,
1973), which assesses the fit of a regression model and in-
creases a penalty term as the number of predictor variables
increases, was used as a criterion for the all-subsets regres-
sion. Additionally, a criterion was set so that all predictor
variables included were required to be statistically significant
within the model (p < 0.05). Candidate models that showed
the best Mallows’Cp values were then evaluated using the
Akaike information criterion (AIC) statistic (Akaike, 1974),
which is also a measure of the relative goodness of fit of the
statistical model that introduces a penalty for increasing the
number of model parameters. The variance inflation factor
(VIF) was used to quantify the severity of multicollinearity
between independent variables. A VIF score greater than 4
may suggest multicollinearity between variables (Kutner et
al., 2005). Model diagnostics were evaluated using residual
plots to check the model assumptions of normality, linear-
ity, and homoscedasticity and were used to determine if vari-
able transformations were necessary. Final model selection
was based on the results of criterion statistics and model di-
agnostics (Kutner et al., 2005). Also, if an effort to ensure
our model was physically robust, independent variables were
only included within the model if their coefficients made
physical sense.

The multiple regression model provides an estimate of
snow density for each snow depth measurement and their
product yields an estimate of SWE. To assess the accuracy
of the snow density model, several methods of model evalua-
tion were performed. Calibration was performed by compar-
ing modeled snow density as well as calculated SWE with
observed values from the original data set; explained vari-
ance was computed. Model validation with two sets of inde-
pendent data was also completed to test model transferability
to predict independent data. The two independent datasets
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included monthly (January through May) field-based mea-
surements from the 2011 and 2012 snow seasons (n = 84),
as well as historic first of the month SNOTEL measure-
ments (n = 121) at sites that are not co-located with a snow
course. The monthly field-based snow density measurements
not collected about 1 April were only used for model valida-
tion within this study. Performance of the final snow density
model was determined from the residuals of both observed
snow density as well as calculated SWE through the calcu-
lation of the coefficient of determination (R2) and root mean
squared error (RMSE) performance statistics.

3.2 Basin scale SWE variability

Topographic variables that are thought to potentially drive
the spatial distribution of snow at the scale of interest
were derived from a 30 m-resolution digital elevation model
(DEM) of the study area. The DEM was downloaded from
the USGS National Elevation Dataset (NED) (http://ned.
usgs.gov). A value of the derived terrain variables (spatial
data grids) was extracted for each sampling location based
on its corresponding 30 m DEM pixel. A description of the
derivation and importance of each of the spatial data grids is
provided below.

Location within the study area is represented by UTM
Zone 13N Easting and Northing coordinates for each oper-
ational and field-based sampling location. A 30 m-resolution
spatial data grid of UTM Easting and Northing was created
for the study area in ArcGIS (ESRI, 2011) by assigning the
mean UTM value to each pixel. Spatially continuous coordi-
nates of UTM Easting and Northing can be correlated with
the distribution of snow in various ways that depend on site
location and scale. Previous studies have used distance to a
mountain barrier and distance to ocean or source of mois-
ture (e.g., Fassnacht et al., 2003; López-Moreno and Nogués-
Bravo, 2006), which can also be represented by UTM Easting
for the study site due to its geographic orientation. Further-
more, given the scale of the study, UTM Easting and Nor-
thing represent different regions within the study area that
are thought to display different patterns of snow accumula-
tion and ablation due to the variability of meteorology and
storm tracks.

Elevation was extracted for each sampling location di-
rectly from the 30 m DEM. Snow accumulation has long
been shown to be a function of elevation (e.g., Washichak and
McAndrew, 1967; Dingman, 1981) due to orographic precip-
itation patterns and the effect of air temperature (Doesken
and Judson, 1996).

Slope was derived from the 30 m DEM using the Spatial
Analyst tools within ArcGIS to provide an output spatial data
grid with a value of slope (in degrees) for each pixel. The de-
gree of slope impacts the stability of the snowpack (influenc-
ing snow accumulation and redistribution) and input of solar
radiation (influencing melt) (Anderton et al., 2004). Previous
studies have used slope angle as an explanatory variable for

describing the distribution of snow (e.g., Kerr et al., 2013),
therefore the variable was tested in this study.

Aspect (in degrees) was also derived from the 30 m DEM
using the Spatial Analyst tools within ArcGIS. Aspect can be
problematic as an independent variable due to its continuous
range of 0 to 360◦, thus normalizing this variable is neces-
sary. Degrees of northness and eastness were calculated to
normalize the aspect variable (Fassnacht et al., 2001; Fass-
nacht et al., 2012). Degree of northness is the product of the
cosine of aspect and the sine of slope (Molotch et al., 2005),
while degree of eastness is the product of the sine of aspect
and the sine of slope. Northness is a measure of the degree
that terrain is north facing, therefore we would expect SWE
to show a positive correlation with northness as snow tends to
be more persistent on north facing slopes. Similarly, eastness
is a measure of the degree that terrain is east facing. Within
our study area, we expect eastness to show a positive corre-
lation with SWE as east-facing slopes are most often the lee-
ward side of dominant west winds and can receive snow load-
ing from windward slopes. Exposure of slope aspect controls
solar radiation input, which influences snowpack stability,
densification, and ablation (McClung and Schaerer, 2006).

