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Abstract. To date, assimilation of observations into large-
scale ice models has consisted predominantly of time-
independent inversions of surface velocities for basal trac-
tion, bed elevation, or ice stiffness, and has relied primarily
on analytically derived adjoints of glaciological stress bal-
ance models. To overcome limitations of such “snapshot” in-
versions – i.e., their inability to assimilate time-dependent
data for the purpose of constraining transient flow states, or
to produce initial states with minimum artificial drift and
suitable for time-dependent simulations – we have devel-
oped an adjoint of a time-dependent parallel glaciological
flow model. The model implements a hybrid shallow shelf–
shallow ice stress balance, solves the continuity equation
for ice thickness evolution, and can represent the floating,
fast-sliding, and frozen bed regimes of a marine ice sheet.
The adjoint is generated by a combination of analytic meth-
ods and the use of algorithmic differentiation (AD) software.
Several experiments are carried out with idealized geome-
tries and synthetic observations, including inversion of time-
dependent surface elevations for past thicknesses, and simul-
taneous retrieval of basal traction and topography from sur-
face data. Flexible generation of the adjoint for a range of
independent uncertain variables is exemplified through sen-
sitivity calculations of grounded ice volume to changes in
basal melting of floating and basal sliding of grounded ice.
The results are encouraging and suggest the feasibility, using
real observations, of improved ice sheet state estimation and
comprehensive transient sensitivity assessments.

1 Introduction

Simulation of land ice evolution is hampered by a great num-
ber of sources of uncertainties regarding poorly or unknown
quantities which exert control over ice dynamics. These un-
certainties must be dealt with to address questions regard-
ing the estimation of past ice flow and future behavior of ice
sheets and glaciers. Unknown quantities often take the form
of spatial fields rather than scalars, requiring computational
techniques that can handle sets of unknowns which scale with
model dimension, but with computational costs largely inde-
pendent of that dimension. The adjoint or Lagrange multi-
plier method is an ideal candidate.

The adjoint of a (generally nonlinear) model is essen-
tially the transpose of its Jacobian, the Jacobian being the
linear map of perturbations to model input (e.g., its initial
and boundary conditions) to perturbations in output, for a
given model realization. Assuming the model is differen-
tiable, the Jacobian can, in principle, be estimated with fi-
nite differences. However, when the size of the parameter set
numbers in the thousands or millions, as is the case in land
ice models, such an approach quickly becomes intractable.
With the adjoint method, on the other hand, gradient or sen-
sitivity information of the model output with respect to its
input is obtained efficiently. Its computational cost is inde-
pendent of the size of the input set, making gradient-based
optimization/estimation for large-scale problems with high-
dimensional input spaces tractable.

Model adjoints have been valuable tools in climate re-
search for a number of years (seeErrico (1997) andWun-
sch and Heimbach(2013) for partial reviews in the context
of meteorology and oceanography). In the field of land ice
modeling, adjoint methods have, until recently, been used
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almost exclusively to estimate basal or interior properties
of ice sheets and ice shelves (e.g., basal traction param-
eters, stiffness parameters) based on observations of sur-
face velocities. The first such application was byMacAyeal
(1992), who used a depth-integrated stress balance (Morland,
1987; MacAyeal, 1989). In recent years, similar inversions
have been carried out with so-called “higher-order” mod-
els, i.e., models that incorporate vertical inhomogeneity and
even nonhydrostatic effects (e.g.,Maxwell et al., 2008; Ray-
mond and Gudmundsson, 2009; Goldberg and Sergienko,
2011; Morlighem et al., 2010; Arthern and Gudmundsson,
2010; Gillet-Chaulet et al., 2012; Petra et al., 2012). How-
ever, all these inversions consider only the nonlinear stress
balance; i.e., they do not take the time-dependent mass bal-
ance into account. Furthermore, they only consider uncer-
tainties in surface velocities (not, for instance, in surface ele-
vation or thickness).Brinkerhoff et al.(2011) applied an ad-
joint method to a flowline Stokes model coupled to a steady-
state thermal balance, but there was no time dependence in
the model. An example of the use of a time-dependent ice
model is that ofHeimbach and Bugnion(2009), in which the
adjoint of SICOPOLIS (Greve, 1997), a thermo-mechanical
ice model which makes the shallow ice approximation (SIA;
Hutter, 1983), was generated.

