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Abstract. The manufactured solution technique is used for
the verification of computational models in many fields. In
this paper, we construct manufactured solutions for the three-
dimensional, isothermal, nonlinear Stokes model for flows
in glaciers and ice sheets. The solution construction proce-
dure starts with kinematic boundary conditions and is mainly
based on the solution of a first-order partial differential equa-
tion for the ice velocity that satisfies the incompressibility
condition. The manufactured solutions depend on the geom-
etry of the ice sheet, basal sliding parameters, and ice soft-
ness. Initial conditions are taken from the periodic geometry
of a standard problem of the ISMIP-HOM benchmark tests.
The upper surface is altered through the manufactured solu-
tion procedure to generate an analytic solution for the time-
dependent flow problem. We then use this manufactured so-
lution to verify a parallel, high-order accurate, finite element
Stokes ice-sheet model. Simulation results from the compu-
tational model show good convergence to the manufactured
analytic solution.

1 Introduction

Model verification and validation are crucial steps in the de-
velopment and testing of computational models. Verification
is the process of determining if a particular implementation
and solution of a given mathematical model (for example
through some choice of model discretization and numerical
solution algorithms) is complete and error free. Validation

aims to answer the entirely separate question of whether or
not a given mathematical model is an accurate representation
of the real-world process it aims to mimic. Manufactured an-
alytical solutions provide one means for performing model
verification.

The goal of this paper is to provide the means, through the
use of manufactured solutions, for the verification of three-
dimensional ice-sheet models as a necessary step for provid-
ing accurate, science-based predictions of ice-sheet changes
over climatic time scales. Manufactured analytical solutions
have been used previously by the ice-sheet modeling com-
munity (Bahr, 1996; Bueler et al., 2005, 2007; Sargent and
Fastook, 2010).

The nonlinear, three-dimensional (3-D) Stokes model,
which does not utilize any approximations based on the shal-
lowness of the domain, is the standard non-shallow descrip-
tion of ice flows within glaciers and ice sheets (Le Meur
et al., 2004; Leysinger Vieli et al., 2004; Gagliardini and
Zwinger, 2008; Burstedde et al., 2009; Zhang et al., 2011;
Larour et al., 2012; Leng et al., 2012). The more commonly
used shallow-ice, shallow-shelf, L1L2, and first-order ap-
proximations are reduced forms of the 3-D Stokes model
that are numerically simpler and computationally cheaper
to solve, but with an attendant loss of fidelity in some sit-
uations (see discussions inDukowicz et al.(2010); Schoof
and Hindmarsh(2010) and the references cited therein). As
an example, the ISMIP-HOM project (Pattyn et al., 2008)
compared diagnostic output from a number of “higher-order”
(i.e., those accounting for horizontal stress gradients) and
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20 W. Leng et al.: Verification of three-dimensional Stokes ice-sheet models

Stokes flow ice-sheet models on idealized domains. For cer-
tain combinations of domain aspect ratio, basal roughness,
and basal sliding conditions, higher-order and Stokes model
solutions differ significantly. Ideally, diagnostic output from
Stokes models should first be compared with that from lower-
order approximations in order to identify portions of the
model domain for which the Stokes (relatively expensive)
versus the reduced (relatively cheaper) sets of equations ap-
ply with sufficient accuracy (e.g.,Morlighem et al., 2010).
Such an approach would allow for an ideal tradeoff between
model accuracy and expense (e.g.,Seroussi et al.(2012)).

Manufactured solutions for the verification of isothermal
Stokes ice-sheet models were recently proposed bySargent
and Fastook(2010) for two and three-dimensional model do-
mains. In their clever approach, which we follow here, the
major task in the construction of the analytic solution is to
solve a first-order partial differential equation. However, due
to an error in their solution method for this key part in the
three-dimensional case, theSargent and Fastook(2010) man-
ufactured solutions (both the general form of the solution and
the solution for the specific geometry) for the 3-D Stokes
model are incorrect. InLeng et al.(2012), the authors “ex-
truded” the two-dimensional analytical solution ofSargent
and Fastook(2010) to a third dimension and used it to verify
the output from their Stokes ice-sheet model. This method of
generating and applying a 3-D manufactured solution is far
from optimal, as the 3-D model is applied in a 2-D mode,
leaving parts of the 3-D model untested. In this paper, we
rectify this deficiency by generating fully 3-D manufactured
solutions for the validation of isothermal, nonlinear Stokes
models of ice flow.