Solar radiation was derived using the Area Solar Radia-
tion tool in ArcGIS, which calculates incoming solar radia-
tion across a DEM surface for a specified time interval. Given
the latitude of the study area, the average clear-sky solar ra-
diation (in W m−2) from 15 November through 30 March
was calculated for each pixel. Cumulative incoming solar ra-
diation is calculated based on solar zenith angle and terrain
shading, and does not consider the influence of forest canopy.
Previous studies have successfully used solar radiation spa-
tial data grids derived by similar methods within statistical
models describing the distribution of snow (e.g., Elder et al.,
1998; Anderton et al., 2004; Erickson et al., 2005).

Terrain curvature was derived from the 30 m DEM using
the Spatial Analyst tools within ArcGIS to provide an output
spatial data grid with a value of curvature for each pixel. Ter-
rain curvature is defined as the second derivative of the sur-
face (Kimerling et al., 2011). Terrain curvature, referred to as
curvature in this study, is a combination of profile and plan-
form curvature. This variable represents the local relief of
terrain (i.e., concavity or convexity) in all directions, which,
in terms of snow accumulation, primarily accounts for wind
drifting from high-exposure areas with steep slopes to low-
lying gullies (Blöschl et al., 1991; Lapen and Martz, 1996).
Curvature was calculated using both 30 m DEM resolution
(90 m footprint) and 100 m DEM resolution (300 m footprint)
and will be referred to as curvature 30 and curvature 100, re-
spectively. Negative curvature values represent concave sur-
faces, thus we expect curvature and SWE to show a nega-
tive correlation due to local snow loading within concave-
positioned areas.

Maximum upwind slope (Winstral et al., 2002) is a terrain-
based variable that has been shown to account for redistribu-
tion of snow by wind, which is especially important in alpine
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areas. However, this variable requires the knowledge of pre-
dominant wind direction to account for upwind terrain fea-
tures, which is not measured across a basin scale, requiring
a modeling approach (e.g., Liston and Sturm, 1998), thus it
was not used in this study.

Canopy cover is a categorical measurement that was made
in the field during manual snow surveys. If tree canopy was
present above a sampling location, the canopy cover was
assigned a value of one, and sampling locations with open
canopy were assigned a value of zero. We expect canopy
cover to show a negative correlation with SWE. Canopy den-
sity can influence how snow is distributed across space as it
is directly related to the amount of snow that is intercepted
in the tree canopy. Snow sublimation from snow intercepted
within the forest canopy is a major component of the over-
all water balance (Pomeroy and Gray, 1995; Montesi et al.,
2004).

Multiple linear regression was used to model 2 April 2011
and 31 March 2012 SWE based on its relation with the fol-
lowing independent physiographic variables: UTM Easting,
UTM Northing, elevation, slope, northness, eastness, solar
radiation, curvature, and canopy cover. A detailed description
of the multiple linear regression methodology is provided
above. Multiple linear regression models were developed us-
ing both operational and field snowpack measurements and
also operational measurements only. At this scale of inter-
est, operational data are commonly the only snowpack data
available, thus it was useful to compare the results from op-
erational data only to those results obtained from using op-
erational data and additional field-based measurements. The
following notation will be used in this study: modelO+F will
refer to the multiple regression model using both operational
and field snow measurements, and modelO will refer to the
multiple regression model using only operational snow mea-
surements. A total of four regression models were devel-
oped: modelO+F11 (operational and field data from 2011),
modelO11 (operational data from 2011), modelO+F12 (oper-
ational and field data from 2012), and modelO12 (operational
data from 2012).

4 Results

4.1 Snow density model

The pairwise relations between snow depth, snow density,
and SWE from the historic snow course records are presented
in Fig. 3. A strong correlation exists between snow depth and
SWE, which is best fit as a power function (Fig. 3a). There is
considerable scatter about the linear fit for snow density ver-
sus snow depth (Fig. 3b), which suggests that additional vari-
ables should be included to describe the variability of snow
density. Snowpack relations shown here are similar to those
found in previous studies (e.g., Jonas et al., 2009; Sturm et
al., 2010).
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Fig. 3.Pairwise relations of SWE and snow density with snow depth
from historic snow course measurements within the study area.