A natural extension to the work of Heimbach and Bugnion,
then, is the application of adjoint methods to time-dependent
ice models that include horizontal stress coupling in the non-
linear momentum balance. Such an approach has the advan-
tage that the prognostic components of the ice model, such as
thickness and temperature evolution, are accounted for in the
model adjoint, thus enabling assimilation of time-dependent
data to produce a dynamically consistent state estimate with
associated optimized parameters. In the field of ocean model-
ing, state estimation efforts based on the adjoint method were
first introduced byThacker and Long(1988) and Tziper-
man and Thacker(1989). Since then, estimation systems, in
which the adjoint was derived by means of automated dif-
ferentiation of full-fledged ocean general circulation mod-
els, have provided solutions that are consistent with obser-
vational data, suitable for model initializations and in-depth
data analysis, as well as a framework for estimating the in-
formation content of new observations (Stammer et al., 2002;
Wunsch et al., 2009; Wunsch and Heimbach, 2013). While
ice sheet state estimation is still in its infancy, we view ocean
state estimation as a model paradigm, and time-dependent
ice model adjoints as a step toward this goal.

In this paper, we present the adjoint generation of a time-
dependent ice sheet–stream–shelf model. The ice model im-
plements a “hybrid” stress balance (e.g.,Bueler and Brown,
2009; Pollard and DeConto, 2009; Schoof and Hindmarsh,
2010; Goldberg, 2011), which is the simplest form of higher-
order stress balance, yet still it accounts for horizontal stress
coupling, which makes our approach novel. Prior to this
study, the adjoint method has not been applied to a time-
dependent ice model with a nonlocal stress balance.Ray-

mond and Gudmundsson(2009) developed a method for a
maximum a posteriori (MAP) estimate of basal properties in
terms of observed surface properties, taking the steady state
of the continuity equation into account. Their forward model
contains the full Stokes stress balance without approxima-
tion. However, it is in a single horizontal dimension, and is
based on analytical transfer functions that assume Newtonian
rheology as well as small perturbations about a mean state
(Gudmundsson, 2003). In addition to the conceptual novelty
of using a time-evolving adjoint model for inversion, a tech-
nical novelty of our study is the use of algorithmic (or au-
tomatic) differentiation (AD) (Griewank and Walther, 2008)
for an ice model that involves longitudinal (nonlocal) stress
balance terms. AD tools are a powerful array of software that
are capable of generating adjoint model source code via line-
by-line differentiation of the numerical model. The pliability
of the AD tools means that sensitivities to diverse sets of in-
puts can be examined, and changes to the input set, the cost
function, and the forward model can be reflected in the ad-
joint much more easily than through separate error-prone by-
hand adjoint code extensions. Finally, the approach provides
the exact adjoint of the discrete model. In some of the glacio-
logical studies mentioned above, the nonlinear dependence
of viscosity on strain rates has been ignored in the adjoint
calculation. which is generally a safe approximation, but in
some cases has been shown to cause difficulties with model
inversion (Goldberg and Sergienko, 2011).

The ice sheet stress balance equations (depth-integrated
or otherwise) have a differentiable structure which consid-
erably simplifies the derivation of their adjoint. This, and the
fact that they do not involve time stepping, enables straight-
forward discretization of the adjoint differential equations.
This option is, in practice, much simpler than applying AD,
which is not well-suited to iterative methods, such as those
used to solve the nonlinear elliptic partial differential equa-
tions of the ice models. On the other hand, other conservation
equations involved in solving the ice flow, such as the thick-
ness (or continuity) equation or conservation of heat, only
solve for local interdependencies and are well suited for AD.
The adjoint of Heimbach and Bugnion, as well, was gener-
ated with AD tools – the only instance of AD application
to a land ice model. Here, we shall adopt a mix-and-match
strategy, using both AD-generated code and “hand-written”
solvers where this appears more efficient to produce the exact
model adjoint.