The paper is organized as follows. In Sect.2, we present
the 3-D, nonlinear Stokes equations for modeling isothermal
ice sheets along with some related boundary conditions. In
Sect.3, we correct the errors made bySargent and Fastook
(2010) and derive in detail the correct manufactured analyti-
cal solutions for the isothermal, 3-D, time-dependent Stokes
ice-sheet model. In Sect.4, we use the manufactured solu-
tions for the numerical verification of the parallel finite ele-
ment ice-sheet model ofLeng et al.(2012). Finally, in Sect.5,
we provide some concluding remarks.

2 Governing equations of the Stokes ice-sheet model

2.1 Ice dynamics and evolution

The dynamical behavior of ice sheets is modeled by the
Stokes equations for an incompressible, power-law viscous
fluid. Letting[0, tmax] denote the time interval of interest and
�t the three-dimensional spatial domain occupied by the ice
sheet, we have
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where(u,v,w)T denotes the velocity,p the pressure,ρ the
density of ice, andg the gravitational acceleration. The ef-
fective viscosityµ is defined by Glen’s flow (Nye, 1957) law
as
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wheren is the power-law exponent (n= 3 is generally as-
sumed for modeling ice),A is the temperature-dependent de-
formation rate factor, anḋε is the strain-rate tensor defined
asε̇ =

1
2(B +BT ) with B = (∇u,∇v,∇w)T . In the isother-

mal case,A is taken as a spatially and temporally uniform
constant.

If the top surface of the ice sheet is allowed to evolve in
time, then a prognostic equation describing the evolution of
that free surface is included. The ice-sheet domain�t at each
time t ∈ [0, tmax] can be defined as

�t = {(x,y,z) | b(x,y)≤ z ≤ s(x,y, t)

for (x,y) ∈�H}, (6)

where�H denotes the horizontal extent of the ice sheet,
s(x,y, t) defines the top surface elevation, andb(x,y) de-
fines thefixedbottom surface of the ice sheet. We denote the
top surface as0s and the bottom surface as0b. The motion
of the free surface is governed by the kinematic relation
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on the top surface of the ice sheet0s, wherea represents
the surface mass balance (accumulation minus ablation). Be-
cause the bed of the ice sheet is assumed to be fixed and
the melting/refreezing rate is neglected, we obtain a similar
kinematic relation,
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on the bottom surface0b.

2.2 Boundary conditions

At the top surface0s of the ice sheet, we impose a stress free
boundary condition:

1

rs

[
−
∂s

∂x

(
2µ
∂u

∂x
−p

)
−
∂s

∂y
µ

(
∂u

∂y
+
∂v

∂x

)
+µ

(
∂u

∂z
+
∂w

∂x

)]
= 0, (9)

1

rs

[
−
∂s

∂x
µ

(
∂u

∂y
+
∂v

∂x

)
−
∂s

∂y

(
2µ
∂v

∂y
−p

)
+µ

(
∂v

∂z
+
∂w

∂y

)]
= 0, (10)

1

rs

[
−
∂s

∂x
µ

(
∂u

∂z
+
∂w

∂x

)
−
∂s

∂y
µ

(
∂w

∂y
+
∂v

∂z

)
+

(
2µ
∂w

∂z
−p

)]
= 0, (11)

The Cryosphere, 7, 19–29, 2013 www.the-cryosphere.net/7/19/2013/



W. Leng et al.: Verification of three-dimensional Stokes ice-sheet models 21

Fig. 1. Illustration of the ice-sheet geometry (the top and bottom surfaces) at the timet = 0 (left) and at the timet = 1000 yr (right). The
middle figure is thex-direction profiles taken aty = L/4 of the ice-sheet top and bottom surfaces at 100 year time intervals fromt = 0 to
1000 yr.

and wherers =

√
1+ ( ∂s

∂x
)2 + ( ∂s

∂y
)2.

The bottom bedrock surface0b of the ice sheet can be de-
composed into two parts:0b,fix, at which the ice sheet is fixed
to the bottom bedrock, and0b,sld, at which it is allowed to
slip. We apply the zero velocity (no-slip and no-penetration)
boundary condition

u= v = w = 0 (12)

on the fixed part of the basal boundary0b,fix and theRayleigh
friction boundary condition
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is the normal stress, and the parameterβ2 denotes a given,
positive sliding coefficient.

