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Abstract. Geodetic surveys suggest that ocean tides can

modulate the motion of Antarctic ice streams, even at sta-

tions many tens of kilometers inland from the grounding line.

These surveys suggest that ocean tidal stresses can perturb

ice stream motion at distances about an order of magnitude

farther inland than tidal flexure of the ice stream alone. Re-

cent models exploring the role of tidal perturbations in basal

shear stress are primarily one- or two-dimensional, with the

impact of the ice stream margins either ignored or param-

eterized. Here, we use two- and three-dimensional finite-

element modeling to investigate transmission of tidal stresses

in ice streams and the impact of considering more realistic,

three-dimensional ice stream geometries. Using Rutford Ice

Stream as a real-world comparison, we demonstrate that the

assumption that elastic tidal stresses in ice streams propagate

large distances inland fails for channelized glaciers due to

an intrinsic, exponential decay in the stress caused by resis-

tance at the ice stream margins. This behavior is independent

of basal conditions beneath the ice stream and cannot be fit

to observations using either elastic or nonlinear viscoelas-

tic rheologies without nearly complete decoupling of the ice

stream from its lateral margins. Our results suggest that a

mechanism external to the ice stream is necessary to explain

the tidal modulation of stresses far upstream of the grounding

line for narrow ice streams. We propose a hydrologic model

based on time-dependent variability in till strength to explain

transmission of tidal stresses inland of the grounding line.

This conceptual model can reproduce observations from Rut-

ford Ice Stream.

1 Introduction

1.1 Relevant observations

Observations from some Antarctic ice streams show tidally

modulated surface displacements extending many tens of

kilometers inland of the grounding line (see Fig. 1, Table 1,

and associated references). Geodetic and seismic observa-

tions that probe the interaction between ocean tides and ice

stream motion include surface tilt (tiltmeters), differential

position (synthetic aperture radar, InSAR), absolute position

(altimetric surveys and global positioning system, GPS), and

basal seismicity (see Table 1). When such observations are

found to fluctuate at tidal or near-tidal frequencies, they can

be used to estimate the spatial extent of ocean tidal influences

on the flow of ice streams (see, for example, references de-

scribed below).

Surface tilt surveys quantify the maximum extent of the

flexure of an ice body due to the tides (the “hinge line”). For

relevant ice streams (see Table 1), the hinge line is found be-

tween 5 and 10 km inland of the grounding line (e.g., Rignot,

1998). Seismic studies on several Siple Coast ice streams

correlate fluctuations in basal seismicity with the semidi-

urnal and/or fortnightly ocean tides, suggesting a link be-

tween ocean tidal loading and basal stress in these ice streams

(Harrison et al., 1993; Anandakrishnan and Alley, 1997;

Bindschadler and et al., 2003; Wiens et al., 2008; Walter et

al., 2011). Furthermore, continuous GPS (CGPS) surveys on

some Antarctic ice streams find surface velocities modulated

at tidal frequencies (Rutford Ice Stream: Gudmundsson,

2006, 2007; Bindschadler Ice Stream: Anandakrishnan et

al., 2003) or stick–slip motion correlated with extremes in
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Table 1. Spatial extent of observations suggesting tidal modulation of ice stream motion and ice flexure from selected ice streams across

Antarctica.

Tidally modulated observations Ice flexure

Region Extent Method Extent Method

(km) (km)

Bindschadler 80+ GPS1
∼ 10 Altimetry2

Ekström < 3 GPS3
∼ 5 Tilt3

Kamb 85+ Seismicity4
∼ 10 Altimetry2

Pine Island < 55 GPS5
∼ 5 SAR6

Rutford 40+ GPS7,8 5+ Tilt9

Whillans Ice Plain ∼ 100 GPS and seismicity10,11,12,13
∼ 10 Altimetry2

Whillans Ice Stream ∼ 300 Seismicity14 N/A Altimetry2

Superscript numbers denote the following references: 1 Anandakrishnan et al. (2003); 2 Brunt et al. (2010); 3 Heinert and

Riedel (2007); 4 Anandakrishnan and Alley (1997); 5 Scott et al. (2009); 6 Rignot (1998); 7 Gudmundsson (2006);
8 Gudmundsson (2007); 9 Stephenson (1984); 10 Weins and et al. (2008); 11 Winberry et al. (2009); 12 Walter et

al. (2011); 13 Winberry et al. (2014); 14 Harrison et al. (1993).

tidal amplitudes (Whillans Ice Stream: Wiens et al., 2008;

Winberry et al., 2009, 2014).

However, not all Antarctic ice streams exhibit a strong

connection between ocean tidal loading and ice stream flow.

CGPS observations on Pine Island Glacier, for example,

show no tidal variability in surface motion at stations 55,

111, 169, and 171 km inland of the grounding line (Scott et

al., 2009). Ekström Ice Stream has an even tighter constraint

on the spatial extent of tidal perturbations: CGPS recordings

show no measurable motion at tidal frequencies only 1 km

inland of the grounding line (Riedel et al., 1999; Heinert and

Riedel, 2007).

1.2 Previous relevant modeling

Many models have been proposed to explain the influence

that ocean tides have on the motion of some Antarctic ice

streams (e.g., Anandakrishnan and Alley, 1997; Bindschadler

et al., 2003; Gudmundsson, 2006, 2007, 2011; Sergienko et

al., 2009; Walker et al., 2012; Winberry et al., 2009). Given

that the Maxwell relaxation time (viscosity / elastic modulus)

for ice is on the order of a few hours for tidal loads, these

models generally model either elastic or viscoelastic trans-

mission of ocean tidal stresses through the ice stream inland

of the grounding line – referred to as “stress transmission” in

this manuscript.

We discuss several representative published models to

highlight common assumptions made about the upstream

transmission of tidal stresses. A standard model for ice

streams is a flow-line model – a two-dimensional (2-D) cross

section with transverse stresses either neglected or parame-

terized. When basal shear stress is averaged over the length

of the ice stream, the model reduces to the one-dimensional

(1-D) formulation of Bindschadler et al. (2003) and Winberry

et al. (2009). These models assume that tidal stress is uni-

formly distributed over, and completely supported by, the ice
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Figure 1. Map of Antarctica indicating locations of the ice streams

discussed in this paper (BIS – Bindschadler Ice Stream; EIS –

Ekström Ice Stream; KIS – Kamb Ice Stream; PIG – Pine Island

Glacier; RIS – Rutford. Ice Stream; WIP – Whillans Ice Plain; WIS

– Whillans Ice Stream; MIS – Mercer Ice Stream).

stream’s bed. In this type of model, the distance inland to

which a tidal stress propagates depends completely on the

assumed length of the ice stream.

Finite-element analysis in 2-D allows for flow-line mod-

els with increased complexity and more realistic geometries.

An applicable model of tidal stress propagation is that of

Gudmundsson (2011). This 2-D flow-line model incorpo-

rates nonlinear ice viscoelasticity and a nonlinear basal slid-

ing law. In Gudmundsson’s (2011) analysis, the response of

the modeled ice stream relates directly to the basal boundary

condition. Such a result is intuitive as lateral resistance from

the ice stream’s margins is neglected, and thus the tidal load
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Figure 2. Schematics of the models described in this paper. Inset boxes show options used in each model. For the 2-D models, these options

are either a frozen (ux = uz= 0) or free-sliding (uz= 0) basal condition with or without an ice shelf. For the 3-D models, we use the same

model geometry with variable rheologies: homogeneous linear elasticity, marginal regions of variable elasticity, or Glen-style viscoelasticity.

must necessarily be controlled by the basal rheology of the

ice stream. This type of model is attractive as the basal rhe-

ologies can be tuned to accurately match observations. How-

ever, the fact that these models can be made to fit the observa-

tions does not demonstrate that lateral resistance in these ice

streams is indeed negligible. Note that a three-dimensional

(3-D) version of Gudmundsson’s model is currently in re-

view and is publically available online for viewing (Rosier et

al., 2014). This 3-D model will be discussed in Sect. 6.1.

Alternatively, Sergienko et al. (2009) approximated an ice

stream as a series of masses (blocks) connected elastically

(by springs) and restrained laterally (by further springs) with

a shear stress applied along a frictional basal contact. Unlike

the previous 2-D models, this spring-block model does incor-

porate the lateral resistance of the ice margins. Sergienko et

al. (2009) note that a “tidal” load applied at one edge in this

model diminishes with distance from the loaded block, but

this stress decay is not explored in further detail. We assume

that this distance depends on the stiffness of the springs, both

between the masses and as lateral restraints, as well as the

magnitude of the basal friction imposed in the model. How-

ever, there is no obvious relation between a physical length

scale and the number of blocks and springs in the model.

Additionally, it is not clear if the decay of the tidal stress is

caused by marginal or basal resistance in this model.

2 Methodology

In this manuscript, we present results from 2-D and 3-D mod-

els that explore the role that ice stream geometry plays in

controlling transmission of tidal stresses. We describe our

models below and show them schematically in Fig. 2. We

then expand our homogeneous elastic models to incorpo-

rate shear-weakened margins (Sect. 4) and viscoelasticity

(Sect. 5).

We start with a 2-D finite-element flow-line model of an

elastic ice stream (Fig. 2a) to benchmark the computational

models and to establish the extremes for stress transmission

of an applied tidal load. An underlying assumption of this

www.the-cryosphere.net/8/2007/2014/ The Cryosphere, 8, 2007–2029, 2014
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2-D model is that the ice stream is infinite and uniform in

the third dimension, such that there effectively are no lateral

margins to the ice stream. These simplified models allow us

to establish “end-member” behavior of an elastic ice stream

by applying the extreme basal conditions of either a frozen

(no slip) or a free-sliding (no shear traction) bed. Addition-

ally, we use these 2-D models to investigate the role played

by an ice shelf as an intermediary between the ocean tides

and the grounded ice stream.

