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Abstract. The manufactured solution technique is used foraims to answer the entirely separate question of whether or
the verification of computational models in many fields. In not a given mathematical model is an accurate representation
this paper, we construct manufactured solutions for the threeef the real-world process it aims to mimic. Manufactured an-
dimensional, isothermal, nonlinear Stokes model for flowsalytical solutions provide one means for performing model
in glaciers and ice sheets. The solution construction proceverification.
dure starts with kinematic boundary conditions and is mainly The goal of this paper is to provide the means, through the
based on the solution of a first-order partial differential equa-use of manufactured solutions, for the verification of three-
tion for the ice velocity that satisfies the incompressibility dimensional ice-sheet models as a necessary step for provid-
condition. The manufactured solutions depend on the geoming accurate, science-based predictions of ice-sheet changes
etry of the ice sheet, basal sliding parameters, and ice softever climatic time scales. Manufactured analytical solutions
ness. Initial conditions are taken from the periodic geometryhave been used previously by the ice-sheet modeling com-
of a standard problem of the ISMIP-HOM benchmark tests.munity (Bahr, 1996 Bueler et al. 2005 2007, Sargent and
The upper surface is altered through the manufactured soluFastook2010.
tion procedure to generate an analytic solution for the time- The nonlinear, three-dimensional (3-D) Stokes model,
dependent flow problem. We then use this manufactured sowhich does not utilize any approximations based on the shal-
lution to verify a parallel, high-order accurate, finite element lowness of the domain, is the standard non-shallow descrip-
Stokes ice-sheet model. Simulation results from the compution of ice flows within glaciers and ice sheetse(Meur
tational model show good convergence to the manufactureet al, 2004 Leysinger Vieli et al. 2004 Gagliardini and
analytic solution. Zwinger, 2008 Burstedde et g/.2009 Zhang et al. 2011
Larour et al, 2012 Leng et al, 2012. The more commonly
used shallow-ice, shallow-shelf, L1L2, and first-order ap-
proximations are reduced forms of the 3-D Stokes model
1 Introduction that are numerically simpler and computationally cheaper
to solve, but with an attendant loss of fidelity in some sit-
Model verification and validation are crucial steps in the de-ations (see discussions Bukowicz et al.(2010; Schoof
velopment and testing of computational models. Verificationgng Hindmarst{2010 and the references cited therein). As
is the process of determining if a particular implementation g, example, the ISMIP-HOM projecPéttyn et al. 2008
and solution of a given mathematical model (for examp|ecompared diagnostic output from a number of “higher-order”

through some choice of model discretization and numericalj e those accounting for horizontal stress gradients) and
solution algorithms) is complete and error free. Validation
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Stokes flow ice-sheet models on idealized domains. For cerd (L(5s +37))  9Qugy —p)  d(u(g: + 33)
Yy + Yy + y

tain combinations of domain aspect ratio, basal roughness, dx Ay 9z =0
and basal sliding conditions, higher-order and Stokes modeb du , ow g (w4 v dw

- - o . . e 5 1t 35 a(2 -
solutions differ significantly. Ideally, diagnostic output from (o +30) + oy +5:) + (@ — ) =pg, (3)

Stokes models should first be compared with that from lower- ‘;x . dy 0z
v w

order approximations in order to identify portions of the ou + 247 2o, 4)
model domain for which the Stokes (relatively expensive) dx dy 9z

versus the reduced (relatively cheaper) sets of equations ARhere(u, v, w)” denotes the velocity, the pressurep the
ply with sufficient accuracy (e.gMorlighem et al. 2010.  yensity of ice, and; the gravitational acceleration. The ef-

Such an approach would allow for an ideal tradeoff betweengiye viscosityu is defined by Glen's flowNye, 1957 law
model accuracy and expense (eSgroussi et al2012). as