Note that the zero velocity boundary condition Eq. (12) au-
tomatically implies the kinematic condition Eq. (8), whereas
the latter condition is included as the third equation of the
sliding condition Eqs. (13)–(15). If 0b,fix = 0b, we have a
pure zero velocity boundary condition on the bedrock sur-
face; if0b,sld= 0b, we have a pure sliding boundary condi-
tion; otherwise, we have a mixed boundary condition.

We also assume thatb(x,y) 6= s(x,y, t) along the bound-
ary of �H, so that the ice sheet has a lateral boundary0`
with some appropriate boundary conditions imposed there;
for example, a periodic boundary condition or a zero veloc-
ity boundary condition could be applied there.

3 Manufactured analytic solutions

3.1 A general form of the analytic solution

Following the work ofSargent and Fastook(2010), we start
from the kinematic boundary conditions Eqs. (7) and (8) on
the top and bottom surfaces, respectively, and set the vertical
velocityw by linearly interpolatingu andv from the top to
bottom bedrock surfaces as follows:
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Differentiating Eq. (17) with respect toz then gives
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Now substituting Eq. (18) into the incompressibility equa-
tion Eq. (4), we obtain a first-order quasi-linear partial differ-
ential equation with three independent variables,x, y, z, and
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Fig. 2.Analytical solution at the top surface of the ice sheet. From left to right: the velocity componentsu, v, andw (m a−1) and the pressure
p (105Pa). From top to bottom:t = 0, 100, and 1000 yr.

two dependent variables,u andv:
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Let us choose the velocityu(x,y,z, t) to be of a form sim-
ilar to the manufactured 2-D analytical solution inSargent
and Fastook(2010),

u(x,y,z, t)= c1(s− b)γ1
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+ cb1
1
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whereγ1, λ1, c1, andcb1 are some parameters. If we define
the scaled ice depth

d(x,y,z, t)=
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, (21)

and the ice thickness

h(x,y, t)= s− b, (22)

then Eq. (20) can be expressed as
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γ1(1− dλ1)+ cb1
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h
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Note thats, b, andh all depend onx andy, but are indepen-
dent ofz.

It is then easy to verify that the derivatives ofu(x,y,z, t)
are given by
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Substituting Eqs. (24)–(25) into Eq. (19), we obtain a new
first-order quasi-linear partial differential equation with two
independent variables,y, z, and one dependent variablev:
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Note that the variablev in general depends onx, y, z, andt ;
however, the partial differential Eq. (26) now only involves
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Fig. 3. Analytical solution along the cross sectiony = L/4 of the ice sheet. From left to right: the velocity componentsu, v, andw (m a−1)
and the pressurep (105Pa). From top to bottom:t = 0, 100, and 1000 yr.

partial differentials ofy andz at a fixed timet . Thus, in the
following deductions, the total differential d(·) is on variables
y andz only, e.g., d(g(f (y,z)))=

dg
df (

∂f
∂y

dy+
∂f
∂z

dz).
In the work ofSargent and Fastook(2010), the first-order

partial differential Eq. (26) was solved incorrectly; it resulted
in a wrong solution forv and consequently the wrong gen-
eral formula for the analytical solution and the specific solu-
tion under a special geometry. We present the correct solution
process in the following.

The characteristic equation of Eq. (26) can be found as
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Note that the first-order partial differential Eq. (26) does
not need initial conditions. To solve it we first need to find
two independent integrable identities that, when integrated,
provide equations such as{
φ(y,z,v)= C1,

ψ(y,z,v)= C2,
(28)

whereC1 andC2 are two underdetermined constants. The
solution of Eq. (26) then can be written as

θ(φ,ψ)= 0, (29)

whereθ is an arbitrary smooth function ofφ andψ .
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The second integral can be deduced from
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Fig. 4. Distribution of errors of the numerical simulations using the grid of resolution 160× 160× 40 at timet = 0. From left to right: the
velocity componentsu, v andw (m a−1) and the pressurep (105Pa). Top row: on the top surface, bottom row: along the cross section
y = L/4.

from which we then have
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Note that d
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= 0, in which case the integration of
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The combination of Eqs. (29), (33), and (37) implies that
the general solution of Eq. (26) can be written as
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for some smooth functionθ(·, ·).
To better represent the relationship between the velocityv

and the depthd, we choose the functionθ as

θ(φ,ψ)= ψ − c2[1− (1−φ)λ2] + cb2, (39)

whereλ2, c2, andcb2 are again some parameters. It is then
easy to verify thatv can be written in the form
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which is different from the one presented inSargent and Fas-
took (2010).