Based on the intuition gained from these 2-D models, we

then explore a series of 3-D models (Fig. 2b) to study the im-

pact of resistive shearing at the lateral margins of the model

on the inland transmission of an applied tidal load. We first

investigate the role that the overall geometry of the ice stream

(i.e., ice stream width and thickness) has on the transmis-

sion of tidal stresses inland of the grounding line. From these

models, we find that including the lateral margins of the ice

stream inherently limits the distances to which tidal stress are

transmitted inland. For narrow (channelized) ice streams, the

inland transmission of a tidal load is found to be too small to

be consistent with observations, even in the case of friction-

less sliding at the bed (Sect. 3).

In the second part of this paper, we consider two mech-

anisms for decoupling the model ice stream from its lateral

margins. First, we investigate the potential for “weakened”

ice in the margins to reduce the lateral resistance to the inland

transmission of a tidal stress (Sect. 4). Second, we investi-

gate the effect that using a Glen-style viscoelasticity for ice

may have on the transmission of tidal stresses inland of the

grounding line (Sect. 5). Modeling methodologies for these

models are presented in their corresponding section.

Comparing model results to tidally modulated GPS data

from Rutford Ice Stream, we establish that we cannot match

observations using a model that assumes tidal loads are trans-

mitted through the bulk of an ice stream, even after account-

ing for potential decoupling mechanism (Sects. 4 and 5). We

conclude with a model suggesting subglacial hydrology as a

potential explanation for transmission of tidal stresses inland

of the grounding line (Sect. 6.3).

2.1 Model construction

Our calculations rely on the finite-element modeling (FEM)

software PyLith (Williams et al., 2005; Williams, 2006;

Aagaard et al., 2007, 2008, 2011) for our numerical mod-

eling. This open-source Lagrangian FEM code has been de-

veloped and extensively benchmarked in the crustal deforma-

tion community (available at www.geodynamics.org/pylith).

PyLith solves the conservation of momentum equations with

an associated rheological model. As we assume a quasistatic

formulation (i.e., all inertial terms are dropped), the govern-

ing equations are

σij,j = fi inV

σijnj = Ti onST

ui = u
0
i on SU , (1)

where V is an arbitrary body with boundary conditions on

surfaces ST and SU . On ST , the traction σij nji is set equal

to the applied Neumann boundary condition Ti . On SU , the

displacement ui is set equal to the applied Dirichlet boundary

condition u0
i .

PyLith solves these governing equations using a Galerkin

formulation of the spatial equations and an unconditionally

stable method of implicit time stepping for both an elas-

tic and viscoelastic rheology (following the form of Bathe,

1995). For model convergence, we select a tolerance of 1e-

12 in the absolute residual of the iterative solver from the

PETSc library (Balay et al., 1997, 2012a, b) and a relative

tolerance to the initial residual value of 1e-8. Based on sev-

eral experiments, these values are sufficiently conservative

to ensure solution convergence without causing a prohibitive

increase in computational time.

2.1.1 Model geometry

For the models discussed here, the finite-element model ge-

ometry is intentionally kept as simple as possible (Fig. 2). 2-

D models are considered with and without an ice shelf, while

the 3-D models do not include an ice shelf. As described in

Appendix A, our 2-D model results show that the ice shelf

can be safely neglected as the ice shelf does not influence the

length scale of stress transmission far inland of the grounding

line.

In our 2-D models, we consider only the thickness (Z)

to be limiting, while the model length (X) is not. We use

a geometry long enough that changes to the length have a

negligible effect on the model results (i.e., the X dimension

is “pseudo-infinite”). For our 3-D models, only the thick-

ness (Z) and width (Y ) of the ice stream are limiting dimen-

sions. The length of the ice stream (X) and the widths of the

non-streaming ice (Y ) are large enough to be pseudo-infinite.

We construct the FEM meshes using the software Trelis

(available from http://www.csimsoft.com). For the 2-D mod-

els, we use linear isoparametric triangular elements, while

we use linear isoparametric quadrilateral elements for the 3-

D models. We manually refine the meshes near regions of

applied stresses, changes in boundary conditions, and mate-

rial property variations. In such locations the mesh spacing

can be as small as 1 m, resulting in meshes with between 105

and 106 elements. To ensure that the model results are inde-

pendent of the meshing scheme, we check all model results

against meshes that are uniformly refined by a factor of 2. We

only present results from meshes that have less than a 0.1 %

change in displacement, first strain invariant, and second de-

viatoric stress invariant upon this refinement in our elastic

models and less than 1 % in our viscoelastic models.

The Cryosphere, 8, 2007–2029, 2014 www.the-cryosphere.net/8/2007/2014/
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2.1.2 Linear elastic rheology

Our first models assume a linear isotropic elastic rheology for

ice, with the constitutive equation taking the familiar form of

Hooke’s Law in three dimensions:

Cijkl = λδij δkl +µ
(
δikδj l + δilδjk

)
. (2)

We summarize model rheologic parameters, taken

from Petrenko and Whitford (2002) and Cuffey and

Paterson (2010), in Table 2. We assume that the Poisson’s

ratio is well known for ice (and thus is fixed) when exploring

the ranges in values of the other elastic moduli.

2.2 Applied boundary conditions

This section describes the boundary conditions applied to our

2-D and 3-D models. Given the models’ simplified geome-

tries, it is convenient to refer to the edges (2-D) or faces

(3-D) of the model domains by their normal vectors when

describing the locations of applied boundary conditions. For

example, the right edge of the 2-D model is theX+ edge and

the top face of the 3-D model is the Z+ face.

2.2.1 Two-dimensional models

In our 2-D models, we have two boundary conditions to con-

sider: the basal condition of the ice stream and the loading

condition of the ocean tides on the ice stream–ice shelf sys-

tem. We explore two limiting basal boundary conditions: a

frozen bed and a free-sliding bed. The frozen-bed condition

is applied as a Dirichlet condition with zero displacements in

all directions (ux = uz= 0) on the Z− edge of the ice stream.

The free-sliding-bed condition has a mixed boundary condi-

tion applied to the Z− edge of the ice stream with zero verti-

cal displacements (uz= 0) and zero shear traction (σxz= 0).

Tidal loading is applied as an edge-normal Neumann

(stress) boundary condition with magnitude σnormal= ρg1h,

where ρ is the density of water, g is gravitational accelera-

tion, and 1h is the amplitude of the tide. For models with-

out an ice shelf, tidal loading is applied on the X+ edge of

the model ice stream (i.e., vertical face above the grounding

line). For models with a portion of the model domain rep-

resenting an ice shelf, the tidal loading condition is applied

along the X+ and Z− edges of the model ice shelf. At the

basal node where the ice stream and ice shelf coincide (i.e.,

the model’s grounding line), the ice stream’s basal condition

is applied. Note that this approach does not apply a flotation

condition to the ice shelf, and it thus assumes that there is no

grounding line migration. Appendix B discusses the implica-

tions of using this method to approximate tidal loading on an

ice shelf.

2.2.2 Three-dimensional model

We have three boundary conditions to consider in our 3-

D models: the basal condition of the ice stream, the basal

Table 2. Elastic and viscous parameters used to define ice prop-

erties in our finite element model. Values of elastic parame-

ters are from Petrenko and Whitford (2002) using data from

Gammon et al. (1983a, b). Viscous parameters are taken from

Cuffey and Paterson (2010). Temperature-dependent viscosity co-

efficients are not summarized here but can be found in Cuffey and

Paterson (2010). Parameters marked with an asterisk (∗) denote

quantities that are derived from the other moduli and material prop-

erties. Parameters annotated with a plus (+) are fixed for all models.

Parameter Symbol Value

Young’s modulus E 9.33 GPa

Poisson’s ratio+ ν 0.325

Shear modulus∗ G 3.52 GPa

Bulk modulus∗ K 8.90 GPa

Density (at 0 ◦C)∗ ρ 917 kg m−3

Viscosity coefficient (at 0 ◦C)+ A 5.86× 10−6 MPa−3 s−1

Stress exponent+ n 3

condition of the non-streaming ice, and the tidal loading con-

dition. Recall from Sect. 2.1.1 that the geometry of the 3-

D models has a box-shaped ice stream in contact with non-

streaming ice on its Y+ and Y− faces (see Fig. 2b).

The basal boundary condition applied to the ice stream is

a 3-D version of the earlier free-sliding-bed condition. Along

the Z− face of the ice stream, a mixed boundary condition is

applied that has zero vertical displacements (uz= 0) and zero

vertical shear tractions (σxz= σyz= 0). As will be discussed

later, our 3-D models do not currently incorporate basal fric-

tion beneath the ice stream.

The basal boundary condition applied to the non-

streaming ice is a 3-D version of the earlier frozen-bed condi-

tion. Along the Z− face of the non-streaming ice, a Dirich-

let condition is applied that fixes all displacements to zero

(ux = uy = uz= 0). Along the Y+ and Y− edges of the Z−

of the ice stream (i.e., the basal nodes shared by the ice

stream and the non-streaming ice) the non-streaming ice’s

basal boundary condition is applied.