Manufactured solutions for the verification of isothermal

1-n
Stokes ice-sheet models were recently propose8drgent 1A—% (}8 . S) K
2 ’

and Fastook2010 for two and three-dimensional model do- k=3
mains. In their clever approach, which we follow here, thewheren is the power-law exponent: & 3 is generally as-

major task in the construction of the analytic solution is to sumed for modeling ice)t is the temperature-dependent de-

solve a first-order partial differential equation. However, dueformation rate factor. and is the strain-rate tensor defined

to an error in their solution method for this key part in the asé = 1B+ BT) witr’1 B = (Vu. Vv, V)T . In the isother-
=3 = ,Vu, .

three-d|men5|qnal case, tBargent and Fasto¢R010 man- OImal caseA is taken as a spatially and temporally uniform
ufactured solutions (both the general form of the solution an onstant

the solution for the specific geometry) for the 3-D Stokes If the top surface of the ice sheet is allowed to evolve in

model are incorrect. lineng et al.(2012, the authors “ex- time, then a prognostic equation describing the evolution of

truded” the two-dimensional analytical solution Sargent that free surface is included. The ice-sheet doriziat each
and Fastook2010 to a third dimension and used it to verify {imet € [0. tmad Can be defined as

the output from their Stokes ice-sheet model. This method o
generating and applying a 3-D manufactured solution is far; = {(x,y,2) | b(x,y) <z <s(x,y,?)

from optimal, as the 3-D model is applied in a 2-D mode, for (x,y) € Qu}, (6)
leaving parts of the 3-D model untested. In this paper, we ) .

rectify this deficiency by generating fully 3-D manufactured Where 21 denotes the horizontal extent of the ice sheet,

solutions for the validation of isothermal, nonlinear Stokes® (¥»¥-1) defines the top surface elevation, and, y) de-
models of ice flow. fines thefixedbottom surface of the ice sheet. We denote the

The paper is organized as follows. In Se&twe present top surface a$’s and the bottom surface &%. The motion

the 3-D, nonlinear Stokes equations for modeling isothermaf®! the free surface is governed by the kinematic relation
ice sheets along with some related boundary conditions. Ings s ds

Sect.3, we correct the errors made IBargent and Fastook 3, + "o + ”5 —w=a, (x,y) € §2n, )
(2010 and derive in detail the correct manufactured analyti-

cal solutions for the isothermal, 3-D, time-dependent Stoke the top surface of the ice sheey, wherea represents
ice-sheet model. In Sedt. we use the manufactured solu- the surface mass balance (accumulation minus ablation). Be-

tions for the numerical verification of the parallel finite ele- c@use the bed of the ice sheet is assumed to be fixed and
mentice-sheet model &kng et al(2012. Finally, in Sect5 the melting/refreezing rate is neglected, we obtain a similar

®)

we provide some concluding remarks. kinematic relation,
ob b
u—+v——w=0, (x,y) € Qn, (8)
0x ay

2 Governing equations of the Stokes ice-sheet model

on the bottom surfacEp,.
2.1 Ice dynamics and evolution

2.2 Boundary conditions
The dynamical behavior of ice sheets is modeled by the
Stokes equations for an incompressible, power-law viscoug\t the top surfacd’s of the ice sheet, we impose a stress free
fluid. Letting [0, rmax] denote the time interval of interest and boundary condition:

Q; the three-dimensional spatial domain occupied by theice, 1 5, /4, as [ou  dv u 9w
sheet, we have ) G a) ()] @
du du 4 9o du 4 dw [ _8s, (duw 0vY_Os (5 v _ dv owN ]
3(2#5—[7)+3(M(3y+3x))+3(u(az+ Bx)) -0, (1) rs[ Bxﬂ<8y+8x> ay <2M3y p>+u<az+8y>i|—0, (10)
dx dy 9z [ _ds (du ow\ _ds (0w dv) () ow o (11)
a{‘a“(fﬁa)‘@“(@*&)*(“a?‘”ﬂ— '
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40
x (km)

Fig. 1. lllustration of the ice-sheet geometry (the top and bottom surfaces) at the in@e(left) and at the time = 1000 yr (right). The
middle figure is thec-direction profiles taken at = L/4 of the ice-sheet top and bottom surfaces at 100 year time intervals frofnto
1000 yr.