By combining Eqs. (17), (23), and (40), we finally obtain
the velocity solution derived from the kinematic boundary
condition and the mass conservation equation as follows:
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w(x,y,z, t)= u(x,y,z, t)
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We choose the pressure solution to be that from the first-
order ice-sheet model (Pattyn, 2003):

p(x,y,z, t)= −2µ
∂u

∂x
− 2µ

∂v

∂y
+ ρg(s− z). (44)

Equation (44) is derived from the Stokes momentum
Eqs. (1)–(3) and the stress-free boundary conditions
Eqs. (9)–(11) on the top surface through a first-order approx-
imation. Consequently, the above manufactured analytic ve-
locity and pressure solutions in Eqs. (41)–(44) do not sat-
isfy exactly the momentum equations and the top surface
boundary equations. In order to maintain the equalities of
these equations, some additional compensation terms need
be added to the right-hand sides of the Eqs. (1)–(3) and (9)–
(11); these terms can be easily obtained by way of substitut-
ing the above constructed analytical solution in Eqs. (41)–
(43) and Eq. (44) into the left-hand sides of Eqs. (1)–(3)
and Eqs. (9)–(11). The explicit formulas for calculating these
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Fig. 5.Plot of the average (left) and the maximum (right) absolute errors of the simulated top surface elevations (m) at each of the time steps
for the time-dependent ice-sheet flow experiment using the grid of resolution 80× 80× 20.

compensation terms for the manufactured solution under the
specific geometry presented in the next section are given in
the supplemental materials. We further note that if a sliding
boundary condition is imposed on the (full or partial) bottom
bedrock surface, then the right-hand sides of Eqs. (13) and
(14) also need to be slightly revised as in the above process.

3.2 A manufactured solution under a specific geometry
for time-dependent ice flow

Given the surface and bed elevation (i.e., the geometry of
an ice sheet), a specific manufactured solution can be pro-
duced using the above procedure from Eqs. (41)–(44). Our
goal here is to present the ice-sheet modeling community
a correct, practically useful and simple sample solution to
verify the computational 3-D Stokes ice-sheet models. To
simplify the formulation, we introduce some scaling param-
eters as follows:L is the horizontal length scale (span) of the
ice sheet,Z is the vertical length scale,δ = L/Z is the as-
pect ratio,U = AL(2ρgZ)n is the horizontal velocity scale,
W = UZ/L is the vertical velocity scale, andT = Z/W is
the time scale. Note that we do not use non-dimensionalized
variables or equations; the scaling parameters are used only
for a clearer representation of the derived solutions.

The geometric setting for the the ISMIP-HOM benchmark
experiment A (Pattyn et al., 2008) is used here; a parallel-
sided slab of ice with a mean thickness ofZ and lengthL
lies on a bed with a mean slope ofα = 0.5◦. The top surface
of the ice sheet at the initial timet = 0 is given by

s(x,y,0)= s0(x,y)= −x tan(α). (45)

The fixed basal topography is defined as a series ofZ/2 am-
plitude sinusoidal oscillations about the mean bed elevation:

b(x,y)= s0(x,y)+ η(x,y)−Z (46)

with

η(x,y)=
Z

2
sin

(2πx

L

)
sin

(2πy

L

)
. (47)

Evolving over time, the top surface of the ice sheet slowly
changes from flat with a uniform slope to sinusoidal in shape:

s(x,y, t)= s0(x,y)+ η(x,y)ξ(t) (48)

with

ξ(t)= 1− e−ct t , (49)

wherect is a parameter that controls the rate of ice-thickness
change.