The mean snow density from the snow course data set is
287 kg m−3 with a standard deviation of 64.8 kg m−3. SWE
and snow depth have a greater coefficient of variation (0.65,
0.50, respectively) compared to snow density (0.23). Snow
density is most highly correlated with Julian day, and also
shows a positive correlation with snow depth and elevation
and negative correlation with UTM Easting (Table 1). The
location-dependent correlation with snow density has been
shown in previous studies (e.g., Mizukami and Percia, 2008),
however, is often based on a larger domain and is represen-
tative of differences in climatology. The correlation of UTM
Easting and snow density found from this basin scale data set
may be representing the impact of the distance to a mountain
barrier or storm track patterns on snow density patterns.

The final snow density model takes the following form:

ρs = 844+ 1.06DOY + 26.1d0.5
s

+ 4.0 × 10−2z − 1.78 × 10−3UTMe, (1)

whereρs is snow density, DOY is Julian day,ds is snow
depth,z is elevation, and UTMe is UTM Easting. A square
root transformation of snow depth was made to satisfy model
assumptions. All variables included were shown to have sta-
tistical significance (p < 0.05). The variance inflation fac-
tor (VIF) is less than 2.2 for each variable within the final
model, suggesting that multicollinearity between indepen-
dent variables is not observed. The residuals of the regression
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Table 1. Historic snow course bivariate correlations between snow
density, SWE, snow depth, Julian day, elevation, UTM Northing,
and UTM Easting and snow density model calibration and valida-
tion performance statistics. Performance statistics for snow water
equivalent based on using modeled snow density and observed snow
depth to calculate SWE. Bolded values represent statistical signifi-
cance (p value < 0.05).

Snow density SWE

Bivariate correlations

Snow depth 0.39 0.94
Day of year 0.62 0.33
Elevation 0.24 0.60
UTM Northing −0.03 −0.15
UTM Easting −0.35 −0.43

Snow density
Model performance

R2 0.51 0.94
RMSE 45.4 kg m−3 44.2 mm

Snow density model
Validation (RMSE)

Field measurements (n = 84) 44.7 kg m−3 70.3 mm
SNOTEL (n = 121) 62.7 kg m−3 56.7 mm

model are normally distributed and do not violate the under-
lying assumptions of the regression (normality, linearity, ho-
moscedasticity).

The calibrated model underestimated more dense snow-
packs and overestimated less dense snowpacks, while calcu-
lated SWE showed generally unbiased residuals that tended
to slightly increase with increasing observed SWE (Fig. 4).
Performance statistics calculated from the residuals of cali-
bration with the original data set showed that predicted snow
density explained 51 % of the total variance in the data with a
RMSE of 45.4 kg m−3, yet, calculated SWE was able to ex-
plain 94 % of the variance in the data and had a RMSE of
44.2 mm (Table 1).

Various methods of model evaluation were performed to
test the utility of the regression model that all showed simi-
lar trends (Fig. 4) and comparable error estimates (Table 1)
to model calibration. As expected, a minor increase in error
estimation was observed for model validation with indepen-
dent data, yet the minimal increase in error shows that the
regression model should be transferable to independent data
within the bounds of the original data set. Thus, we used the
snow density model to calculate SWE for WY 2011 and WY
2012 field-based snow depth measurements.

4.2 Basin scale SWE variability

A total of 51 and 127 snowpack measurements (both opera-
tional and field-based) were analyzed from the 2 April 2011

(WY 2011) and 31 March 2012 (WY 2012) snow surveys,
respectively (Fig. 1). The mean SWE and snow depth from
WY 2011 were greater than WY 2012, yet the mean snow
density and standard deviation of snow density was shown
to be consistent among both years (Table 2). The WY 2011
was the maximum snow year on record within the study area,
while WY 2012 was one of the lowest snow years on record
(Fig. 2); thus WY 2011 snowpack measurements were shown
to have a higher mean SWE and snow depth, but also had a
greater range of variability than that of WY 2012 (Table 2).
From the average SWE among SNOTEL stations within the
study area, the 1 April snow survey occurred before peak
SWE in 2011, however, it occurred slightly after peak SWE
yet before substantial melt had occurred in 2012. Analysis of
the 1 April snowpack from these two water years allows for
the comparison between the two extreme snow years (maxi-
mum and minimum) as well as between two different stages
of the niveograph (before and just after peak SWE).