X

The bottom bedrock surfadg, of the ice sheet can be de- ary of Qu, so that the ice sheet has a lateral boundary
composed into two part$}, fix, at which the ice sheet is fixed With some appropriate boundary conditions imposed there;
to the bottom bedrock, anfl i, at which it is allowed to for example, a periodic boundary condition or a zero veloc-
slip. We apply the zero velocity (no-slip and no-penetration) ity boundary condition could be applied there.
boundary condition

and where; = \/1+ (2524 (3—;)2. We also assume thatx, y) # s(x, y, ) along the bound-

U=v=w=0 (12) 3 Manufactured analytic solutions

on the fixed part of the basal bounddtysx and theRayleigh 3.1 Ageneral form of the analytic solution

friction boundary condition .
y Following the work ofSargent and FastodR010, we start

i[,%(zﬂ?l, ),?jﬂ (?1+f’i)w(?l+?7wﬂ+1f&f:,ﬂzu’ (13)  from the kinematic boundary conditions Eq#) énd ) on
Lo o WAy de /1 ox the top and bottom surfaces, respectively, and set the vertical
al g (i) (g —r) e (e ) [+ e = (19) locity w by linearly interpolati dv from the top t
G tar) -5 (20 5t 5 =%, velocity w by linearly interpolating: andv from the top to

ab b bottom bedrock surfaces as follows:

abs—z Bsz—b)

w(x,y,z,1) =M(x7y,Z,f)(3—xm Py

on the sliding part'y sia, Wherers = \/1‘*‘ (%)2 + (3_5)2’

dbs—z 0sz—b
+U(X,y,2at)(_ + = ) (17)
AL () (Bt () d0vs—=b  dys=b
f_rf ax dx Max 4 3y” dy  Ox " dz  Ox +(8s z—b
— —da .
ab ab  (du  dv ab v v dw ot >S —b
5 (Grn)-Seg—r)wGg) o i i
b [9u  dw\ b /3w  Iw ow Differentiating Eq. 17) with respect tq then gives
(g Geri) -5 G iy ) vt —0)) ]
ow Bu(abs—z n as z—b)
is the normal stress, and the paramgtémdenotes a given, 9z 9z \dxs—b dxs—b
" e < i 9s ds _ db
positive sliding coeff|C|entj N » 37 - % 87”(% s=z ds z— b) LT (18)
Note that the zero velocity boundary condition EtR)(au- “s—b " 9z\dys—b  dys—b s—b

tomatically implies the kinematic condition E@)(whereas 1
the latter condition is included as the third equation of the +—<— —a).
sliding condition Egs. 13)-(15). If 'y fix =I'n, We have a s
pure zero velocity boundary condition on the bedrock sur- Now substituting Eq.X8) into the incompressibility equa-
face; if 'n sia= I'n, We have a pure sliding boundary condi- tion Eq. @), we obtain a first-order quasi-linear partial differ-
tion; otherwise, we have a mixed boundary condition. ential equation with three independent variables;, z, and
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Fig. 2. Analytical solution at the top surface of the ice sheet. From left to right: the velocity compenentndw (m a~1) and the pressure
p (10°Pa). From top to bottom:= 0, 100, and 1000 yr.
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two dependent variables,andv: then Eqg. 20) can be expressed as
— _ ds _ 9b 1
g_ZJrg_th(%j—lz; g_ij—l;>+ua);_2x u(x,y,z,t)=c1h”(1—d“)+cblg- (23)
dv odvsdbs—z Odsz—b 19 Note thats, b, andh all depend onx andy, but are indepen-
5*3—2(@_;7 @s_b) (19 dentof:.
3s _ 3b 1 . It is then easy to verify that the derivativesufx, y, z, 1)
dy  dy s i b
= _a)=o0 are given by
Ly +s—b(3t a)

du L0k ri10d 1 9h
Let us choose the velocity(x, y, z.1) to be of aform sim- 3. = cyah”™ o= (1—d™) —ecihah"d™ ™ o= — o1 -~ (24)

ilar to the manufactured 2-D analytical solution$argent gy 1
and Fastook2010, P ciAih™ ™ d™ (25)