Similar to the 2-D models, tidal loading is applied as

a face-normal Neumann (stress) condition with magnitude

σnormal= ρg1h. As our 3-D models have no ice shelf (see

Sect. 2.1.1 and Appendix A), the tidal loading condition

is applied to the X+ face of the ice stream and the non-

streaming ice (i.e., on the face above the model’s grounding

line). For models using a linear elastic approximation for ice,

we do not apply a time-varying load as the model solution

must necessarily vary linearly with the magnitude of the ap-

plied stress.

2.2.3 Gravity

Due to the superposition property of a linear elastic model,

we choose to neglect the effect of gravity as a body force

by setting fi in Eq. (1) equal to 0, effectively neglecting the

background flow of the ice stream.

www.the-cryosphere.net/8/2007/2014/ The Cryosphere, 8, 2007–2029, 2014
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Figure 3. Distributions of stress for a 2-D model with a free-sliding basal condition. (a) shows longitudinal profiles of σeq at a depth interval

of 10 m, while (b) shows the logarithm of the absolute value of the three in-plain stress components (σx , σy , and σxy) for the entire 2-D

model domain. Model results are shown including (left panels) and not including (right panels) an ice shelf. In the free-sliding models, axial

stress does not decay with distance and flexural stress rapidly decays near the grounding line. Ltr is the stress transmission length scale as

defined in Sect. 3.1.

3 Results

PyLith calculates the stress tensor, strain tensor, displace-

ment vector, and velocity vector at every node of the model

mesh. While we use results from close to 40 models in this

manuscript, we only show visualizations of representative re-

sults; however, we include tabulated results from all models.

To aid in comparing the magnitude of stress between models,

we define an equivalent stress, τeq, based on the von Mises

criterion. τeq is defined in 2-D and 3-D as

2-D : τ 2
eq =

1

2

[(
σxx − σyy

)2
+ σ 2

xx + σ
2
yy + 6σ 2

xy

]
(3a)

3-D : τ 2
eq =

1

2

[(
σxx − σyy

)2
+
(
σyy − σzz

)2
+(σxx − σzz)

2
+ 6

(
σ 2
xy + σ

2
yz+ σ

2
xz

)]
. (3b)

3.1 Two-dimensional results

We begin by considering the distribution of stress in the 2-D

models with free-sliding and frozen basal boundary condi-

tions. Figures 3 and 4 present stress distributions for 1 km

thick models using each boundary condition with and with-

out an ice shelf. In these figures, we show longitudinal pro-

files of τeq taken at different depths. It is convenient to de-

fine a stress decay length scale, Ltr, as the distance inland of

the grounding line over which the amplitude of a tidal stress

drops by an order of magnitude. Table 3 summarizes Ltr for

all stress components for the four models shown in Figs. 3

and 4. Other model geometries considered, but not explicitly

discussed here, include 2 and 3 km thick models and models

with elastic moduli 1 order of magnitude larger and smaller

than the canonical value of 9.33 GPa (see Table 4 for a sum-

mary of 2-D model results).
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In the model with a free-sliding bed and no ice shelf

(Fig. 3, right column), the axial stresses do not decay with

distance from the grounding line. Flexural stresses, only

present in the model with an ice shelf (Fig. 3, left column),

follow the expected functional form of a sinusoid multi-

plied by an exponential function (e.g., Turcotte and Schu-

bert, 2002). The first wavelength of this sinusoid can be seen

in Fig. 3a, with a zero crossing approximately 2 km inland

(i.e., left) of the grounding line. After moving approximately

5 km inland of the grounding line, the two model ice streams

attain approximately the same (constant) stress value inde-

pendent of the presence or lack of an ice shelf. For the model

with a frozen bed (Fig. 4), flexural and axial stresses decay

exponentially with distance inland of the grounding line with

similar values of Ltr.

These 2-D models provide an opportunity to investigate

the role that the ice shelf plays in the transmission of tidal

stress inland of the grounding line. As the flexural stresses

induced by an ice shelf decay rapidly with distance inland of

the grounding line without affecting the decay of axial stress,

we choose to neglect the ice shelf in the 3-D models. See

Appendix A for a full discussion of the ice shelf’s influence

on these model results.

3.2 Three-dimensional results

We now consider the decay of stress in a uniform 3-D model,

using a 1 km thick and 10 km wide ice stream as a represen-

tative model. Although they are not discussed here in detail,

we also considered models with widths of 14, 20, 30, 40,

and 50 km thicknesses between 1 and 3 km, and elastic mod-

uli 1 order of magnitude larger and smaller than the nominal

9.33 GPa value (see Table 5 for a summary of 3-D model

results).

Figure 5 shows values of τeq taken along horizontal pro-

files at 10 m depth intervals (varying the z coordinate) and

a transverse spacing of 1 km (varying the y coordinate). We

find that stress decays exponentially over approximately the

same distance independent of the y or z coordinates cho-

sen. Thus, the model can be described using a single value

of Ltr as shown. As our uniform 3-D model includes lateral

restraint due to non-streaming ice, the stress decay behavior
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Table 3. Length scales for the transmission of tidal stress (Ltr) for the 2-D models shown in Figs. 3 and 4. See text for description of how the

parameters are estimated. All but one of the cases have low standard deviations. In the cases marked with an asterisk, the standard deviation

is large since the value of σx falls to zero near the (vertical) center of the ice stream, causing Ltr to vary significantly near these locations.

Near the top and bottom of the ice stream, the values of Ltr for σx are consistent with the values for the other components of stress.

Fixed base Sliding base

Condition Component Ltr (km) St dev. Condition Component Ltr (km) St. dev.

Shelf X 2.586 0.004 Shelf X 1.304 9.049*

Y 2.619 0.095 Y 1.101 0.013

XY 2.590 0.015 XY 1.078 1.4e-5

Axial only X 2.517 0.023 Axial only X ∞ N/A

Y 2.618 0.068 Y N/A N/A

XY 2.616 0.018 XY N/A N/A
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Figure 5. Stacked equivalent stress (τeq) profiles for three different

locations in a 3-D homogeneous elastic model 10 km wide and a

1 km thick. Inset shows locations of the three profiles in map view.

For each location, 101 lines are stacked, taken at 10 m depth in-

tervals. For the center and quarter lines, there is little difference in

stress with depth, while for the edge of the ice stream, the stress

changes with depth by about an order of magnitude. However, Ltr

is the same independent of lateral position (center, quarter, or edge).

of the 3-D model is unsurprisingly different from that of the

2-D models, which do not include lateral resistance.

Figure 6 shows the full stress field (i.e., all six indepen-

dent stress components) taken at the base of the represen-

tative 3-D model described above. The longitudinal normal

stresses (σxx), transverse normal stresses (σyy), and the shear

due to the sidewalls (σxy) are the largest stresses more than

a few ice thicknesses inland of the forced edge. The vertical

normal stress (σzz) at the bed is also nonzero inland of the

forced edge but is at least an order of magnitude smaller than

the aforementioned stresses. The vertical shear stress compo-

nents (σxz and σyz) are direct consequences of stress concen-

tration at the transition from sliding to frozen basal boundary

Table 4. Ltr for 2-D models with a zero-displacement basal condi-

tion. Note that Ltr values are linear with thickness and independent

of Young’s modulus.

Thickness Young’s Ltr

(km) modulus (km)

(GPa)

1 0.933 2.53

2 0.933 5.07

3 0.933 7.60

1 9.33 2.53

2 9.33 5.07

3 9.33 7.60

1 93.3 2.53

2 93.3 5.07

3 93.3 7.60

conditions, and they decay rapidly with distance from both

the lateral margins and the grounding line.

3.3 Geometric factors influencing the transmission of

tidal stresses

Our 2-D and 3-D results show that tidal stresses decay ex-

ponentially with distance inland of the grounding line when

basal and/or lateral resistances act on our model ice stream.

We useLtr as a direct measure of the distance that a tidal load

influences the motion of an ice stream. Note that we use a sin-

gle value of Ltr estimated from τeq to compare stress trans-

mission between models and that this value of Ltr matches

the largest Ltr calculated from the individual stress compo-

nents (see Table 3). To determine the influence that the choice

of geometry and elastic moduli play in controlling Ltr, we

explore homogeneous elasticity over a range of these param-

eters as tabulated in Table 4 for the 2-D models and Table 5

for the 3-D models.

In our 2-D and 3-D models, stresses vary proportionally

to the magnitude of the applied stress, while displacements
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Figure 6. Representative distribution of the six unique stress components along the base of a 3-D model with homogeneous elasticity. The

streaming portion of the model has a width of 10 km and a thickness of 1 km. Ltr is drawn for the σxx , σyy , and σxy stress components.

Table 5. Ltr for 3-D models with uniform Young’s moduli. Like

the 2-D models, Ltr is effectively independent of Young’s modulus,

but increases with increasing thickness and width of the ice stream.

The model indicated with an asterisk is representative of Rutford

Ice Stream.

Thickness Width Young’s Ltr Ltr/

(km) (km) modulus (km) width

(GPa)

1 10 0.933 12.2 1.22

1 10 9.33 12.7 1.27

1 10 93.3 12.7 1.27

2 10 9.33 13.6 1.36

3 10 9.33 15.0 1.50

1 14 9.33 17.5 1.25

2 14 9.33 18.4 1.31

3 14 9.33 19.6 1.40

1 20 9.33 24.6 1.23

2 20 9.33 25.6 1.28

3 20 9.33 26.7 1.34

2 30 9.33 38.2* 1.27

2 40 9.33 52.2 1.31

2 50 9.33 69.1 1.38

vary proportionally to the applied stress and inversely to the

Young’s modulus. Such results are expected from linear elas-

ticity. However, neither of these parameters has a pronounced

effect on the decay of an applied stress as shown by the nearly

constant Ltr between models with the same geometry.