In order to evaluate whether the physiographic variables
that were sampled in this study are representative of their
basin scale distributions, we have made comparisons be-
tween the values associated with the sampling locations
compared to the values across the study area. Terrain vari-
ables derived within GIS at each of the snowpack measure-
ment locations have similar averages when compared to the
50 % Snow Cover Index (SCI) (Richer et al., 2013) (Fig. 1),
for both 2011 and 2012. Histograms of relative frequency
(Fig. 5) show that the distribution of terrain variables sam-
pled in 2011 and 2012 is similar to the 50 % SCI area distri-
bution of these variables, suggesting that the snowpack mea-
surement locations sampled during WY 2011 and WY 2012
are representative of the variability of physiography among
the entire study area. The range of values of terrain variables
observed at operational stations tended to be smaller than the
field-based station ranges (Fig. 5), which also suggests the
combination of operational and field-based measurements
are more representative of the basin than the operational mea-
surements alone. A formal Kolmogorov–Smirnov test (K-S
test) for equality of distributions between a random sample
(n = 244) of the continuous terrain variables within the 50 %
SCI area of the basin versus the variables associated with
each WY’s sampling locations was completed. The K-S test
shows that during both years the difference between the two
samples for curvature and eastness is not significant enough
(95 % significant level) to say they have a different distribu-
tion. However, a significant difference between the distribu-
tions of elevation, slope, northness, and solar radiation was
observed for both years. The difference in elevation is ob-
vious since field data are located more at higher elevations
than the entire domain (Fig. 5a), and the operational data
tend to be located in a small elevation zone (Fassnacht et
al., 2012). Northness is highly correlated to solar radiation,
and both are related to slope so the significance difference
for each of these variables is partly based on their correla-
tion. For avalanche safety purposes, manual measurements
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Table 2. Summary statistics (µ = mean,σ = standard deviation) for snowpack properties from WY 2011 and WY 2012 snow surveys.
Statistics calculated separately for manual and operational measurements as well as manual measurements in which SWE was estimated
from the snow density model.

n SWE (mm) ρs (kg m−3) ds (m)
µ σ µ σ µ σ

WY 2011

Field measurements 28 356 259 307 37.0 1.10 0.68
Field SWE measurements 11357 242 309 46.7 1.09 0.60
Estimated SWE 17 356 276 305 30.7 1.10 0.74
SNOTEL measurements 10 577 220 342 38.2 1.66 0.55
Snow course measurements 13410 239 304 24.5 1.31 0.66
Entire data set 51 413 256 313 36.9 1.26 0.68

WY 2012

Field measurements 104 228 106 313 23.9 0.72 0.30
Field SWE measurements 12264 69 318 44.7 0.85 0.26
Estimated SWE 92 224 109 312 20.0 0.70 0.31
SNOTEL measurements 10 241 113 324 69.9 0.72 0.33
Snow course measurements 13152 105 285 50.4 0.52 0.32
Entire data set 127 221 108 311 33.8 0.70 0.31

are usually on slopes less than 35◦, so steeper slopes can be
underrepresented.

Snowpack variables were shown to have a strong correla-
tion with each other, with SWE and snow depth showing the
strongest relation (consistent with the historic snow course
data set), while also showing to be highly correlated with
elevation (Table 3). Bivariate relations showed that SWE in-
creased with increasing elevation, with the steepness of this
trend being greater in WY 2011 than 2012. The strength of
the correlation between SWE and elevation for WY 2011
(r = 0.75) and WY 2012 (r = 0.68) suggests that elevation
is the most important physiographic variable for driving the
distribution of SWE across the study domain, which is con-
sistent with previous findings from studies evaluating SWE at
the basin scale (e.g., Fassnacht et al., 2003; Jost et al., 2007;
Harshburger et al., 2010). As UTM Northing increases, SWE

decreases in WY 2011, suggesting northern regions of the
study area receive less snow than southern regions (as sug-
gested by J. Meiman, personal communication, 2010), yet
this trend was not apparent in the low snow year of 2012.
Our sample size is only two years, therefore additional basin
scale data are needed to evaluate snow distributions in re-
lation to UTM Northing, however, historic trends observed
from the SNOTEL data suggest that lower snow amounts
in the northern parts of the study area (similar to WY2011)
may be more common (Fig. 2). A greater accumulation of
snow in southern regions of the study area could be related
to an upwind elevation gradient, with high peaks of Rocky
Mountain National Park located in the southern portion of
the study area, or due to the possibility of a dominant storm
track that preferentially precipitates in southern regions be-
fore moving northward. SWE also decreased with increasing
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Fig. 5.Histograms of terrain variables across the SCI 50 study area compared to variables associated with snow measurement locations.

UTM Easting, which corresponds to both the effect of oro-
graphic precipitation within the study area (the continental
divide is located on the western border of the study area),
and also lower elevation regions receiving less snow than
higher-elevation regions. The other variables that are known
to influence snow accumulation (e.g., forest cover and solar
radiation) did not exhibit strong bivariate correlations with
SWE, thus partial correlations were calculated to test these
variables once the trends of elevation and UTM coordinates
had been removed. The partial correlation is defined as the
correlation between two variables, while the effect of a set of
controlling variables is removed (through linear regression).
Partial correlations between SWE and terrain/canopy vari-
ables (with the correlation effect of elevation, UTM Easting,
and UTM Northing removed) shows that curvature and slope
become more important variables when the other trends are
removed (Table 4).