_ nlq_(5=% M 1 20 Substituting Eqgs.24)—(25) into Eq. (L9), we obtain a new
ux,y,z.t) =cals =0)% | 1| — b1 (20) first-order quasi-linear partial differential equation with two
independent variables, z, and one dependent variahle
wherey1, A1, c1, andcpy are some parameters. If we define

the scaled ice depth 3_U+3_v<%s_z+§z_b> %

s—z 1) dy 9z \dys—b 0dys—b h
dx,y,z,t) = ——,

s—=b +cl(1+y1)%h“_l(l—dh)+%(ﬁ—a):O. (26)

at

Note that the variable in general depends on y, z, andr;
h(x,y,t)=s5—b, (22) however, the partial differential Eq2¢) now only involves

and the ice thickness
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Fig. 3. Analytical solution along the cross sectipr= L /4 of the ice sheet. From left to right: the velocity components, andw (ma1)

and the pressurg (10°Pa). From top to botton::= 0, 100, and 1000 yr.

partial differentials ofy andz at a fixed timer. Thus, in the
following deductions, the total differential-glis on variables

y andz only, e.g., dg(f(y,z2))) = g%(ﬂdy + %dx).

solution of Eq. 26) then can be written as

where C1 and C» are two underdetermined constants. The

il ) 0(¢p,y) =0, 29
In the work ofSargent and FastodEyOl(), the first-order @.9) (29)
partial differential Eq.26) was solved incorrectly; it resulted whered is an arbitrary smooth function gf and.
in a wrong solution forw and consequently the wrong gen-  The first integral can be deduced from
eral formula for the analytical solution and the specific solu- 4 dz
tion under a special geometry. We present the correct solutionT = 9bs—z 9sz—b" (30)
process in the following. vs—b T avs_b
The characteristic equation of EQ6) can be found as ys= ys=
from which we then have
dy _ dz z—>b
E T ()= e
dys—b dys—b>b . .
v v d implying that
v
=—— . (27) b
o Oh 1y gy, (08 7 ey (32)
v+l )T - d + 2 (5 —a) =
Thus we take
Note that the first-order partial differential EQ6) does —b
not need initial conditions. To solve it we first need to find ¢ = P— (33)
two independent integrable identities that, when integrated, )
provide equations such as The second integral can be deduced from
dy dv
—=- (34)
¢(y,z,v) =Cy, 1 i ah 1,0
{1/f(y,z, v)=Ca, (28) vy i -a + (5 —a)

www.the-cryosphere.net/7/19/2013/
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Fig. 4. Distribution of errors of the numerical simulations using the grid of resolution<1660 x 40 at timer = 0. From left to right: the
velocity components, v andw (ma1) and the pressurg (10°Pa). Top row: on the top surface, bottom row: along the cross section
y=L/A

from which we then have which is different from the one presented3argent and Fas-
§— oh os tOOk(201Q
dhv) = —c1(1+y1) [1— (== b) ] —hdy— (5 —a)dy. (35) By combining Egs. 17), (23), and @0), we finally obtain

the velocity solution derived from the kinematic boundary

Note that c(z —b) =0, in which case the integration of condition and the mass conservation equation as follows:

N
Eq. ives _\H
g-@9g u(x, y,2, 1) = e1(s — by [k(%) 1]+Cb15fb, (41)
s—z oh as
m=—aaew - (55)" | [ Gomar [ (5 —a)ar e (36) o [, (s=y?],. 1 _ .« ooyt
v(x,y,“):m 1_<s—b) + 2 pray— (1+y1) 1_(5—1;)
Thus we set

ﬁ_% (s —b)"dy — —— 7_0 d (42)
‘ﬁ=U(S—b)+c1(1+y1)|:1_<§;z>)‘l:|/-(ﬁ_%) [<3x > Y f y,