Modifying the geometry of the model affects the value of

the stresses, displacements, and Ltr in a nonlinear fashion.

For the 2-D models with a frozen bed, Ltr varies linearly with

thickness. For the 2-D models with a free-sliding bed, Ltr is

infinite, independent of the ice thickness. For the 3-D models,

Ltr increases with increasing thickness and width, but not in

a strictly linear fashion for either.

Given these geometric dependencies, we find that the fol-

lowing empirical functional forms describe the relationship

between the stresses, displacements, and model parameters.

For the 2-D model with a frozen bed, we use

σ(x, z)= σGL(h, z)×1h× 10
−x h

Ltr

u(x, z)= uGL(h, z)×
1h

E
× 10

−x h
Ltr (4)

where σGL and uGL are, respectively, the stress and displace-

ment at the grounding line for a 1 km thick model using the

nominal value of 9.8 GPa for E with a 1 m ocean tide; E

is the non-dimensionalized Young’s modulus with respect

to the canonical value; h is the non-dimensionalized model

thickness with respect to a 1 km reference value; and 1h is

the non-dimensionalized tidal height with respect to a 1 m

tide. For the 3-D models, we find the functional forms

σ(x, y, z)= σGL(y, z, h, w)×1h× 10
−x

Ltr(h,w)

u(x, y, z)= uGL(y, z, h, w)×
1h

E
× 10

−x
Ltr(h,w) . (5)

The implications of these results are that the stress distri-

butions depend only on tidal loading and geometry. As long

as we assume homogenous elasticity, the stress state is inde-

pendent of the elastic properties in the model, although this is

not true for models with spatially variable elastic moduli, as

discussed in the next section.Ltr depends only on the model’s

geometry.
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Models with widths between 10 and 50 km, summarized in

Table 5, demonstrate that Ltr is roughly 1.2 to 1.5 times the

ice stream width. Additionally, Ltr increases only slightly as

ice thickness is increased from 1 to 3 km. Thus, tidal stresses

at a distance equivalent to two ice stream widths (2w) inland

of the grounding line should be considerably reduced.

3.4 Comparison to Rutford Ice Stream

We now compare the observed decay of GPS surface dis-

placements from Rutford Ice Stream to the decay of tidal

stresses in a model ice stream that is 30 km wide (a geom-

etry approximating Rutford Ice Stream). Recall that for lin-

ear elasticity an exponential decay of stress will necessar-

ily predict an exponential decay of displacement with the

same decay rate, so such a comparison is permissible for

linear elastic models. The estimated Ltr for geometries ap-

proximating Rutford Ice Stream is 38.2 km (flagged model

in Table 5). We note that our geometrically simple model as-

sumes that both margins are equally strong; in actuality, Rut-

ford Ice Stream has one ice–ice interface and one ice–rock

interface. However, based on the velocity profile for Rutford

Ice Stream (Joughin et al., 2006), the difference between Rut-

ford’s lateral margins does not appear to strongly control the

behavior of the ice stream as a whole, allowing us to make

a first-order approximation of Rutford as having strong, non-

frictional boundary conditions on both lateral margins.

Figure 7b demonstrates that the modeled decay is too se-

vere to match the maximum observed displacement at GPS

stations on Rutford Ice Stream inland of the grounding line

(GPS data reported by Gudmundsson, 2007, and provided by

H. Gudmundsson). This result suggests that resistance from

lateral margins of the ice stream, at least for a channelized

one like Rutford Ice Stream, are sufficiently large to limit the

inland transmission of a tidal load, even in the case of fric-

tionless sliding. In the next two sections, we consider poten-

tial mechanisms for decoupling the ice stream from its lateral

margins.

4 Weakening in the ice stream margins

In the previous section, we demonstrated that the lateral re-

sistance from the shear margins of a channelized ice stream

dampens the inland transmission of tidal stresses signif-

icantly. However, as shear margins are locations of en-

hanced viscous strain (e.g., Dahl-Jensen and Gundestrup,

1987; Echelmeyer and Zhongxiang, 1987; Paterson, 1991;

Echelmeyer et al., 1994) and crevassing (e.g., Cuffey and

Paterson, 2010), it is conceivable that ice stream margins are

elastically more compliant than the central portion of the ice

stream. We now investigate the potential impact that such

marginal compliance has on the inland transmission of tidal

stress and find that substantial damage in the marginal ice is
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Figure 7. Comparison of observed GPS tidal displacement ampli-

tudes to modeled displacement amplitudes. Circles show data taken

from Rutford Ice Stream (data courtesy of H. Gudmundsson). The

error on the approximated tidal displacement amplitudes is two cen-

timeters (roughly the size of the symbol). Parameters for the mod-

els approximating Rutford Ice Stream as are indicated in Table 5.

The upper panel shows the normalized tidal amplitudes, while the

lower panel shows the true amplitude values. (a) shows the dis-

tance dependence of the equivalent stress calculated from linear,

homogeneous elastic model results, while (b) shows the equivalent

stress calculated using models accounting for elastic damage in the

shear margins (dashed) and temperature-dependent viscoelasticity

(dotted).

necessary to decouple the ice streams enough that the models

reproduce observations of tidally modulated ice motion.

4.1 Methodology

Theoretically, the damage is expected to reduce the effective

Young’s modulus (e.g., Walsh, 1965). We parameterize the

influence of cracks and crevasses using linear elastic contin-

uum damage mechanics. This approach modifies the elastic
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Figure 8. Representative distribution of stress for a model with the same geometry as Fig. 6, but with ice margins that are 25 % of the ice

stream width. These margins are a factor of 10 more compliant than in the center of the ice stream.

constitutive equation by multiplying the Young’s modulus

with a damage term (see Murakami, 2012, and references

therein):

ε =
σ

E (1−D)
. (6)

The damage parameter D can take a value from 0 (no dam-

age) to 1 (complete plastic failure) and has the physical in-

terpretation as the fraction of area that can no longer sup-

port a load due to the opening of void space in the damaged

body. For reference, Borstad et al. (2012) find the thresh-

old for calving in an ice shelf to be D= 0.6± 0.1, which is

comparable to the value of damage calculated from viscous

flow enhancement factors for an Antarctic ice stream (e.g.,

Echelmeyer et al., 1994) using a viscous implementation of

damage (see Eq. 7 below).

We modify our 3-D model to have a laterally variable

Young’s modulus with two different patterns of variabil-

ity (see inset in Fig. 2b): one with a step function drop in

Young’s modulus at certain predetermined ice margin widths

(“discrete margins”) and the other with a linear reduction of

the Young’s modulus from the middle to the edges of the

ice stream (“continuous margins”). For both patterns, the

elasticity profile is symmetric across the centerline of the

ice stream, such that the natural transverse length is the ice

stream half-width. For the discrete margin pattern, we evalu-

ate a range of margin widths at 10 % intervals between 10 and

90 % of the ice stream half-width. The marginal ice in these

models has a reduction in Young’s modulus by a factor of 10.

For the continuous margins model, we evaluate models with

the Young’s modulus of the marginal ice reduced by factors

of 10, 100, and 1000.

4.2 Results

Figure 8 shows a representative distribution of the six stress

components for a discrete margins model with weakened

margins half of the ice stream half-width. The longitudinal

normal stress (σxx) is concentrated in the stronger ice at the

center of the model, while the transverse normal (σyy) and

the horizontal shear (σxy) stresses are concentrated in the

weaker marginal ice. Comparing these stresses to Fig. 6 and

noting the differing longitudinal scales, it is clear that Ltr

is larger in the model with compliant margins than in the

homogenous elastic model. Additionally, as shown for the

longitudinal normal stress (σxx), Ltr is no longer constant

throughout the model, as was the case for the homogeneous

model. For this manuscript, we use a width-averaged value of

Ltr for comparison between different models with compliant

margins.

Figure 9 shows the relative change in Ltr in models with

marginal weakening compared to a homogeneous elastic

model with the same geometry. By interpolating between the

results of our discrete margins models, we characterize Ltr as

a function of the ratio of marginal width to ice stream width

(x̂). Similarly, by interpolating between the results of our

continuous margins models, we characterize Ltr as a func-

tion of the severity of marginal weakening, described by the

ratio of the Young’s modulus of the marginal ice to that of

the central ice (Ê). Figure 9 demonstrates that the maximum

increase to Ltr occurs when each shear margin is about 50 %

of the ice stream half-width and that Ltr increases as lateral

margins become more compliant relative to the central ice

stream.
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Figure 9. Dependence ofLtr on the value of Young’s modulus of the

margins (Ê) and the width of the margin (x̂) for a discrete margin

model all taken relative to the homogeneous elastic model. Colored

contours show the relative increase in Ltr compared to a homoge-

neous linear elastic model (Ê= 1). The two bold contours corre-

spond to the conditions necessary to explain the observations of the

Rutford fortnightly tidal signal (2.67) and the Rutford semidiurnal

tidal signal (3.32).

4.3 Viability of lateral weakening as a decoupling

mechanism

Figure 9 also shows two contours that correspond to in-

creases in Ltr necessary to reproduce observations of the

semidiurnal and fortnightly tidal displacements at Rutford

Ice Stream (a relative value of Ltr of 3.32 and 2.67, respec-

tively). As the shear margins for Rutford Ice Stream are on

the order of 10 % half-width (e.g., Joughin et al., 2006), we

find the minimum values of Ê needed to reproduce the ob-

served values of Ltr to be 1995 (103.3) and 630 (102.8), re-

spectively. These values of Ê correspond to linear damage

parameters of D= 0.9995 and D= 0.998 (Eq. 6).