Multiple linear regression was used to model SWE for 2
April 2011 and 31 March 2012 with the operational and field-
based snowpack data set (modelO+F) and the operational
snowpack data set only (modelO) (Fig. 6). The final indepen-
dent variables used within each model, beta coefficient val-
ues, and a summary of model performance statistics is pro-
vided in Table 5 and Fig. 6. To satisfy the assumptions of the
regression model and improve overall model performance,
a square root transformation was made to SWE (dependent
variable) and slope (independent variable) for modelO+F11,
which explains 88 % of the total variance with an RMSE
of 85.6 mm (all RMSE values were calculated after trans-
formed values have been converted back). ModelO+F12 (no
data transformations) explained 56 % of the total variance
and showed an RMSE of 71.5 mm. The operational models
were evaluated against observed values from the entire oper-
ational and field data set. The WY 2011 operational model
(modelO11) explains 84 % of the total variance of the data
with an RMSE of 110.1 mm and includes a square root trans-
formation of SWE. Lastly, modelO12 explains 51 % of the
total variance with a RMSE of 75.6 mm. The VIF is less than
1.4 for each variable within all four of the multiple regres-
sion models, suggesting that multicollinearity between inde-

pendent variables is not observed. Also, the residuals of each
regression model do not violate the underlying assumptions
of the regression (normality, linearity, homoscedasticity).

A comparison of the standardized error estimation be-
tween WY 2011 and WY 2012 models shows that the
modelO+F11 has a lower standardized typical magnitude of
error (standardized RMSE) than modelO+F12, and describes
more of the variance in the data (R2) (Table 5). Similarly,
modelO11 has a lower standardized RMSE and greaterR2

value than modelO12, but the difference between these two
models is less (Table 5). The difference among these per-
formance statistics can partially be explained by the na-
ture of each snow year (WY 2011 was the maximum snow
year and WY 2012 was amongst the lowest) and sampling
scheme. WY 2011 showed much more variation in snow
amounts than WY 2012, which could explain the difference
in the RMSE. Additionally, the greater number of measure-
ment locations (n = 127) in WY 2012 compared to WY 2011
(n = 51) could further explain the difference inR2 between
modelO+F11 and modelO+F12. Given this difference in field-
based sampling locations, a reduced modelO+F for WY 2012
was developed, including only WY 2012 field-based mea-
surement locations that were co-located with WY 2011 mea-
surement locations (n = 42). The reduced model included
UTM Northing, elevation, and curvature 30 as independent
variables and explained 70 % of the total variance with a stan-
dardized RMSE of 30 % (Fig. 6). The reduced model shows
more favorable results than the full model (modelO+F12),
suggesting that fewer data points may be the reason for the
stronger performance of the WY 2011 models. However, the
reduced model also explained less of the variance in the data
than modelO+F11, which suggests that the superior perfor-
mance of the 2011 models could be due to the greater range
of observed variability in the data.

5 Discussion

The snow density model developed across the study area per-
formed relatively well in modeling SWE from independent
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Table 3.Bivariate correlations between SWE, snow density, snow depth, and terrain and canopy variables for the water year 2011 and 2012
snow surveys. Bolded values represent statistical significance (p value < 0.05).

WY 2011 WY 2012
SWE ρs ds SWE ρs ds

SWE (mm) – – – – – –
Snow density (kg m−3) 0.81 – – 0.52 – –
Snow depth (m) 0.99 0.75 – 0.98 0.40 –
Elevation (m) 0.75 0.46 0.77 0.68 0.41 0.67
UTM Easting (m) −0.69 −0.71 −0.66 −0.38 −0.51 −0.33
UTM Northing (m) −0.55 −0.36 −0.56 −0.12 −0.02 −0.10
Eastness −0.13 −0.28 −0.11 0.10 −0.09 0.13
Northness −0.01 −0.08 0.00 0.06 −0.13 0.08
Canopy cover −0.20 −0.16 −0.21 −0.22 −0.01 −0.22
Slope (◦) −0.03 −0.05 −0.01 0.11 0.05 0.13
Curvature 30 (m−1) 0.08 0.13 0.08 −0.08 −0.11 −0.04
Curvature 100 (m−1) −0.04 −0.02 −0.02 −0.08 −0.08 −0.06
Solar radiation (W m−2) 0.26 0.20 0.25 0.07 0.22 0.04

Table 4.Partial correlations between SWE and terrain/canopy vari-
ables with the effect of elevation (z), UTM Easting (x), and UTM
Northing (y) removed. Bolded values represent statistical signifi-
cance (p value < 0.05).