In the following, we briefly describe the forward model
used in our study, and then discuss the application of
the AD tool to the model, notably the steps taken to
deal with the nonlocal stress balance. We then proceed to
demonstrate the utility of the adjoint through several ideal-
ized sensitivity calculations as well as state and parameter
estimation experiments.
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Table 1.Pseudocode version of forward model time-stepping procedure.

DO tn = 0, . . . , t f
• CALL UPDATE_FLOATATION

Evaluate floatation condition

s(n)
=

{
(1−

ρ
ρw

)h(n) if h(n)
≤ −

ρw
ρ R

R + h(n) otherwise
• CALL VEL_SOLVE

Findu(n)

• CALL CALC_DRIVING_STRESS
Evaluateτd = ρgh∇s based onh(n), s(n)

• DO m= 0, . . . ,max_iter _nl
• CALL BUILD_STRESS_MATRIX

Am constructed

from ν(m), β
(m)
eff

• CALL STRESS_CG_SOLVE

u(m+1)
= A−1

m τd
• CALL UPDATE_VISC_BETA

ν(m+1), β
(m+1)
eff found fromu(m+1)

• [check for convergence]
if converged,u(n)

= u(m)

• END DO
• CALL ADVECT_THICKNESS

h(n+1) found from continuity
equation withu(n)

END DO

2 Forward model
The ice model used in this study is an extension of the stress
balance solution presented inGoldberg(2011). It is a hybrid
model, also referred to as L1L2 under theHindmarsh(2004)
classification, meaning it accounts for vertical shear in its
stress balance, although not as completely as the Blatter–
Pattyn balance (Blatter, 1995; Pattyn, 2003; Greve and Blat-
ter, 2009). On the other hand, the balance requires the solu-
tion of a two- rather than three-dimensional nonlinear ellip-
tic differential equation, greatly reducing computational ex-
pense. The balance is derived by making an approximation to
the variational principle corresponding to the Blatter–Pattyn
equations rather than to the equations themselves. It has been
demonstrated to be a good approximation to Blatter–Pattyn
and to Stokes flow (Sergienko, 2012), especially when some
level of basal sliding is present. In addition, the model solves
the depth-integrated continuity equation for ice thickness and
accounts for grounded and floating ice through a hydrostatic
floatation condition.

Table 1 is a pseudocode version of the ice model. We
present this diagram for clarity, but also in order to aid the
description of adjoint generation in the following section. At
the beginning of a given time step,h(n), the thickness at time
tn is known. The cells that are floating are determined from
the hydrostatic floatation condition:

h(n)
≤ −

ρw

ρ
R, (1)

whereρw andρ are ocean and ice densities, respectively, and
R is bed elevation (negative when below zero). This also de-
termines surface elevations(n), because when the ice is float-
ing a fraction(

ρ
ρw

) of total column thickness is below sea
level. These operations are represented in the pseudocode by
UPDATE_FLOATATION, which also sets the contribution of
basal sliding coefficients to zero in floating cells.

Following this call the nonlinear hybrid stress bal-
ance is solved for velocityu(n), using the scheme from
Goldberg (2011). This involves first evaluating the dis-
cretized form of the glaciological driving stressτ d = ρgh∇s

(CALC_DRIVING_STRESS), which depends ons(n) and
h(n). This is then followed by Picard iteration on viscos-
ity and basal coefficients. In each iterationm of the loop,
the matrixAm (corresponding to the two-dimensional ellip-
tic PDE mentioned above) is constructed, using current iter-
ates of nonlinear ice viscosityν(m) and basal coefficientβ(m)

eff
(BUILD_STRESS_MATRIX).

βeff is a variable unique to the stress balance derived in
Goldberg(2011), and thus its form is given here for the ben-
efit of the reader:

βeff =
f (ub)

ub

(
1+

ωf (ub)
hub

) . (2)

Hereub is the magnitude of basal sliding velocity (u|z=b),
andf (ub) determines the functional relation between basal

www.the-cryosphere.net/7/1659/2013/ The Cryosphere, 7, 1659–1678, 2013



1662 D. N. Goldberg: Parameter and state estimation with a time-dependent adjoint marine ice sheet model

Table 2. Pseudocode version of adjoint model reverse-time-stepping algorithm corresponding to Table1. (AD) indicates that this step is
processed by the algorithmic differentiation tools.