To add some physical meaning to these estimates ofD, we

compare these modeled values to the critical damage thresh-

old values of D, commonly named DC, found in the liter-

ature. DC is the linear damage value at which a material

becomes sufficiently fractured to stop behaving as a single

continuous body. From laboratory experiments,DC has been

estimated to be 0.45–0.56 for ice (Pralong and Funk, 2005;

Duddu and Waisman, 2012). From inverse modeling of the

Larsen B Ice Shelf collapse using a viscous model with lin-

ear continuum damage, Borstad et al. (2012) found DC for

calving to be 0.6± 0.1. To compare DC with our model re-

sults, we must remember that the above values forDC are for

nonlinear viscous flow, such that the “enhancement” value is

governed by

En= (1−D)−n. (7)

Thus, the corresponding enhancements for the literature val-

ues of DC are between about 6 (for DC= 0.45) and 37 (for

DC= 0.7) using the canonical power law exponent for Glen

flow of n= 3. Even the smallest necessary enhancement for

our models has a value of 467.7 (102.67 for the fortnightly

tide on Rutford Ice Stream), suggesting that the damage re-

quired to create sufficient marginal compliance to match ob-

servations is too high to be physically reasonable. Thus, we

find that incorporating damage in an ice stream’s shear mar-

gins is insufficient to bring model-predicted estimates of Ltr

into agreement with those found observationally from GPS

stations on Rutford Ice Stream.

5 Viscoelasticity

We now investigate the potential for viscoelasticity to decou-

ple the ice stream from its lateral margins and thus increase

the inland transmission of a tidal load relative to a homo-

geneous elastic model. As an ice stream’s margins are the

location of large shear stresses, an ice stream with stress-

dependent viscoelasticity should have reduced effective vis-

cosity in these lateral margins. The net result would be that

deformation is concentrated near the lateral margins, decou-

pling of the ice stream from its margins and allowing for a

longer inland transmission of a tidal stress.

5.1 Methodology

To incorporate viscoelasticity into our ice stream models, we

change our rheology from the linear elastic model used pre-

viously (Eq. 2) to a Glen-style viscoelastic model:

ε̇ =
σ̇

E
+Aσ n, (8)

where we take the nominal value n= 3. For the viscos-

ity coefficient A, we present two models. The first is

a homogenous viscous model, using the canonical value

of A equal to the 0 ◦C value (e.g., Cuffey and Pater-

son, 2010). The second model uses the Arrhenius relation-

ship for temperature-dependent viscosity from Cuffey and

Paterson (2010, Eq. 3.35), along with a temperature profile

chosen to match the empirical relation calculated from the

Whillans Ice Plain in Engelhardt and Kamb (1993). The elas-

tic moduli are the same as in the homogenous elastic models.

Incorporating both viscoelasticity and nonlinearity into the

constitutive law for ice introduces many additional mod-

eling concerns in order to correctly describe the link be-

tween ocean tides and ice stream motion. As we cannot

use superposition in a model with stress-dependent viscos-

ity, we apply the down-glacier (i.e., deviatoric) component

of the gravitational body force to the model. In the finite-

element formulation, we apply the horizontal component of
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gravity (ghoriz= g sinα, where α is the surface slope) as a

time-constant acceleration acting on the entire ice body. We

choose to apply only the down-glacier component of gravity

out of convenience, as using the full gravitational body force

would require us to apply a pre-stress to the model to can-

cel out the vertical component of the full gravitational body

force; otherwise the model would compress when gravity is

“turned on” at time 0.

For models using a viscoelastic rheology for ice, we apply

a sinusoidally varying tide of magnitude ρg1h at a range

of tidal periods. See Appendix C for a discussion of the im-

pact this tidal loading condition has on a viscoelastic model.

We use three main tidal constituents (i.e., the semidiurnal,

diurnal, and fortnightly tides) in our forcing functions for

the viscoelastic models. For simplicity, we approximate the

tidal periods of these tidal constituents as 12 h, 24 h, and

14 days, respectively. Of course, the three tidal constituents

cannot strictly be separated due to the nonlinearity of the

viscous deformation, and research by Gudmundsson (2006,

2007, 2011) and Rosier et al. (2014) suggests that fortnightly

variability in ice stream motion is a consequence of the non-

linear interaction of the semidiurnal ocean tides acting on

basal friction beneath the ice stream. Given that our mod-

els neglect basal friction and thus cannot reproduce an ap-

parent fortnightly tidal signal due to basal friction, we opt

instead to focus our modeling efforts on identifying the rela-

tionship (if any) between forcing frequency and Ltr. To this

end, we model the individual tidal frequencies rather than

a more accurate combined tidal loading function. To ensure

that the model is appropriately “spun-up” (e.g., Hetland and

Hager, 2005), we only present results that have been run long

enough such that the detrended, oscillatory motion is consis-

tent over consecutive tidal cycles.

A final consideration is the strong temperature depen-

dence of the ice viscosity (e.g., Weertman, 1983; Hooke

and Hanson, 1986; Paterson, 1994; Cuffey and Paterson,

2010). The temperature dependence of the viscosity coeffi-

cient, from Cuffey and Paterson (2010), is

A=2.4× 10−24 exp

(
−6× 104

8.314
×

[
1

T
−

1

263

])
Pa−3s−1

for T < 263K (9)

A=3.5× 10−25 exp

(
−1.39× 105

8.314
×

[
1

T
−

1

263

])
Pa−3s−1

for T > 263K,

where T is measured in kelvin (K). Antarctic ice streams

have been observed to have a strong temperature gradient

from the base to the surface (e.g., Engelhardt et al., 1990;

Engelhardt and Kamb, 1993, 1998; Engelhardt 2004a, b),

with some ice stream beds up to 20 K warmer than the ice

stream’s surface. We adopt an empirical fit of temperature

data from Whillans Ice Stream as the temperature profile in

all models. The temperature gradient of such a temperature

profile is defined by Engelhardt and Kamb (1993) as

dT

dz
= qbe

−y2

+
λaul

κ
e−y

2

y∫
0

e−t
2

dt, (10)

where y= z/l, l= 2κH/a, qb is the basal temperature gra-

dient, a is the accumulation rate, u is the ice stream horizon-

tal velocity, κ is the thermal diffusivity, H is the ice stream

thickness, and λ is the temperature gradient in air. All values

of these parameters, except model geometries, are taken from

Engelhardt and Kamb (1993). In solving for the temperature

profile, we set the basal temperature equal to the pressure

melting point of ice, −0.7 ◦C.

5.2 Results

Our primary interest in modeling stress-dependent viscoelas-

ticity is to determine whether this rheology results in sub-

stantial decoupling of the ice stream from its lateral margins.

Based on our estimates of tidal stress decay at Rutford Ice

Stream, viscoelasticity would need to increase our model’s

Ltr by a factor of between 2 and 4 to match the field ob-

servations of Gudmundsson (2007, 2008, 2011). Due to the

sinusoidal tidal loading function, we fit stress profiles along

the modeled ice stream’s length with

σxx = A(x, y, z)sin(ωt +φ), (11)

where A is the stress amplitude as a function of x, y, and z;

ω is the tidal frequency of the applied tide; and φ is the phase

delay. As with our elastic models, we observe an exponential

decay of tidal stress inland of the grounding line. We can

use the distance dependence of A to calculate Ltr for a given

model. Figure 10 shows the values of Ltr, stress, and phase

delay for a representative model (1 km thick and 10 km wide)

using a semidiurnal tide.

In addition to the three tidal frequencies, we also explore

different tidal loading conditions (simple vs. full; see Ap-

pendix C) and viscosities (homogeneous vs. temperature-

dependent) in our models. The modeled values of Ltr for

these viscoelastic models are summarized in Table 6. From

this table, we see that incorporating the more realistic

temperature-dependent viscosity results in an increase in Ltr

by less than 50 % for all tidal frequencies.

5.3 Viability of viscoelasticity as a decoupling

mechanism

The shear margins have a reduced effective viscosity com-

pared to the central ice (Fig. 11). This viscosity contrast

reflects the stress distribution induced by the background

(gravitational) flow and does not vary notably over a tidal

cycle. This result suggests that the background flow, even
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Figure 10. Model results for a temperature-dependent viscoelastic model forced by a semidiurnal tide. (a) shows the calculated values of

Ltr for depth profiles of the stress with result in an average value of Ltr of 12.81± 0.001 km. (b) shows the value of the longitudinal normal

stress (σyy ) as a function of horizontal coordinate. (c) shows the fitted phase shift ϕ as a function of horizontal coordinate. In (b) and (c), the

dashed lines correspond to the 95 % confidence interval values of the fit.

Table 6. Summary of the Ltr for the viscoelastic models. Viscosity

models are either homogeneous (homog.) or temperature dependent

(temp.). We include homogeneous models only for completeness

since we consider the temperature-dependent models to be more

physically realistic. The applied force describes the nature of the

tidal loading applied in the model, as is described in Appendix C.

Tide Applied Viscosity Ltr

force (km)

Semidiurnal Full Temp. 14.4

Semidiurnal Simple Temp. 16.4

Semidiurnal Simple Homog. 33.0

Diurnal Full Temp. 13.1

Diurnal Simple Temp. 12.8

Diurnal Simple Homog. 29.2

Fortnightly Simple Temp. 17.7

Fortnightly Simple Homog. 44.4

for low driving stresses, controls the effective viscosity in

our models with stress-dependent viscosity. It is beyond the

scope of this paper, but such a result suggests that the vis-

coelastic response of an ice stream to a tidal load can be

approximated using linear viscoelasticity if the ice stream

is modeled using a spatially variable effective viscosity that
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Figure 11. Effective viscosity of semidiurnal models taken at the

base of the homogeneous viscosity model. The streaming domain

of the ice stream is 10 km wide (−5 to +5 km). Note that the shear

margins have substantially reduced viscosity relative to the central

ice.

accounts for the background gravitational stress in the ice

stream.