—b dx  Ox w(xyzt)—u(xyzt)(ai; Z giz le) v(xyzt)(ais_lz7 g—;j:z)
3 s
(s — )" dy +/(a—j ~a)dy. 37) H(E gzt (43)
The combination of Eqs29), (33), and @7) implies that We choose the pressure solution to be that from the first-
the general solution of Eq26) can be written as order ice-sheet modelPattyn 2003:
z—b s—z\M as ab . ou ov
9<m, U(S—b)+01(1+7/1)|:1—<ﬂ> ]/(5_67)6 by dy P(x,y,z,t)=—2,ua—2,u5 +pg(s —2). (44)
3 . . .
+/ (a—j —a) dy) =0 (38) Equation ¢4) is derived from the Stokes momentum
Egs. O)-(3) and the stress-free boundary conditions
for some smooth functiof(, -). _  Egs. ©—(11) on the top surface through a first-order approx-
To better represent the relationship between the velacity imation. Consequently, the above manufactured analytic ve-
and the deptld, we choose the functiof as locity and pressure solutions in Eq€.1f—(44) do not sat-
isfy exactly the momentum equations and the top surface
0. ) =V — call— (L— $)2] + v, (39) S exectly e g

boundary equations. In order to maintain the equalities of
wherel,, cp, andcy, are again some parameters. It is then these equations, some additional compensation terms need

easy to verify thab can be written in the form be added to the right-hand sides of the E45-@) and @)—
" N (11); these terms can be easily obtained by way of substitut-
v(x,y,z,t)=scf2b[1—<j:;) }ﬂhz%b—%(lwl) [1—(5) } ing the above constructed analytical solution in Edd)+£
a5 (43) and Eq. 44) into the left-hand sides of Eqsl)&(3)
/(5 - 5)@ —b)"tdy — —/ = —a)dy, (40)  and Egs.9)—(11). The explicit formulas for calculating these

The Cryosphere, 7, 1929, 2013 www.the-cryosphere.net/7/19/2013/
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Fig. 5. Plot of the average (left) and the maximum (right) absolute errors of the simulated top surface elefm)iaheach of the time steps
for the time-dependent ice-sheet flow experiment using the grid of resolutiar88t 20.

compensation terms for the manufactured solution under th&volving over time, the top surface of the ice sheet slowly
specific geometry presented in the next section are given irthanges from flat with a uniform slope to sinusoidal in shape:
the supplemental materials. We further note that if a sliding
boundary condition is imposed on the (full or partial) bottom *X»¥»1) = $0(x, ¥) +n(x, )& () (48)
bedrock surface, then the right-hand sides of E§3) &nd with
(14) also need to be slightly revised as in the above process. B

E()=1—e ", (49)
3.2 A manufactured solution under a specific geometry

. . wherec; is a parameter that controls the rate of ice-thickness
for time-dependent ice flow

change.

Given the surface and bed elevation (i.e., the geometry of Ve @ssume a periodic surface mass balance given by

an ice sheet), a specific manufactured solution can be prog(x, y, 1) = ¢,n(x, y)e™'. (50)
duced using the above procedure from Ed4)<{(44). Our o )

goal here is to present the ice-sheet modeling community! Nen, itis easy to verify that

a correct, practically useful and simple sample solution to gs

verify the computational 3-D Stokes ice-sheet models. Toy, ¢ = 0 (51)
simplify the formulation, we introduce some scaling param-

eters as followsL is the horizontal length scale (span) of the and thus

ice sheetZ is the vertical length scalé,= L/Z is the as- 1 ’ 3s

pect ratio,U = AL(2pgZ)" is the horizontal velocity scale, — p— / (5 — a) dy =0. (52)
W =UZ/L is the vertical velocity scale, anfl=Z/W is L

the time scale. Note that we do not use non-dimensionalized

variables or equations; the scaling parameters are used only Based on the above known functionsb, anda and the

for a clearer representation of the derived solutions. parameterss, A1, A2, ¢1, €2, Cp1, Ch2, @ndct, We construct
The geometric setting for the the ISMIP-HOM benchmark the velocity solution(u, v, w) and the pressure solutiom

experiment A Pattyn et al. 2008 is used here; a parallel- using Egs. 41)—(44) for the time-dependent, isothermal, 3-

sided slab of ice with a mean thicknessofand lengthL D Stokes ice-sheet flow model. Note that this manufactured

lies on a bed with a mean slope®f= 0.5°. The top surface  solution is obviously doubly periodic in velocity so that a

of the ice sheet at the initial time= 0 is given by periodic boundary condition on the lateral boundByyI"| #
() is satisfied.
s(x,y,0) =so(x, y) = —xtan(a). (45) To further simplify the computation of the integral in