WY 2011 WY 2012
z z,x,y z z,x,y

UTM Easting (m) −0.74 – −0.16 –
UTM Northing (m) −0.38 – 0.16 –
Eastness −0.07 0.23 0.08 0.10
Northness 0.06 0.18 0.12 0.16
Canopy cover −0.14 0.06 −0.15 −0.17
Slope (◦) −0.22 −0.28 −0.08 −0.06
Curvature 30 (m−1) −0.07 −0.41 −0.32 −0.31
Curvature 100 (m−1) −0.25 −0.31 −0.36 −0.35
Solar radiation (W m−2) 0.02 −0.10 −0.06 −0.13

snow depth measurements. Predicted SWE RMSE ranged
from 44 mm (calibration data) to 70 mm (independent field
validation data). Eighty percent of all residual values
(n = 2613) fell within ±50 mm, and the variance of the
model residuals was on average within 12.8 % of the ob-
served values for the calibration data set. Within site vari-
ability of SWE has been conservatively estimated to be 15 to
25 % (Jonas et al., 2009), which suggests that the error ob-
served from the model is within the natural range of SWE
variability at a site (Fassnacht et al., 2008). The small range
of error suggests that estimating SWE from snow depth mea-
surements through a snow density model works due to the
conservative nature of snow density; 52 % of snow density
data values ranged from 250 to 350 kg m−3.

Using historical operational measurements for develop-
ment of a basin scale snow density model has implications
for future field-based basin scale sampling campaigns, sug-

gesting a sampling scheme dominated by snow depth mea-
surements may be successful for evaluating basin scale SWE
variability. The strength and utility of the model developed
here is its ability to estimate SWE from the most easily mea-
sured variable, snow depth. Across basin scales, efforts are
being made to estimate snow depth using both airborne li-
dar and satellite-based lidar data, such as ICESat (Jasinski et
al., 2012). Snow density models will be especially useful for
these applications. The utility of a snow density model is also
very valuable for field-based snow surveys at the basin scale,
in which many snowpack measurements are required, and the
assumption of a constant snow density across the study area
is not valid (Lopéz-Moreno et al., 2013).

The snow density model is simple to develop and imple-
ment and is an effective tool for obtaining estimates of SWE
from snow depth measurements across basin scale domains.
The model is, however, constricted to its spatial domain,
range of physiographic inputs, as well as temporal coverage,
thus it may not be applicable to areas outside of the study
area for elevations that are lower than 2408 m or higher than
3261 m, or for snow depths shallower than 0.20 m or deeper
than 2.52 m.

Given that our snow density model was calibrated specif-
ically for the Cache la Poudre Basin, it is useful to com-
pare its performance to similar snow density models that
have been developed from historic data for different domains.
Jonas et al. (2009) developed a set of regression equations to
model snow density using snow depth, day of year, eleva-
tion, and region for the Swiss Alps, while Sturm et al. (2010)
employed a statistical method based on Bayesian analysis
for the United States, Canada, and Switzerland using snow
depth, day of year, and climate class. These previous stud-
ies and our research show that snow density is a conserva-
tive variable that varies spatially much less than snow depth
and SWE, however the previous studies used spatial domains
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Table 5.Beta coefficients (standardized coefficients) and performance statistics for each multiple regression model with dependent variable
SWE (mm). Each coefficient included in the models was statistically significant (p value < 0.05). Model performance metrics are evaluated
against the entire data set (both operational and field) for each year. RMSE and MAE statistics are reported as standardized values (value of
the statistic divided by the mean of the observations).

modelO+F11 modelO11 modelO+F12 modelO12 Reduced
modelO+F12

n values 51 23 127 23 42

Beta coefficients

Elevation (m) 0.52 0.76 0.77 0.98 0.89
UTM Easting (m) −0.51 −0.45 – – –
UTM Northing (m) −0.23 – 0.13 0.43 0.21
Canopy cover – – −0.14 – –
Slope0.5 (◦) −0.12 – – – –
Curvature 30 (m−1) −0.16 −0.21 – – −0.36
Curvature 100 (m−1) – – −0.28 −0.34 –

Model performance

R2 0.88 0.84 0.56 0.51 0.70
RMSE (%) 21 27 32 34 30
MAE (%) 16 22 25 26 26

that are orders of magnitude larger than what has been pre-
sented here, with the current data being at a finer resolution.
We have applied the snow density alpine model developed
by Sturm et al. (2010) to our data set and directly compared
the results to those of our snow density model, given their
model was developed for global applications and data from
the western US were used within model development. We did
not, however, test the model developed by Jonas et al. (2009),
as it was developed specifically for Switzerland and requires
regional and elevational parameters that are specific to this
area, and was not developed for use in other areas. The Sturm
et al. (2010) alpine model performed well when applied to
the data set from this study, showing a snow density RMSE
of 58.1 kg m−3 and RMSE of 53.4 mm when used to calcu-
late SWE. Also, the variance described in the SWE data set
from this study by the Sturm et al. (2010) model showed
a similarly strong performance (R2