However, even a large contrast in viscosity between the

shear margins and central ice stream fails to cause a substan-

tial increase in Ltr. While ice is expected to be less viscous in

the shear margins, the marginal ice’s viscosity is too large for
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substantial viscous deformation over a tidal cycle. The small-

est effective viscosities in our temperature-dependent models

are on the order of 1014 Pa s−1 in the (warmer) ice at the base

of the ice stream’s shear margins. This minimum viscosity is

about 2 orders of magnitude larger than the linear viscosity

found for laboratory ice (e.g., 1012 Pa s−1, from Jellinek and

Brill, 1956).

Additionally, the shortest Maxwell time for the modeled

ice stream is about 104 s (∼ 3 h), again in the warm ice at

the base of the shear margins. As mentioned above, even

here the ice stream’s response is primarily elastic. Only when

the model is forced with longer-period oscillations (e.g., the

fortnightly tide) does adding ice viscoelasticity to the model

increase Ltr by a meaningful amount due to viscous defor-

mation in the ice stream. However, as mentioned previously,

the fortnightly tidal signal observed at Rutford Ice Stream is

likely the results of nonlinear interactions between different

semidiurnal tides (Gudmundsson, 2006, 2007, 2011; Rosier

et al., 2014), so the calculated increase in Ltrf or the fort-

nightly tide may not be representative of real-world condi-

tions. Ultimately, the temperature dependence of ice viscos-

ity and the low temperatures in the majority of the ice stream

cause the ice’s response to a tidal stress to be predominantly

elastic, even in the shear margins.

6 Discussion

St. Venant’s principle states that the influence of an ap-

plied concentrated load on an elastic body is negligi-

ble at great distances away from the applied load (e.g.,

Goodier, 1942; Timoshenko and Goodier, 1982). For in-

stance, Goodier (1942) demonstrates that an axially forced

block, when restrained from below, has a stress field that is

only important close to the forced edge. Additionally, Good-

ier establishes the same conclusion when the block is fixed

from both above and below. These two cases are identical to

our 2-D model with a frozen base and a 2-D version (in map

view) of our 3-D ice stream model, respectively. Timoshenko

and Goodier (1982) provide an explicit form of the stress so-

lution for similar, albeit not identical, models. In their arti-

cle 24, they describe the expectation of exponential decay of

stress with distance away from a point load applied to the op-

posite edges of a beam. Thus, it should not be a surprise that

we find an exponential decay of stresses in these ice stream

models.

Previous models for tidal influences on ice stream motion

also found an exponential decay of stress with distance in-

land of the grounding line (e.g., Anandakrishnan and Al-

ley, 1997; Sergienko et al., 2009). Our 2-D model results

represent extremes of Anandakrishnan and Alley’s (1997)

model. The frozen-bed model corresponds to Anandakrish-

nan and Alley’s model with either a zero-thickness viscous

layer or an infinitely viscous (η≈∞) layer. The sliding-

bed model corresponds to Anandakrishnan and Alley’s

model with an infinitely weak (η≈ 0) viscous layer. As the

two-layer models of Anandakrishnan and Alley have the

additional free parameter of till viscosity, Anandakrishnan

and Alley’s (1997) models can constrain till viscosity using

Ltr or constrain Ltr using till viscosity, but not both simul-

taneously. Additionally, the lack of lateral restraint in the

model allows for the physically unrealistic case of infinite

stress transmission. The same issue is present in the flow-

line models discussed in Sect. 1.2. Our model results suggest

that the assumption of negligible lateral resistance is not rea-

sonable for channelized ice streams.

Of the published models considered earlier, Sergienko et

al. (2009) is the only study to explicitly account for lat-

eral resistances. Removing the basal drag condition from the

model of Sergienko et al. (2009) results in a 1-D approx-

imation of our 3-D models. However, the lack of a clear

length scale for the elastic springs in the model of Sergienko

et al. (2009) prevents us from directly applying this model

to constrain Ltr. As our finite-element modeling shows, the

presence of both non-sliding lateral margins and a frozen-

bed basal boundary condition results in exponential decay of

a tidal load with distance inland of the grounding line. Thus

over the stick–slip cycle in Sergienko et al. (2009), we expect

that the stress transmission would cycle between a thickness-

controlled value when stuck and a width-controlled value

when slipping.

In our 3-D models, ice stream width is the primary geo-

metric control on Ltr. In comparison, ice stream thickness

only has a minor effect on Ltr, causing a 5–10 % change in

Ltr per added kilometer of ice thickness. Extending these re-

sults, models with a realistic geometry will only vary sub-

stantially from the equivalent box model approximation if the

real ice stream’s width changes dramatically along the flow

direction. The width of Rutford Ice Stream does not change

significantly through the region with CGPS observations.

We have also shown that introducing variability in the elas-

tic moduli can have a pronounced effect on Ltr. However,

the precise change in Ltr depends on the choice of damage

parameter and the shear margin size. Generally, increasing

the damage (and thus elastic compliance) in the ice stream

margins increases the value of Ltr. However, in order to use

marginal damage to increase Ltr to a value large enough to

match observations, we must choose a damage coefficient

significantly higher than that proposed for calving in the ice

shelf (D∼ 0.99> 0.6± 0.1). The ice stream is almost cer-

tainly not more damaged than its calving ice shelf, as other-

wise having a cohesive ice shelf would be impossible. This

suggests that marginal damage alone does not sufficiently de-

couple the ice stream from its lateral margins.

Similarly, the viscoelastic models presented here demon-

strate that the reduction in marginal viscosity due to flow-

induced shear is insufficient to dramatically increase Ltr

through the ice stream. While Ltr increases slightly by us-

ing a temperature-dependent viscosity instead of homoge-

neous elasticity, this increase in Ltr is too small to rectify the
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model results with the observations from Rutford Ice Stream.

For comparison, the change in Ltr from viscoelasticity is

comparable to the change in Ltr due to increasing compli-

ance in the lateral margins for physically realistic damage

parameters.

6.1 Rutford Ice Stream

Figure 7b shows that the mechanisms of extreme-but-

physically-reasonable damage, viscoelasticity, and both

mechanisms combined linearly cannot increase modeled val-

ues of Ltr to match observed tidally modulated ice motion

from Rutford Ice Stream. We now briefly compare our model

results to other tidally modulated models of Rutford Ice

Stream.

In the 2-D models of Gudmundsson (2007, 2011), the sur-

face velocity perturbations on Rutford Ice Stream due to the

ocean tides are reproduced to a good approximation when

both a basal sliding law and ice viscoelasticity control the

propagation of the tidal load inland of the grounding line.

However, these models do not account for the exponential

decay of tidal stresses inland of the grounding line caused

by the ice stream’s lateral margins. As stated above, we find

that including the lateral margins results in a value of Ltr too

small to be consistent with tidally modulated observations

from Rutford Ice Stream.

While the 3-D modeling of Rosier et al. (2014) qualita-

tively agrees with our results, there is quantitative disagree-

ment in how these results apply to Rutford Ice Stream. In

particular, our 30 km wide model of Rutford Ice Stream (with

geometry based on imagery presented in Joughin et al., 2006)

finds that tidal stresses decay more rapidly inland of the

grounding line than observed in tidally modulated GPS data

(Fig. 7b). The 64 km wide model of Rosier et al. (2014) finds

a smallerLtr at short tidal periods and a moderately largerLtr

at long tidal periods than our model. Moreover, we find that

using temperature-dependent viscosity causes our model to

behave more elastically than viscously over a range of tidal

periods and thus using a temperature-dependent viscosity is

necessary to avoid overestimating Ltr. In contrast, Rosier et

al. (2014) uses a constant (relatively low) viscosity in their

models.

Our results suggest that these other models of Rutford Ice

Stream are overestimating the inland transmission of tidal

stresses. When geometric and rheological restrictions on Ltr

are included, the implicit assumption in these and our models

– that stress is transmitted through the bulk of the ice stream

either elastically or viscoelastically – is shown to be incon-

sistent with the observations from Rutford Ice Stream.

6.2 Other ice stream geometries

Generally, the models presented here demonstrate that chan-

nelized ice streams – even under the favorable conditions of

frictionless beds, enhanced marginal shear, and viscoelastic

flow – fail to reproduce the inland extent of tidal stresses

observed in nature. These models draw into question the

hypothesis that the observed influence of ocean tides on ice

stream motion is fundamentally an elastic process. However,

we have only considered a very specific range of ice stream

geometries so far: ice streams that have relatively narrow

widths and strong ice–ice interfaces on the lateral margins.

At least two other Antarctic ice streams have observations

of tidally modulated surface displacements (Bindschadler

Ice Stream and Whillans Ice Plain). For these ice streams,

the assumption of ice–ice interfaces is appropriate, but us-

ing a narrow (channelized) ice stream geometry is a poor

approximation of these wide ice streams, which can have

nearly equal widths and lengths. Our results show that mod-

els with increasing width still exhibit exponential decay of

tidal stresses, albeit over a longer distance than narrow ice

streams due to the width dependence of Ltr. However, when

Ltr is normalized by ice stream width, we see from Table 5

that Ltr/width does not seem to depend directly on the ice

stream width. Thus, these results for channelized ice streams

may also approximately describe the stress behavior of wider

ice streams. Note that in cases where an ice stream’s width

is comparable to its length (e.g., Whillans Ice Plain), these

results suggest that a tidal load might be transmitted over a

large portion of the ice stream.