DO tn = t f , . . . ,0
• CALL ADADVECT_THICKNESS

δ∗u(n), δ∗h(n) from δ∗h(n+1)

via adjoint to continuity equation (AD)
• CALL ADVEL_SOLVE

• DO m= mterm , . . . ,0
• CALL ADUPDATE_VISC_BETA

δ∗u(m+1), δ∗β updated from

δ∗ν(m+1), δ∗β
(m+1)
eff (AD)

• CALL ADSTRESS_CG_SOLVE
Equations (7) and (8) (non-AD)

• CALL ADBUILD_STRESS_MATRIX

δ∗ν(m), δ∗β
(m)
eff , δ∗Bglen, δ∗h(n)

updated fromδ∗Am (AD)
• END DO
• CALL ADCALC_DRIVING_STRESS

δ∗h(n)
= ρg∇s(n)(δ∗τd),

δ∗s(n)
= ρgh(n)(∇ · δ∗τd)

(AD)
• CALL ADUPDATE_FLOATATION{

δ∗h(n)
= δ∗h(n)

+ (1−
ρ
ρw

)δ∗s(n) if h(n)
≤ −

ρw
ρ R

(δ∗h(n),δ∗R) = (δ∗h(n),δ∗R) + δ∗s(n) otherwise
(AD)

END DO

stress (τ b) and sliding velocity:

τ b =
f (ub)

ub

u|z=b. (3)

ub is determined from basal stress and depth-averaged ve-
locity under the approximation of depth-independent longi-
tudinal stresses, andω is a factor that depends on the current
iterate of viscosity, as defined inGoldberg(2011) (Eq. 35).

Next the resulting linear systemAmu(m+1)
= τ d is solved

for the new iterate ofu (STRESS_CG_SOLVE). The non-
linear ice viscosity and sliding coefficients are then updated
with this new guess for velocity (UPDATE_VISC_BETA).

Following the velocity solve, thickness is updated via the
depth-integrated continuity equation, using a simple second-
order flux-limited finite volume scheme. If calving front ad-
vance is allowed, this is carried out using an algorithm based
on that ofAlbrecht et al.(2010), though no calving param-
eterization has been implemented. This all takes place in
ADVECT_THICKNESS, and concludes the time step.

In the hybrid balance, the viscosityν and sliding coeffi-
cientβeff (which depends on velocity even for a linear slid-
ing law) have slightly more complicated expressions than in
the SSA balance. However, under the Picard iterative scheme
employed, the updates of these fields are straightforward.
Additionally, UPDATE_VISC_BETAcan seamlessly be re-

placed by an SSA viscosity update, effectively making the
model a shallow-shelf model.

The matrixAm referred to above is constructed based on a
finite element method with bilinearQ1 elements on a rectan-
gular mesh.ν(m) andβ

(m)
eff are considered constant within an

element. Finite elements were chosen, not to use a mesh that
conforms to irregular boundaries, but rather because of the
ease with which complicated nonlinear boundary conditions
can be implemented. A conjugate gradient method is used to
solve the linear system, with a simple Jacobi preconditioner.

The model was implemented as an extension (a “pack-
age”) within the Massachusetts Institute of Technology gen-
eral circulation model (MITgcm;Marshall et al., 1997). As
such the code takes advantage of various grid definitions and
metrics, file I/O subroutines, and the MITgcm parallel do-
main decomposition and message-passing facilities. The ice
flow model run time has been observed to scale favorably
with domains of∼40,000 degrees of freedom and tens of
processors. Developing the ice model within the MITgcm
framework has other potential advantages: while the model is
currently isothermal, there is the potential to rapidly imple-
ment temperature transport (and transport of other scalars)
using the generic tracer code developed for MITgcm. An ice
model that shares grid and modeling components with an
ocean model also lends itself to ice–ocean coupling, which is
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a future development direction. However, the most important
benefit for present purposes is that we are able to take advan-
tage of the adjoint generation framework within the MITgcm,
as discussed in the following section.