= 0.91) as our model.
However, the model developed in this study outperformed
the Sturm et al. (2010) model, showing an improvement in
RMSE for snow density and SWE by 22 % and 17 %, re-
spectively. Also, our model showed an improvement of field
validation RMSE by 9 % for snow density and 7 % for SWE.
This shows that calibrating a snow density model to a spe-
cific basin of interest can improve estimates of SWE from
snow depth from models developed from larger domains and
should be considered for future basin scale assessments of
SWE.

Despite WY 2011 being a maximum snow year and WY
2012 being a minimum snow year, the variables driving each
SWE regression were similar and included elevation, loca-
tion within the basin (UTM Easting and/or UTM Northing),

and curvature. The inclusion of elevation and geographic lo-
cation within each regression as well as the strong bivariate
correlations of these variables with SWE indicates that they
may be representing consistent drivers of the spatial vari-
ability of SWE at the basin scale, such as how orographic
precipitation and storm track patterns play a strong role in
basin scale SWE distribution. Additionally, the inclusion of
terrain curvature within each model suggests that wind re-
distribution of snow is also important at this scale. However,
model results of other variables suggest limitations due to the
representivity of their basin scale distributions. The slopes
that were sampled in this study were not generally steep (for
safety considerations) and were below the common critical
angle of repose for snow avalanches (McClung and Schaerer,
2006), however, this variable was shown to have a signifi-
cant negative partial correlation with SWE distribution dur-
ing both years. Given the slopes sampled in this study, we
suggest the significance of the slope variable may not actu-
ally represent a driver of basin scale variable, but rather a
statistical artifact. Also, the importance of solar radiation on
the distribution of the snowpack has been highlighted by pre-
vious studies conducted in both alpine (e.g., Erikson et al.,
2005) and forested areas (e.g., Veatch et al., 2009), however
solar radiation was not shown to be a significant explanatory
variable of basin scale snow variability in this study. Solar
radiation is likely an important control on basin scale snow
distribution, therefore the lack of significance of this variable
is because it was neither adequately sampled nor modeled.
The sampled locations in this study were not representative
of the solar radiation variability across the basin, as shown by
the K-S test. Also, modeled clear-sky solar radiation does not
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take into the account shading from tree canopy, therefore it
is not representative of solar radiation across the basin scale.
Additionally, although the canopy cover variable did show
the negative correlation with SWE as expected, this correla-
tion was relatively weak, thus the categorical canopy cover
variable we use here is likely not adequate. There is a need
for a finer resolution canopy data set for basin scale anal-
yses, as the 30 m-resolution National Land Cover Database
(NLCD 2001) canopy density data are not adequate; this data
set often shows SNOTEL stations as having high canopy den-
sity values despite their location within small forest open-
ings. Future basin scale snow studies should focus on in-
corporating a more accurate representation of the influence
of forest canopy and solar radiation on snowpack variability
(Musselman et al., 2013). Given that studies (e.g., Fassnacht
et al., 2012) have shown the spatial variability of snow ac-
cumulation to be described by different physiographic vari-
ables from year to year, additional years of data collection at
the basin scale are needed for a more complete evaluation of
the drivers of SWE distribution.

Comparison of the error between modelO+F and modelO
for WY 2011 and WY 2012 shows that modelO+F has

superior performance statistics for both years (Table 5).
ModelO+F showed a 22 % and 5 % improvement in RMSE
from modelO in 2011 and 2012, respectively. However,
modelO11 and modelO12 showed a fairly strong performance
with similar predictor variables as the operational plus field
models. The operational regression models may not be repre-
senting the study area, as SNOTEL measurements have been
shown to represent point locations rather than surrounding
areas (Molotch and Bales, 2005) often having more snow
(Daly et al., 2000), and tend to be located in areas with sim-
ilar physiographic features (flat and open canopy areas lo-
cated near tree line).

The spatial data set of field-based snowpack measure-
ments in this study is at a scale similar to remote sensing
observations and modeling applications; these data and the
approaches of empirical modeling (e.g., multiple linear re-
gression) for characterizing the distribution of SWE at the
basin scale can be used in those contexts for validation. For
instance, the observed patterns of SWE variability within this
study, showing to be largely driven by elevation and geo-
graphic location, could be compared to the patterns of vari-
ability observed within a physically based snow evolution
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Fig. 7.SWE plotted against UTM Northing and UTM Easting for both WY 2011 and WY2012 snow surveys.

model. The comparisons of the statistical relation of the
snowpack with terrain-based variables and physically based
snow evolution modeling can provide insight for basin scale
SWE distribution estimations.