The fixed basal topography is defined as a serigg/@fam- ~ EQ. (42), we sety; = 0 andi; = 4. Then the velocity com-
plitude sinusoidal oscillations about the mean bed elevationonentv defined in Eq.42) simplifies to

b(x, ¥) = s0(x, ¥) +n(x,y) — Z 48) ey ,)202[1_<S—Z>“}+Ch2
=2 —:
with ’ ’

1

b
_ 4
nx,y) = gSin<27TTx> Sin(znTy) (47) “35-p |:1— (j_Z) :|ZCOS<2ﬂLx) cos(?)e*%’ (53)

s—b

www.the-cryosphere.net/7/19/2013/ The Cryosphere, 7, 128; 2013
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Fig. 6. Distribution of the errors of the simulated top surface elevati¢m) for the time-dependent ice-sheet flow experiment using the grid
of resolution 80x 80 x 20. From left to right: at 100, 300, and 1000 yr.

which is much easier to calculate.
Additionally, we also letp; = cpp = 0; then, the velocity
solution Eqgs. 41)—(43) can be finally simplified as

)]

§—2Z

u(x,y,z,t)y=rc1 |:1—<
s—b

(54)

A2
c2 s—z
V) =——|1—
v y.2.0) s—b|: (s—b) ]
1 s—z\* 2mx 2TY\ e
_23—b|:1_(s—b> :|ZCOS< L )CO( L ) - (59)
obs—z 0dsz—b
s Vs 1t = s Vs 7t ~ - 56
w(x,y,z,t) =u(x,y,2 )(8“_b 8“_b) (56)
obs—z 0sz—b
t — .
o y.z, )( ays—b 8ys—b>

The solution(u, v, w) defined by Eqgs.54)—(56) satisfies a
pure zero-velocity boundary condition on the whole bedrock
surfacel'p six = I'p. The parameters, c2, andc; can be used
to control the velocity falling within a reasonable range. In
general, the largar; andcz are, the larger the magnitude of
the velocity of the ice sheet and its variation are. The bigger
ct is, the shorter the time for the ice sheet to reach the stead
state is.

Note that the velocity solutioix, v, w) of the (slightly
modified) Stokes equation at the initial time- O could eas-
ily be generated by setting the functig(¥) = 0 in the ana-
lytical time-dependent solutions. Similarly, the final geomet-

rically stable ice-sheet configuration (i.e., a steady state witH?

= 0) will have a top surface with the elevation function
given byso(x, y) +n(x, y), generated by setting the function
&(t) =1 in the analytical time-dependent solution. We also
would like to point out that the values of the parameters cho-
sen in this paper for the specific example are different from
those used isargent and FastodR010 and give us a much
simpler specific solution and compensatory terms based on
the correct general solution formula.

4 Numerical verification of the Stokes ice-sheet model
of Leng et al. (2012

We use the above manufactured analytic solutions to ver-
ify the parallel, high-order accurate, finite element, nonlinear
Stokes ice-sheet modelireng et al(2012. The model uses
tetrahedral elements that are produced by first extruding a 2-
D, triangular mesh in the, y-planes along the-direction,
after which each vertical prism is decomposed into three
tetrahedral elements. The stable Taylor—Hood (P2—-P1) finite
element pair is used. A pure zero-velocity boundary condi-
tion is imposed on the whole bedrock surfdgg(no sliding
region). The free-surface boundary condition with compen-
satory terms is imposed on the top surfateand periodic
boundary conditions are imposed on the lateral boundaries
I.

4.1 Description of the manufactured analytical solution

We sety; =0, A1 =4, ¢p1 =0, andcp2 = 0, as discussed in

the previous section; the other parameters used in the con-
structlon of the manufactured solution are chosen as fol-
lows: Ao =4, c1 =10"°U, ¢, =10% andc;=10"8/T.