We assume a periodic surface mass balance given by

a(x,y, t)= ctη(x,y)e
−ct t . (50)

Then, it is easy to verify that

∂s

∂t
− a = 0 (51)

and thus

−
1

s− b

y∫
L
4

(∂s
∂t

− a
)

dy = 0. (52)

Based on the above known functionss, b, anda and the
parametersγ1, λ1, λ2, c1, c2, cb1, cb2, andct, we construct
the velocity solution(u,v,w) and the pressure solutionp
using Eqs. (41)–(44) for the time-dependent, isothermal, 3-
D Stokes ice-sheet flow model. Note that this manufactured
solution is obviously doubly periodic in velocity so that a
periodic boundary condition on the lateral boundary0l (0l 6=

∅) is satisfied.
To further simplify the computation of the integral in

Eq. (42), we setγ1 = 0 andλ1 = 4. Then the velocity com-
ponentv defined in Eq. (42) simplifies to

v(x,y,z, t)=
c2

s− b

[
1−

(
s− z

s− b

)λ2
]

+ cb2
1

s− b

−
1

2

c1

s− b

[
1−

(
s− z

s− b

)4
]
Z cos

(2πx

L

)
cos

(2πy

L

)
e−ctt , (53)
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Fig. 6.Distribution of the errors of the simulated top surface elevations (m) for the time-dependent ice-sheet flow experiment using the grid
of resolution 80× 80× 20. From left to right: at 100, 300, and 1000 yr.

which is much easier to calculate.
Additionally, we also letcb1 = cb2 = 0; then, the velocity

solution Eqs. (41)–(43) can be finally simplified as

u(x,y,z, t)= c1

[
1−

(
s− z

s− b

)4
]
, (54)

v(x,y,z, t)=
c2

s− b

[
1−

(
s− z

s− b

)λ2
]

−
1

2

c1

s− b

[
1−

(
s− z

s− b

)4
]
Z cos

(2πx

L

)
cos

(2πy

L

)
e−ctt , (55)

w(x,y,z, t)= u(x,y,z, t)
( ∂b
∂x

s− z

s− b
+
∂s

∂x

z− b

s− b

)
(56)

+v(x,y,z, t)
(∂b
∂y

s− z

s− b
+
∂s

∂y

z− b

s− b

)
.

The solution(u,v,w) defined by Eqs. (54)–(56) satisfies a
pure zero-velocity boundary condition on the whole bedrock
surface0b,fix = 0b. The parametersc1, c2, andct can be used
to control the velocity falling within a reasonable range. In
general, the largerc1 andc2 are, the larger the magnitude of
the velocity of the ice sheet and its variation are. The bigger
ct is, the shorter the time for the ice sheet to reach the steady
state is.

Note that the velocity solution(u,v,w) of the (slightly
modified) Stokes equation at the initial timet = 0 could eas-
ily be generated by setting the functionξ(t)= 0 in the ana-
lytical time-dependent solutions. Similarly, the final geomet-
rically stable ice-sheet configuration (i.e., a steady state with
ds
dt = 0) will have a top surface with the elevation function
given bys0(x,y)+η(x,y), generated by setting the function
ξ(t)= 1 in the analytical time-dependent solution. We also
would like to point out that the values of the parameters cho-
sen in this paper for the specific example are different from
those used inSargent and Fastook(2010) and give us a much
simpler specific solution and compensatory terms based on
the correct general solution formula.

4 Numerical verification of the Stokes ice-sheet model
of Leng et al. (2012)

We use the above manufactured analytic solutions to ver-
ify the parallel, high-order accurate, finite element, nonlinear
Stokes ice-sheet model inLeng et al.(2012). The model uses
tetrahedral elements that are produced by first extruding a 2-
D, triangular mesh in thex,y-planes along thez-direction,
after which each vertical prism is decomposed into three
tetrahedral elements. The stable Taylor–Hood (P2–P1) finite
element pair is used. A pure zero-velocity boundary condi-
tion is imposed on the whole bedrock surface0b (no sliding
region). The free-surface boundary condition with compen-
satory terms is imposed on the top surface0s and periodic
boundary conditions are imposed on the lateral boundaries
0l .

4.1 Description of the manufactured analytical solution

We setγ1 = 0, λ1 = 4, cb1 = 0, andcb2 = 0, as discussed in
the previous section; the other parameters used in the con-
struction of the manufactured solution are chosen as fol-
lows: λ2 = 4, c1 = 10−9U , c2 = 10−9U and ct = 10−8/T .
The horizontal length scale of the ice sheet is set to beL= 80
km and the vertical length scaleZ = 1 km. For the param-
eters related to physical properties of the ice sheet, we set
A= 10−16 (Pa−na−1) andn= 3. Note that the C code for
calculating the compensation terms of this particular exam-
ple can be found in the supplemental materials.