However, real ice streams are neither frozen nor friction-

lessly sliding over their beds; frictional sliding is known to

play a major role in determining the ice stream’s total flow

(e.g., Weertman, 1957, 1964; Engelhardt and Kamb, 1998;

Hughes, 1998; Cuffey and Paterson, 2010). However, since

we assume frictionless sliding, the values of Ltr for the 3-D

models should be taken as maximum values, and thus apply-

ing a frictional sliding law would only serve to reduce Ltr.

As demonstrated by Rosier et al. (2014), adding basal fric-

tion can reduce the value of Ltr substantially. However, the

modeling of ice streams with a similar width and length as

well as the addition of a frictional basal sliding law is beyond

the scope of the present study.

6.3 An alternative mechanism for the transmission of

tidal stresses

We conclude that a process external to the ice stream is re-

quired for ocean tidal loads to impact glacier flow far in-

land of the grounding line for channelized ice streams. While

not explored in great detail here, our preferred hypothesis is

that the ocean tides perturb the subglacial hydrologic net-

work. Because the basal traction beneath these fast-moving

ice streams must be small in order to encourage sliding and

because these Antarctic ice streams are underlain by water-

logged tills (e.g., Alley et al., 1986; Smith, 1997; Engelhardt

and Kamb, 1998; Tulaczyk et al., 2000; Adalgeirsdottir et

al., 2008; Raymond Pralong and Gudmundsson, 2011), the

fluid pressure within the subglacial till is likely sufficient to

cause the till either to deform plastically or at least to weaken
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Figure 12

Figure 12. Schematic view of our hydrology hypothesis at neutral, high, and low tidal amplitudes, respectively. Triangles represent GPS

stations on the surface of the ice stream and ice shelf. The brown layer represents subglacial till. Maximum extent of highly-weakened till

is shown as a vertical line, and should vary in position with changes in the ocean tidal amplitude. When the maximum extent of highly-

weakened till is farther inland, GPS stations move faster relative to a neutral position since more of the ice is streaming. Conversely, when

the maximum extent of highly-weakened till is closer to the grounding line, the relative velocity of the GPS stations is lower than at a neutral

tide.

in a highly nonlinear fashion. Our hypothesis is that the os-

cillations in ocean tidal height (i.e., hydrostatic pressure)

expressed in till pore pressures can move the onset of weak-

ened till inland and seaward over the course of a tidal cycle.

As imagined in Fig. 12, when the onset of till weakening is

pushed inland, the ice stream at a given point should increase

velocity as a longer portion of the glacier is effectively de-

coupled from the bed. The opposite is true when the onset of

till weakening moves oceanwards. Furthermore, as the tidal

fluid pressure perturbation should decay with distance inland

of the grounding line, the effect is expected to be most pro-

nounced near the grounding line.

To derive an analytical form for this conceptual model,

we start by following the 2-D flow-line approach of

Gudmundsson (2007) and assume that the basal velocity of

the ice stream is a nonlinear function of the basal stress:

ub = Cτ
n
b , (12)

where C is a rheological coefficient, and n 6= 1. We then as-

sume that τb is also modulated by an effective normal stress,

σe= σ0−p (where p is the local fluid pressure), through a

Coulomb-type rheology for Antarctic till (e.g., Tulaczyk et

al., 2000). If the connectivity of the till is high (i.e., infinitely

fast), then the fluid pressure in the till is

p(x, t)= p0+ ρgh(t), (13)

where h(t) is the tidal height at the grounding line. If instead

the connectivity is low enough that there is a resistance to

flow, then one might expect the fluid pressure to instead be

p(x, t)= p0+ ρgh(t − x/U), (14)

where U is the flow velocity for a turbulent flow through (a

channelized) subglacial till (after Manning, 1891; Tsai and

Rice, 2010):

U =
1

0.038× k1/6
R2/3

(
dH

dx

)1/2

, (15)

where k is the Nikuradse roughness height for the till, R is

the radius of the flow channel, and H is the head in the flow

channel. In either case, the basal stress is

τb = f σe = τb0− fρgh(t − x/U), (16)

where f is the friction angle, which is typically f ≤ 0.6. If

we define the basal velocity ub by Eq. (12), then the cur-

rent model’s form, with infinitely high connectivity, is ex-

actly equivalent to the model of Gudmundsson (2007) except

that Gudmundsson’s constant K is replaced with f , despite

Gudmundsson’s model being a viscoelastic model of stress

transmission and this model being a hydrologic model with-

out stress transmission. For the case of finite connectivity, the

turbulent flow velocity U takes the place of the viscoelastic

relaxation speed of Gudmundsson (2011).

In this hydrologic model, we have essentially re-

placed the elastic and viscoelastic material parameters

of Gudmundsson (2007, 2011) with till material and

fluid flow parameters. If we take reasonable values of
dH
dx
=

5 m

104 m
= 0.0005, k= 0.1 m, and R= 0.1 m, we find that

U ≈ 0.2 m s−1. Taking f ≈ 0.2, the observations from Rut-

ford Ice Stream can be explained using our hydrologic model

as well as the viscoelastic model of Gudmundsson (2011),

but without the problems of elastic stress transmission dis-

cussed in the earlier sections of this paper. A more precise

evaluation of this hydrologic model, such as including the

effect of the decay of fluid pressure perturbation upstream, is

beyond the scope of this paper but could provide a method for

constraining basal friction and hydrologic connectivity using

the observed decay of tidal stresses on Antarctic ice streams.

7 Conclusions

From our modeling, we find the following:

1. For models supported either at the bed or at the margins,

an axially applied tidal load decays exponentially with
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distance inland of the grounding line. Furthermore, for

a reasonable elastic or viscoelastic model, this decay is

too severe to transmit stresses far enough inland to ex-

plain surface observations from Rutford Ice Stream, an

archetypical narrow ice stream.

2. The ice shelf and the resulting flexural stresses are im-

portant close to the grounding line but can be neglected

when considering the effects of tidal loading many tens

of kilometers inland of the grounding line.

3. An ice stream with compliant lateral margins transmits

tidal stresses farther inland than a homogeneous elastic

ice stream in a nonlinear fashion. Using a linear damage

mechanics model, we find that we would need damage

resulting in upwards of a 99.9 % reduction in Young’s

modulus to rectify model results with observations.

4. A Glen-style viscoelastic rheology using canonical

values and a realistic temperature profile does not

change the inland transmission of stress in a meaningful

fashion.

Our modeling demonstrates the importance of an ice

stream’s lateral margins’ control on the behavior of an ice

stream under the influence of a tidal load. We are unable

to reproduce observations of inland transmission of tidal

stresses from Rutford Ice Stream using a reasonable set of

elastic or viscoelastic parameters when the finite width of the

ice stream is included in our models.

Since we could not match observations using an elastic

or viscoelastic 3-D model of a tidally loaded ice stream,

we present a 2-D flow-line model for the inland transmis-

sion of a tidal perturbation through the fluid pressure in sub-

glacial till. Using reasonable material parameters, we demon-

strated that this model can reproduce the modeling results

of Gudmundsson (2011) for Rutford Ice Stream’s tidally

modulated motion without the transmission of tidal stress

through the ice stream itself. Thus, we conclude that for nar-

row (channelized) ice streams like Rutford Ice Stream the ob-

served influence of ocean tides on the motion of ice streams

can be caused by the tidal modulation of the subglacial hy-

drologic network rather than the direct transmission of tidal

stresses through the bulk of an ice stream.
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Appendix A: Importance of the ice shelf

Since the Antarctic ice streams discussed in this manuscript

have a connected ice shelf, we now consider the role that the

ice shelf plays as an intermediary between the ocean tides

and the grounded ice stream. Recall the 2-D model results

shown in Figs. 3 and 4 for models with and without an ice

shelf. For a given basal condition, variations between the two

model results must be due to the presence of the shelf as all

other boundary conditions are kept constant (see Sect. 2.2).

For 2-D models with a frozen bed, the presence of an ice

shelf has two effects. First, there are flexural stresses in-

troduced by the ice shelf that are limited to approximately

two ice thicknesses of the grounding line. Second, the over-

all magnitude of stresses in the ice stream is elevated com-

pared to models without an ice shelf. However, neither effect

changes Ltr between the two models. The presence of an ice

shelf in these models affects the magnitude, but not the decay,

of non-flexural tidal stresses inland of the grounding line.

For 2-D models with a free-sliding bed, the flexural

stresses decay to inconsequential levels about six ice thick-

nesses inland of the grounding line. Beyond this point, the

stress state of the ice stream is identical to the stress state

for a model with axial loading only. In the absence of basal

resistance, the presence of an ice shelf does not affect the

magnitude or decay of non-flexural tidal stresses within the

grounded ice stream.

The general result of flexural stresses only perturbing the

stress field near the grounding line is consistent with real-

world observations that limit ice flexure to 10 km inland of

the grounding line (Table 1). Additionally, as described in

Appendix B, the constant-stress condition used in our mod-

els to represent the ocean tide overestimates flexural stress

by almost a factor of 4 compared to a more realistic float-

ing condition, suggesting that flexural stresses may decay to

inconsequential values over shorter distance than predicted

by our models. Based on our models and observational data,

tidally induced flexural stresses are not expected to be siz-

able components of the tidal stresses found far inland of the

grounding line and, thus, can be neglected in our 3-D models.