3 Model adjoint

The notion of “adjoint” is best understood in terms of its con-
struction. Assume that, in a time-dependent ice model, one
were concerned with how the initial thickness at asingle lo-
cationaffected the thickness field at the end of the run. As-
sume the initial thickness field is represented by a vectorh(0),
and the thickness at the final time steptn byh(n). If the model
is differentiable, one can then consider a perturbation to a sin-
gle element ofh(0) (i.e., a directional derivative) and propa-
gate the perturbation forward to the final time to the resulting
perturbation in the model output. This forward-propagation
of perturbations is known as atangent linear model(TLM).
The TLM provides information about sensitivities of model
output to a single variable (i.e.,h(0)(i), the value ofh(0) in
cell i). If one wanted information about sensitivities to all
suchh

(0)
k , k = 1, ...,M, whereM is the size of the grid, the

TLM would need to be runM times. (Note that in this con-
text, the “single location” referred to above is not a point in
space, but rather a localized area that depends on the model’s
discrete representation of a continuous field. If the represen-
tation were spectral in nature, a localized value could not be
well represented by a single degree of freedom.)

On the other hand, the adjoint can provide this informa-
tion in a single run, provided the output of interest is scalar-
valued. This scalar is often referred to as acost, objective,
or target function, for instance, the total volume of ice in the
domain at the end of the run. The adjoint model is referred
to as such because it is the mathematical adjoint of the TLM.
This seemingly trivial distinction has important implications
for how the models are constructed. For the TLM, the for-
ward perturbation is found by successive compositions of the
TLMs of sequential time steps. The adjoint model operates
backwards in time, by composing the adjoints of individual
time steps (or operations within time steps) in reverse order.
The eventual result of the TLM is the sensitivity of the out-
put to a single input variable, whereas the result of the adjoint
model is the sensitivity of asingle scalar outputto a set of in-
put variables. In the remainder of this section we give an out-
line of the generation of our ice model adjoint, highlighting
the varied approaches employed. For a more comprehensive
discussion of the mathematical meaning and implications of
adjoint models, seeHeimbach and Bugnion(2009).

First we introduce notation that will aid our discussion.
Each state variable of the model has a corresponding vari-
able in the adjoint model state (or more formally, a co-vector
in the dual to the tangent space of the model at the given point
in state space). For a state variablex, we denote its tangent
space counterpart byδx, and its adjoint byδ∗x. In gener-

ating the adjoint we relate the adjoint state variables to one
another. Assume the state variabley derives fromx through
the atomic operationy = g(x). To generate the tangent linear
model, we findδy, the perturbation toy, by applying the lin-

ear operator
(

∂g
∂x

)
to δx. Conversely, we track sensitivities of

a cost functionJ from the final time backward. This means,
if the sensitivities ofJ to y are stored inδ∗y, we findδ∗x by

applying the adjoint of
(

∂g
∂x

)
to δ∗y.

In Table 3 we give a pseudocode version of the ad-
joint ice model, corresponding to the version of the for-
ward model presented in Table1. The time-stepping loop
is now from the final timetf to 0. Note that the inter-
mediate steps of a single time step occur in reverse order,
and the adjoint of the Picard iteration loop begins from
mterm , the termination step of the forward Picard loop.
From this it can be seen how initial condition sensitivi-
ties, denotedδ∗h(0)

≡ ∇[h(0)]J , might be found, as well as
parameter sensitivities. For instance,βeff derives in part
from the sliding parameter fieldβ in the pseudo-subroutine
UPDATE_VISC_BETA, and so contributions toδ∗β are cal-
culated inADUPDATE_VISC_BETA. Note that the diver-
gence operator inADCALC_DRIVING_STRESSis actu-
ally the discrete divergence, corresponding exactly to the
discretized gradient operatorCALC_DRIVING_STRESS.
Note also that the updates ofδ∗h(n) and δ∗R from δ∗s(n)

in ADUPDATE_FLOATATIONinvolve the same condi-
tional statement as inUPDATE_FLOATATION. Also in
this pseudo-subroutine, the backward propagation ofβ-
sensitivities are terminated where the floatation condition is
satisfied.