¥he horizontal length scale of the ice sheet is set th be80

km and the vertical length scalé =1 km. For the param-
eters related to physical properties of the ice sheet, we set
A =101 (Pa”a1) andn = 3. Note that the C code for
calculating the compensation terms of this particular exam-
le can be found in the supplemental materials.

After + = 1000 yr of evolution, the manufactured solution
for the ice-sheet surfacéx, y, r), as defined in Eq4@), will

be close to steady state such that no significant changes in the

free surface occur. Initially, the top surface is flat with a uni-
form slope (Figd, left). When the final steady state is essen-
tially reached (at 1000 yr), the surface takes on the sinusoidal

shape of the bed topography and the ice thickness is every-

where uniform and equal (Fid., right). Figurel (middle)

illustrates the evolution of the ice surface at 100-yr time in-

tervals along a selected profile line.

The Cryosphere, 7, 1929, 2013

Figure 2 presents the three velocity components and the
pressure of the analytical solution defined by E§€)+{(56)
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6401.5 vergence shown in Tablg are larger than .33 for the ve-
—~ locity and 151 for the pressure. The errors of the finite ele-
o 6401 ment method with P2—P1 element pairs for solving constant-
E 6400.5 viscosity Stokes problems are theoreticallyh®) for veloc-
= 6400 ity and O (h?) for pressure. The ice-sheet Stokes model is a
) nonlinear, variable-viscosity Stokes problem and in our tests
> 6399.5 the obtained convergence rates are similar or slightly lower
6399 than the optimal ones for the constant-viscosity Stokes prob-
0O 250 500 750 1000 lem. Error distributions of the numerical simulations (using
. the grid of resolution 16& 160x 40) of the three velocity
time (yr) components and the pressure on the top surface and along

Fi. 7. Plot of the vol  the ice sheet at each of the fi ‘ the cross section at= L/4 are presented in Fig. We ob-
'g. 7. Flot ot the volume of the ice sheet at each of the ime S.epstserve that the error of the simulation results is relatively large
for the time-dependent ice-sheet flow experiment using the grid o | the i _ /2 7 d —31/2
resolution 80x 80 x 20. along ,e IneSc—i.—y_. /2, x+y=L,andx+y= . /2,
near which the viscosity of the manufactured solution has

quite sharp changes.

and Eq. 44) at the top surface of the ice sheet at timesO0,
100, and 1000 yr. Figur@ shows results along the cross sec- 4.3  Simulation of time-dependent ice-sheet flows
tion aty = L/4 at the same times. Because the thickness is
not uniform at the beginning of the simulation, the velocity T0 simulate time-dependent ice-sheet flow fror: 0 to
and free surface co-evolve over the length of the simulatiory = 1000yr, a grid of 768 000 tetrahedra (from 2>880x 20
in order to increase or decrease the surface elevation, evefiructured prismatic mesh) was used, resulting in 3296 724
tually leading to a uniform ice thickness everywhere in the DOFs. We divided the period [0,1000] uniformly with a time
domain. At the steady state, the ice flow is almost uniformStePA? = 5yr to obtain a set of time stef& ;2. At each
horizontally but layered in the vertical. time stepr, with 0 <k <200, we compute the ice veloc-

ity from the numerical model and update the ice thickness at
4.2 Convergence of the Stokes solver for the ice-sheet time#1 according to the free surface EQ),(using an ex-

dynamics plicit finite element discretization schenieefg et al, 2012.