However, our models show that the presence of an ice shelf

can influence the magnitude of non-flexural tidal stresses

seen inland of the ice stream’s grounding line for models with

basal resistance. As described earlier, the addition of an ice

shelf to the model with a frozen bed increases the equivalent

(tidal) stress throughout the ice stream by about an order of

magnitude compared to a model without an ice shelf (Fig. 4).

This increased stress magnitude is not seen in models with a

free-sliding bed (Fig. 3). As ice streams have little basal re-

sistance, we expect our 3-D models will behave more like the

free-sliding bed than the frozen-bed end-member 2-D model.

We do not expect the presence of an ice shelf in our 3-D mod-

els to influence the magnitude of non-flexural tidal stresses

inland of the grounding line. Ultimately, as our 2-D models

show that the ice shelf does not change Ltr for a given model

and is unlikely to change the magnitude of the non-flexural

stresses inland of the grounding line, we choose to neglect

the ice shelf in our 3-D models.

Appendix B: Analysis of the flotation condition for a one-

dimensional ice shelf

As shown in Fig. 2, we apply normal tractions to theX+ and

Z− edges of the model ice shelf to simulate the stress due

to a change in tide height. First, we consider the axial load

of the tide on the ice shelf’s X+ edge. A 1-D analog is a bar

that is axially compressed by a constant stress. Take the bar

as fixed at the unforced end. By the compatibility condition,

δσ/δx = 0. (B1)

The stress and strain in such a model must be constant

throughout the bar; that is, the stress transmission is infinite.

Second, we consider the flotation condition on the ice shelf

(i.e., the stress applied to the Z− edge of the ice shelf). We

take a 1-D analog using a Bernoulli–Euler beam subjected

to a distributed load coupled to the beam deflection by a

flotation condition. This approach is similar to the method-

ology of Reeh et al. (2000). The governing equation of such

a model is

EI
δ4w

δx4
= ρWg(1h−w), (B2)

where ρW is the density of water, g is gravitational accel-

eration, w is the (vertical) deflection of the beam, E is the

Young’s modulus of ice, I =
(
w
12

)
× (HI)

3 is the second mo-

ment of area for the ice shelf, and HI is ice thickness. At the

grounding line (x= 0), the beam is “clamped” (w= δw
δx
= 0)

and the freeboard edge is “free” ( δ
2w

δx2 =
δ3w

δx3 = 0).

The solutions of Eq. (B2) for multiple ice shelf lengths

are shown in Fig. B1. The primary result is that, for a 1 m

tide and an ice thickness of 1 km, increasing the length of

the beam beyond 5 km no longer influences the stresses at

the grounding line, suggesting that we only need to con-

sider a shelf several ice thicknesses long in our finite-element

models.

Additionally, we model a linearly thinning ice shelf

(through the modification of I , using I =
(
w
12

)
×(

[h0 − (h0 − h1)]
X
L

)3
, where the thickness linearly

changes from h0 to h1) and find that this only has a small

influence on the stress and deflection throughout the shelf.

The effects of ice shelf thinning will not be considered

further.

Lastly, we model the results for a simpler, uncoupled

stressing condition. In Fig. B1, the red dashed line corre-

sponds to a constant loading function equal to ρWg1h (the

“constant loading function”). This simpler condition overes-

timates the stress and deflection over the model domain com-

pared to the more correct flotation condition. However, as the
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Figure B1. Results of the 1-D flexural beam approximation of a

floating ice shelf. The upper figure shows the beam deflection, while

the lower section shows the stress at the upper edge of the beam. See

text in Appendix B for a description of the governing equations and

boundary conditions for the models shown.

boundary condition is decoupled from the deflection w, we

can directly use this constant loading as a “pseudo-flotation”

condition on the Z− edge of our finite-element ice shelf. The

result of this simplification is that the flexural stresses in-

duced by the ice shelf will be overestimated at the grounding

line in our 2-D finite-element models.

Appendix C: Viscoelastic tidal loading

Following the rationale of Cuffey and Paterson (2010)

(and references therein), the full stress balance for an ice

stream–shelf system should involve balancing the hydrostatic

pressure at the edge of the ice shelf and that of the ocean.

Since the ice shelf is floating, there is a net “pull” on the

ice stream due to excess pressure in the ice shelf compared

to that of the ocean. As ice viscosity is stress-dependent, we

need to account for this end stress in our models to accu-

rately model the viscous deformation in the ice stream. How-

ever, our viscoelastic models are more numerically tractable

with a simple oscillatory tidal condition based solely on the

change in ocean tidal height because a larger stable time step

is allowed and model convergence is faster. Thus, we com-

pare the model output for these two tidal loading conditions,

referred to as “full” and “simple”, to determine whether our

simple tidal condition adequately approximates the full tidal

condition. We find that having the more complex full tidal

condition changes Ltr by only about 20 %, far below the fac-

tor of 2 to 4 change necessary to match observations. We use

this result as justification for using the more numerically fa-

vorable simple tidal condition.
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Figure C1. Schematic diagrams of the full tidal forcing condition

at a neutral, high, and low tide. The tidal stress will be the ex-

tensional/compressional stress due to the difference in hydrostatic

pressure at the edge of the ice shelf (shown in the graph on the right

of the figure) and the flexural stresses due to the presence of the ice

shelf. HI is the distance between the surface of the ice shelf and the

surface of the ocean.

C1 Full tidal loading condition

In addition to the oscillatory load of the ocean tide, there are

other stresses at the grounding line that a full tidal loading

condition needs to consider. These stresses include the hy-

drostatic pressure of the flowing ice, the hydrostatic pressure

of the static ocean water, and the flexural stress imposed on

the grounding line due to the vertical motion of the ice shelf.

Figure C1 shows a schematic picture of the interaction of

these stresses on an ice stream at neutral, high, and low tides.

First consider the hydrostatic pressures of the ice and the

water. For the ice, the hydrostatic stress at a depth z is

ρIg(HI − z), where ρI is ice density, g is gravitational ac-

celeration, and HI is the ice thickness. For the water, we first

use the condition that an ice stream is neutrally buoyant at

the grounding line to find that the average water level of the

ocean is HT =HI (1 − ρI/ρW), where ρW is the density of

water. This flotation condition is used to find that hydrostatic

pressure of the ocean at 0≤ z≤HT is ρWg(HT − z). How-

ever, this stress balance occurs across the edge of the ice

shelf, not at the grounding line. By assuming that viscous

deformation of the ice shelf is negligible, the results from
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our 2-D shelf models (Sect. 3.1) allow us to move this stress

balance to the grounding line.

To account for the bending stress from ice flexure, we use

the simple beam theory presented in Appendix B. From this

simple model for flexure, we expect that the flexural stress

at the grounding line will be on the order of a few 100 kPa

at a maximum (with the exact value dependent on the ice

thickness and the geometry of the ice shelf).

The full load applied at the grounding line is the sum of

these stresses. Figure C1 shows a graphical representation of

these tidal loads described by Eq. (C1):

σapplied(z)=

{
−ρIg (HI− z) if z > HT
−ρIg (HI− z)+ ρWg (HT − z) if z ≤HT

}

+σflex(t)

(
2z

HI

− 1

)
+ ρWg1h(t), (C1)

where σflex is the maximum amplitude of flexural stress in-

duced at the grounding line. For a reasonable tidal loading,

the maximum force comes from the static pull, which is on

the order of 1 MPa at the base of a 1 km thick ice stream,

while the flexural stress is a few hundred kPa and the change

in tidal weight is a few tens of kPa.

C2 Simple tidal loading condition

For the simple loading condition, we apply the variable por-

tion of the ocean tidal load as a normal traction to the ground-

ing line. Mathematically, this condition is

σapplied = ρWg1h(t). (C2)

This is identical to the approach taken in our linear elastic

models, except that the applied stress is time-variable. The

time dependence of this condition is described in Sect. 5.1.

C3 Stress transmission comparison

Figure C2 shows a comparison between the tidally induced

σyy component of stress for a map view of the base of a

model with the full (left panel) and simple (right panel) load-

ing conditions taken at a peak in stress response. We first

note that, overall, the stress field is remarkably similar be-

tween the full and simple loading conditions. The only major

difference occurs in the portion of the ice stream near the

grounding line, where the full loading condition has higher

stress values than those of the simple loading model. Such

an increase in the value of the stress near the grounding line

in the full model is not surprising as the value of the applied

load is larger in this model than with the simple loading con-

dition. However, farther inland, the stresses in the models are

nearly indistinguishable. The increased stress at the ground-

ing line causes an increase in Ltr for the full tidal loading

model of approximately 20 %, suggesting that the hydrostatic

pull on the ice stream edge and ice shelf flexure do not influ-

ence ice viscosity enough to significantly change the value

of Ltr.

Figure C2
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Figure C2. Comparison of the value of the longitudinal normal

stress (σxx ) for the full tidal forcing condition (left panel) and the

partial tidal forcing condition (right panel) at peak tidal amplitude.

The full condition has a higher normal stress at the grounding line

and a slightly more rapid decay of the stress due to the inclusion of

the flexural stress. Once inland of the grounding line by 5 to 10 km,

the stress-transmission length scales are comparable between the

two forcing conditions.

As the difference between Ltr in the models explored here

is only about 20 %, we feel safe in neglecting the full tidal

loading condition in our viscoelastic models. In order to

match observations with our models, Ltr needs to increase

by a factor of 2 to 4 from the elastic models (see Sect. 3.4).

Given the other model simplifications and assumptions, the

slight gain in model accuracy is not worth the increased com-

plexity (and thus computation time) of using the full loading

condition.
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