The majority of the adjoint generation is carried out with
AD software. Source-to-source transformation AD tools gen-
erate adjoint code by treating each line of source code as an
atomic step and finding its adjoint – similar to the transfor-
mation implied by Tables1and3but at a higher level of gran-
ularity. Several products are available, including open-source
software such as OpenAD (Utke et al., 2008). We use the tool
TAF (Transformation of Algorithms in Fortran;Giering et al.
(2005)), which has long been used for adjoint generation with
the MITgcm (Heimbach et al., 2005), and which was used
in Heimbach and Bugnion(2009). This highlights an addi-
tional advantage of developing the ice model with MITgcm:
the readiness with which the AD tools can be applied. The
code needs to satisfy certain requirements in order to be eas-
ily parsed by TAF (e.g., there should not be do-loops of in-
determinate length, and the use of pointers should be mini-
mal), and conforming to the standards of MITgcm helped to
ensure this. Additionally, MITgcm defines rules for steps in-
volved with parallel message-passing, such that they can be
treated as adjointable operations, and thus the adjoint model
is parallel as well. The same is true for our ice model adjoint.

In Table3, the steps to which AD tools are applied are indi-
cated by (AD). These are straightforward operations and we
had minimal difficulties applying the tools. Only one step, the
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matrix solve, is not handled by AD. The conjugate gradient
algorithm employed involves a large number of intermediate
variables relevant only to the solver, and can require many it-
erations. A direct application of AD tools to the solver would
involve large memory requirements, as well as a great deal of
either code modification or manual “directing” of the tools,
to prevent costly recomputation loops. On the other hand,
TAF (as well as other AD tools) offers a facility to replace
the adjoint code that is automatically generated by manually
written code at the subroutine level, if the adjoint of a sub-
routine is known, as is the case with the linear solver. As in
Table1, the linear solve can be written

u(m+1)
= A−1

m τd , (4)

whereu(m+1) is the iterate of velocity found at stepm of the
Picard loop,Am is the matrix constructed with the previous
iterates of viscosity and basal coefficient, andτd is the driv-
ing stressρgh∇s at the current time step. The solve can be
viewed as an operatorg with argumentsAm andτd , i.e.,

g : (Rn×n
× Rn) → Rn

; (5)

thus the adjoint operator must have the form

g∗
: Rn

→ (Rn×n
× Rn). (6)

The adjoint of Eq. (4) is given by

δ∗τd = δ∗τd + A−T
m δ∗u(m+1), (7)

δ∗Am = −δ∗τd(u(m+1))T . (8)

Equation (7) is written as an accumulation of adjoint sen-
sitivities of τd ; the adjoint of each Picard iteration has an
effect onδ∗τd . In our adjoint model, a subroutine carries out
these operations; sinceAm is self-adjoint, the same conjugate
gradient solver (with the same matrix coefficients) is used in
Eq. (7). Note that in the MITgcm ocean model, which solves
a linear system for either rigid-lid surface pressure or free
surface elevation, an equation similar to Eq. (7) is solved by
the adjoint model, and the symmetry of the matrix is simi-
larly exploited. However, the coefficients of the matrix are
fixed, and so Eq. (8) has no counterpart. Following the so-
lution of Eq. (7) and Eq. (8) by hand-written code, evalua-
tion of the adjoint via AD-generated code is resumed:δ∗τd

andδ∗Ai are passed to the adjoint of the matrix construction,
ADBUILD_STRESS_MATRIX.

An important by-product of this approach (“hiding” the
matrix inversion from the AD software) is that it allows us
to potentially replace our linear solver with faster, optimized
“black-box” solvers (such as those available in external pack-
ages such as PETSc) without affecting the accuracy of the
adjoint. We point out that the advantages mentioned here
are not limited to our model, i.e., to one that implements a
shallow-shelf or hybrid stress balance. Matrix inversion is

the most time-intensive component of any ice model with a
nonlocal stress balance, and the part of the code that is most
likely to lead to difficulties in application of AD software.
As long as it can be handled in a similar way to our model
(i.e., as long as the matrix is self-adjoint), efforts can be fo-
cused on ensuring that the remainder of the code is suitable
for algorithmic differentiation.

It was found that, in order that the adjoint model produce
accurate results, the CG tolerance for the linear solve in the
adjoint needed to be several orders of magnitude smaller than
that used in the linear solve of the forward model. (The ac-
curacy is assessed by comparing the derivatives calculated
by the adjoint to finite-difference approximations. Relative
agreement to within 10−6 was considered accurate.) This
suggests that without special treatment of the convergence
criteria, a fully AD-generated adjoint might have low accu-
racy, and further supports our decision to let the AD software
“bypass” our linear solver.