We specially remark that for this manufactured solution,
We first test the convergence of the Stokes solver for thewhen the ice sheet gets closer to the steady state, the viscos-
ice-sheet dynamics using the manufactured analytical soluity u has overall stronger singularity which makes computa-
tion at the initial timer = 0. Four sets of tetrahedral grids tional simulations more difficult. Thus, it is also worth point-
with uniform refinement (starting with a 2020x 5 struc-  ing out that for this example some smoothing techniques as
tured prismatic mesh) were used, with a maximum numbem post processing could be applied to the velocity on the top
of degrees of freedom (DOF) of 25 985 444 at the finest gridsurface around places where the viscosity has sharp changes
resolution (160« 160x 40). The viscosityu in this manu- (it often causes large discontinuity in the approximate solu-
factured solution could be huge or even infinite at some lo-tion), in order to improve accuracy in updating the elevation
cations; in our experiments we remove the viscosity singu-of the ice-sheet top surface through numerical solution of
larity problem by setting: to be a very large number, e.g., Eq. (7). We applied the Gaussian smoothing in our simula-
100, at those points; this practical treatment may result intions.
some additional but small numerical errors near the singular- Figure5 plots the average and maximum absolute errors at
ity points. Numerical results from these tests are presenteéach of the time steps in our time-dependent ice-sheet flow
in Table 1. In Table 1, the error measure is the? norm experiment, and Figs presents distribution of the errors of
of the solution absolute error, and the units are thian® the computed top surface elevation at 100, 300, and 1000 yr.
for velocity and 18 Pakn? for pressure. Our approximate The error of the modeled ice-sheet top surface is accumu-
solutions clearly match the analytical solution well, i.e., it lating linearly as time goes on as shown, the average abso-
is easy to observe the errors reducing with grid refinementlute error is about 1m at 100yr, 2.2m at 300yr, and 8 m
Suppose that the error reduces with the grid refinement aat 1000yr, and the corresponding maximum absolute error
llunh —ull,2 = O(h"), whereh is the maximum element size is about 2.5m, 8 m, and 30 m, respectively. Another fact we
of the grid andup, is the numerical solution on such a grid, observe is that although the analytical solution reaches the
thenr is called therate of convergencdf the convergence geometrically steady state as> oo, the approximate solu-
rates in the Tablé are calculated between consecutive pairstions computed by the numerical model continue to accu-
of grids, e.g., the errors on a series of uniformly refined gridsmulate errors as time goes on. We believe that it is partially
arees, ez,..., ek, then the corresponding convergence ratesbecause the errors in the velocity solution and the surface
are Iogz(e"e—jl), i=2,...,K, respectively. The rates of con- elevation solution keep on interacting with each other and
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Table 1. L2 errors in the velocity and pressure simulated by the parallel high-order accurate, finite element Stokes ice-sheet model at the
initial stater = 0.

Mesh DOF \elo. Conv. Pres. Conv.
error rate error rate
20x20x5 56184 B7x 10t — 191x 10t -

40x40x 10 424364 M0x10° 274 670x10° 151
80x80x 20 3296724 3A6x10°1 366 182x10! 1.88
160x160x40 25985444 @0x10°2 2.33 566x10°2 1.68

prevent the approximate solution from reaching a numeri-Supplementary material related to this article is

cally steady state. Figuréplots the volume of the ice sheet available online at: http://www.the-cryosphere.net/7/19/
at each of the time steps. Theoretically, the volume remains a2013/tc-7-19-2013-supplement.zip

the constant value 6400 nalong the time. However, in the
numerical simulations, because the incompressibility condi-
tion is notexactlysatisfied in each element by the finite el-
ement Stokes solver nor is the mass conserved by the finite
element solver for updating the ice-sheet thickness, the totag
vqum(? of the lce_ sheet shows very slight variations haVmgComputing Research and Biological and Environmental Research
a maximum relative value 0f.00022 (0.8~ 1.4k out oo Sinrongh DE-FG02-07ER64431, DE-FG02-07ER64432,
of 6400 kn?) over the whole simulation. This could be an- poE 07SCPF152, and the Scientific Discovery through Advanced
other cause of the growing simulation errors. Using refinedcomputing (SciDAC) project “PISCEES”, and by the US National
grids can result in better results. Overall, the modeled ice-Science Foundation under the grant number DMS-1215659. We
sheet top surface in the whole simulation agrees well withalso would like to thank the referees and the editor for their
the analytical solutiom(x, y, t), which demonstrates that our insightful comments which led to substantial improvements in the
computational finite element Stokes ice-sheet flow model isPaper.

quite accurate for this sample problem.
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