After t = 1000 yr of evolution, the manufactured solution
for the ice-sheet surfaces(x,y, t), as defined in Eq. (48), will
be close to steady state such that no significant changes in the
free surface occur. Initially, the top surface is flat with a uni-
form slope (Fig.1, left). When the final steady state is essen-
tially reached (at 1000 yr), the surface takes on the sinusoidal
shape of the bed topography and the ice thickness is every-
where uniform and equal (Fig.1, right). Figure1(middle)
illustrates the evolution of the ice surface at 100-yr time in-
tervals along a selected profile line.

Figure2 presents the three velocity components and the
pressure of the analytical solution defined by Eqs. (54)–(56)
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Fig. 7. Plot of the volume of the ice sheet at each of the time steps
for the time-dependent ice-sheet flow experiment using the grid of
resolution 80× 80× 20.

and Eq. (44) at the top surface of the ice sheet at timest = 0,
100, and 1000 yr. Figure3 shows results along the cross sec-
tion aty = L/4 at the same times. Because the thickness is
not uniform at the beginning of the simulation, the velocity
and free surface co-evolve over the length of the simulation
in order to increase or decrease the surface elevation, even-
tually leading to a uniform ice thickness everywhere in the
domain. At the steady state, the ice flow is almost uniform
horizontally but layered in the vertical.

4.2 Convergence of the Stokes solver for the ice-sheet
dynamics

We first test the convergence of the Stokes solver for the
ice-sheet dynamics using the manufactured analytical solu-
tion at the initial timet = 0. Four sets of tetrahedral grids
with uniform refinement (starting with a 20× 20× 5 struc-
tured prismatic mesh) were used, with a maximum number
of degrees of freedom (DOF) of 25 985 444 at the finest grid
resolution (160× 160× 40). The viscosityµ in this manu-
factured solution could be huge or even infinite at some lo-
cations; in our experiments we remove the viscosity singu-
larity problem by settingµ to be a very large number, e.g.,
1010, at those points; this practical treatment may result in
some additional but small numerical errors near the singular-
ity points. Numerical results from these tests are presented
in Table 1. In Table 1, the error measure is theL2 norm
of the solution absolute error, and the units are m a−1 km3

for velocity and 105 Pa km3 for pressure. Our approximate
solutions clearly match the analytical solution well, i.e., it
is easy to observe the errors reducing with grid refinement.
Suppose that the error reduces with the grid refinement as
‖uh − u‖L2 =O(hr), whereh is the maximum element size
of the grid anduh is the numerical solution on such a grid,
thenr is called therate of convergence. If the convergence
rates in the Table1 are calculated between consecutive pairs
of grids, e.g., the errors on a series of uniformly refined grids
aree1,e2, . . . ,eK , then the corresponding convergence rates
are log2(

ei−1
ei
), i = 2, . . . ,K, respectively. The rates of con-

vergence shown in Table1 are larger than 2.33 for the ve-
locity and 1.51 for the pressure. The errors of the finite ele-
ment method with P2–P1 element pairs for solving constant-
viscosity Stokes problems are theoreticallyO(h3) for veloc-
ity andO(h2) for pressure. The ice-sheet Stokes model is a
nonlinear, variable-viscosity Stokes problem and in our tests
the obtained convergence rates are similar or slightly lower
than the optimal ones for the constant-viscosity Stokes prob-
lem. Error distributions of the numerical simulations (using
the grid of resolution 160× 160× 40) of the three velocity
components and the pressure on the top surface and along
the cross section aty = L/4 are presented in Fig.4. We ob-
serve that the error of the simulation results is relatively large
along the linesx+ y = L/2, x+ y = L, andx+ y = 3L/2,
near which the viscosityµ of the manufactured solution has
quite sharp changes.