There are limitations to this study that must be acknowl-
edged. The representivity of snow measurements of their sur-
roundings is an important issue often raised in snow hydrol-
ogy studies (e.g., Molotch and Bales, 2005). Although our
field-based measurements attempted to account for the fine-
scale variability by taking 11 measurement points at each
sampling location, it is possible these sampling locations
could have fallen on the edge of a 30 m-resolution GIS pixel
and not accurately sampled associated terrain variables. The
SNOTEL station snow pillows have been shown to not rep-
resent their surroundings, which could have caused further
inaccuracies of the DEM-derived variables at each of these
sites. The use of multiple linear regression to model non-
linear processes for the SWE models developed within this
study is another important limitation. Limitations in this ap-
proach have been presented in previous studies (Elder et al.,
1995), however, we do believe that multiple linear regression
was appropriate given the goals of our study. We would have
ideally used binary regression trees (e.g., Elder et al., 1998)
to develop the SWE models, but these decision tree models
require larger datasets than available in this study to provide
meaningful results. Given the main goal of the SWE models
was used as a tool to evaluate the importance of individual
variables rather than used strictly within a predictive frame-
work, the multiple linear regression models provide simplic-
ity of the interpretation of model coefficients. Finally, our
field sampling strategy (non-uniform, non-random spacing,
and clustered pattern), which is a different spacing than op-
erational data, may have influenced regression results. Given
the extent of the study area evaluated (1493 km2), it was nec-

essary to employ this transect-based strategy because of the
formidable challenge of accessing these areas throughout the
basin on skis. Each sampling transect with 500 m spacing of
sampling locations were generally around four kilometers in
length and located along an elevational gradient with varying
terrain, providing a range of snow conditions to be sampled
(Fig. 1). Further evaluation of each of the individual sam-
pling clusters (Colorado State University Pingree Park Cam-
pus, Cameron Pass, and Deadman Hill) showed that eleva-
tion and location have the strongest correlation with SWE,
suggesting the 500 m spacing of the field-based sampling lo-
cations is likely large enough to represent our scale of in-
terest. A plot of UTM Easting and UTM Northing versus
SWE (Fig. 7) shows clear regional trends of the distribution
of SWE across the study area. The importance of the UTM
coordinates in describing the SWE distribution is likely not
being affected by the sampling clusters, as these same trends
were observed from the operational data (modelO). Future
snow field campaigns at the basin scale should take strong
consideration of the best sampling strategy suited for the
challenges of covering the basin scale.

6 Conclusions

We have used a combination of operational and field-based
snow measurements to evaluate snowpack properties across
the basin scale. This research was motivated by the need for
additional ground-truth snowpack observations at a scale that
coincides with that of remote sensing observations and is es-
pecially pertinent to water resources forecasting.

A method for modeling snow density across the Cache
la Poudre Basin from historical snow course measurements
was employed for estimating SWE from snow depth. The
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independent variables of snow depth, day of year, elevation,
and UTM Easting were used in a multiple linear regression
model to estimate snow density. Statistics showed strong per-
formance of SWE calculated from snow depth observations
using the snow density model, and model validation sug-
gests the model is transferable to independent data within the
bounds of the original data set. The methods here provide
a pathway for estimating SWE from snow depth measure-
ments, which is especially useful when evaluating snowpack
properties at the basin scale, where time-consuming field-
based measurements of SWE are often not feasible.

The spatial variability of SWE within the Cache la Poudre
Basin was analyzed using operational and field-based snow-
pack measurements from WY 2011 and WY 2012. Bivari-
ate and partial correlations of SWE with terrain and canopy
variables as well as multiple linear regression models show
that elevation, UTM Easting, UTM Northing, and curvature
are most highly correlated with SWE during both years, and
thus likely are explanatory variables describing processes
that drive spatial variability at this scale (e.g., orographic pre-
cipitation, synoptic weather patterns, and wind redistribution
of snow). Solar radiation is also likely one of the main drivers
of basin scale snow variability, however this variable was nei-
ther adequately sampled nor modeled in this study, suggest-
ing its lack of significance may have been a misrepresentative
statistical finding.

The continuity of field-based snowpack measurements, as
provided within this study, is essential given the assump-
tion of non-stationarity from hydroclimatic change (Milly
et al., 2008) and indications of more extreme conditions
(IPCC, 2007). This examination of two very different snow
years may represent the bounds of extremes and possibly the
limitations due to non-stationarity. Continued field measure-
ments of the snowpack will aid advancement of remote sens-
ing and modeling applications, but more importantly con-
tinue to provide ground-truth observations for evaluating the
complexities and uncertainties of the changing earth system.
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