4.3 Simulation of time-dependent ice-sheet flows

To simulate time-dependent ice-sheet flow fromt = 0 to
t = 1000 yr, a grid of 768 000 tetrahedra (from a 80×80×20
structured prismatic mesh) was used, resulting in 3 296 724
DOFs. We divided the period [0,1000] uniformly with a time
step1t = 5 yr to obtain a set of time steps{tk}200

k=0. At each
time steptk, with 0≤ k < 200, we compute the ice veloc-
ity from the numerical model and update the ice thickness at
time tk+1 according to the free surface Eq. (7), using an ex-
plicit finite element discretization scheme (Leng et al., 2012).
We specially remark that for this manufactured solution,
when the ice sheet gets closer to the steady state, the viscos-
ity µ has overall stronger singularity which makes computa-
tional simulations more difficult. Thus, it is also worth point-
ing out that for this example some smoothing techniques as
a post processing could be applied to the velocity on the top
surface around places where the viscosity has sharp changes
(it often causes large discontinuity in the approximate solu-
tion), in order to improve accuracy in updating the elevation
of the ice-sheet top surface through numerical solution of
Eq. (7). We applied the Gaussian smoothing in our simula-
tions.

Figure5 plots the average and maximum absolute errors at
each of the time steps in our time-dependent ice-sheet flow
experiment, and Fig.6 presents distribution of the errors of
the computed top surface elevation at 100, 300, and 1000 yr.
The error of the modeled ice-sheet top surface is accumu-
lating linearly as time goes on as shown, the average abso-
lute error is about 1 m at 100 yr, 2.2 m at 300 yr, and 8 m
at 1000 yr, and the corresponding maximum absolute error
is about 2.5 m, 8 m, and 30 m, respectively. Another fact we
observe is that although the analytical solution reaches the
geometrically steady state ast → ∞, the approximate solu-
tions computed by the numerical model continue to accu-
mulate errors as time goes on. We believe that it is partially
because the errors in the velocity solution and the surface
elevation solution keep on interacting with each other and
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Table 1.L2 errors in the velocity and pressure simulated by the parallel high-order accurate, finite element Stokes ice-sheet model at the
initial statet = 0.

Mesh DOF Velo. Conv. Pres. Conv.
error rate error rate

20×20×5 56 184 2.67× 101 – 1.91× 101 –
40×40×10 424 364 4.00× 100 2.74 6.70× 100 1.51
80×80×20 3 296 724 3.16× 10−1 3.66 1.82× 10−1 1.88
160×160×40 25 985 444 6.30× 10−2 2.33 5.66× 10−2 1.68

prevent the approximate solution from reaching a numeri-
cally steady state. Figure7 plots the volume of the ice sheet
at each of the time steps. Theoretically, the volume remains at
the constant value 6400 km3 along the time. However, in the
numerical simulations, because the incompressibility condi-
tion is notexactlysatisfied in each element by the finite el-
ement Stokes solver nor is the mass conserved by the finite
element solver for updating the ice-sheet thickness, the total
volume of the ice sheet shows very slight variations having
a maximum relative value of 0.00022 (−0.8∼ 1.4 km3 out
of 6400 km3) over the whole simulation. This could be an-
other cause of the growing simulation errors. Using refined
grids can result in better results. Overall, the modeled ice-
sheet top surface in the whole simulation agrees well with
the analytical solutions(x,y, t), which demonstrates that our
computational finite element Stokes ice-sheet flow model is
quite accurate for this sample problem.

5 Conclusions

In this paper, following the ideas inSargent and Fastook
(2010), we derived manufactured solutions for isothermal,
three-dimensional, nonlinear Stokes flow ice-sheet mod-
els. Their applicability for verifying numerical models was
demonstrated through comparison to outputs from the finite
element flow model ofLeng et al.(2012). The high-order ac-
curate, finite element Stokes ice dynamics solver was shown
to be accurate and to posses good convergence rates with
finer grid resolution. The solutions derived and demonstrated
here should be of general use by the ice-sheet modeling com-
munity for the verification of nonlinear Stokes flow glacier
and ice-sheet models.

In practice, the Stokes dynamics solver is coupled to an
energy equation for the ice-sheet temperature. The interplay
between velocities, pressures, and temperatures have impor-
tant effects on evolving ice sheets. Thus, it would certainly be
worthwhile (although certainly not easy) to derive analytical
solutions for the coupled Stokes, energy, and height evolution
system governing the thermo-mechanics of ice sheets and to
use such solutions to verify simulation codes for this system.

Supplementary material related to this article is
available online at:http://www.the-cryosphere.net/7/19/
2013/tc-7-19-2013-supplement.zip.
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