4 Nonlinear optimization

For optimization problems, our model uses the M1QN3 li-
brary, publicly available Fortran code which is based on the
algorithm described inGilbert and Lemaréchal(1989). The
M1QN3 algorithm solves large-scale unconstrained mini-
mization problems. It provides a search direction and step
size based on a limited-memory quasi-Newton approxima-
tion to the Hessian of the objective functionJ , using gradi-
ents ofJ that are provided by the user throughout the mini-
mization process. The gradient ofJ is calculated by the ad-
joint. The M1QN3 software has been adapted for use with
the control package of MITgcm, and so we are able to make
use of it as well.

5 Experiments

We present a suite of experiments that showcases the ad-
joint and optimization capabilities of our model. The opti-
mizations consist mainly of “identical-twin” experiments, in
which the field being inverted for is known a priori, and the
“observed” data is a perfect solution of the model. Such in-
verse problems have been termed “inverse crimes” (Colton,
1998), because they are considered too optimistic to pro-
vide a reliable test of performance. However, an inverse
model must at a minimum be able to perform well on these
idealized experiments, which demonstrate the strengths and
limitations of the model.
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Table 3. Pseudocode version of adjoint model reverse-time-stepping algorithm corresponding to Table1. (AD) indicates that this step is
processed by the algorithmic differentiation tools.

DO tn = t f , . . . ,0
• CALL ADADVECT_THICKNESS

δ∗u(n), δ∗h(n) from δ∗h(n+1)

via adjoint to continuity equation (AD)
• CALL ADVEL_SOLVE

• DO m= mterm , . . . ,0
• CALL ADUPDATE_VISC_BETA

δ∗u(m+1), δ∗β updated from

δ∗ν(m+1), δ∗β
(m+1)
eff (AD)

• CALL ADSTRESS_CG_SOLVE
Equations (7) and (8) (non-AD)

• CALL ADBUILD_STRESS_MATRIX

δ∗ν(m), δ∗β
(m)
eff , δ∗Bglen, δ∗h(n)

updated fromδ∗Am (AD)
• END DO
• CALL ADCALC_DRIVING_STRESS

δ∗h(n)
= ρg∇s(n)(δ∗τd),

δ∗s(n)
= ρgh(n)(∇ · δ∗τd)

(AD)
• CALL ADUPDATE_FLOATATION{

δ∗h(n)
= δ∗h(n)

+ (1−
ρ
ρw

)δ∗s(n) if h(n)
≤ −

ρw
ρ R

(δ∗h(n),δ∗R) = (δ∗h(n),δ∗R) + δ∗s(n) otherwise
(AD)

END DO

5.1 Experiment 1: sensitivity to ice shelf stiffness
and melt rates

The first experiment does not involve optimization, but
simply demonstrates the interpretive powers of the adjoint
model. We consider the sensitivity of the volume of grounded
ice in a marine ice stream to thermodynamic effects on its ad-
jacent ice shelf. Such effects are of considerable importance,
given observations of the Antarctic coastline made over the
last several decades. Confined ice shelves are known to act
as logjams to ice stream flow (a phenomenon referred to as
ice shelf buttressing;Dupont and Alley(2005)) and there-
fore exert a large control on grounded ice mass balance. The
heat contained in Southern Ocean subsurface waters is able
to cause melting at the underside of Antarctic ice shelves,
most notably those in the Amundsen Sea embayment (Ja-
cobs et al., 1996; Jacobs, 2006; Jenkins et al., 2010; Jacobs
et al., 2011). Meanwhile, widespread speedup, thinning, and
mass loss have been observed in these ice shelves and the
ice streams that feed them (Rignot, 1998; Rignot et al., 2002;
Shepherd et al., 2002, 2004).

A number of modeling studies have been carried out ex-
ploring the magnitude and distribution of sub-ice shelf melt-
ing that results from intrusions of warm water into an ice
shelf cavity, as well as how these quantities depend on
the geometry of the cavity and the strength of the forc-

ing (e.g.,MacAyeal, 1984; Jenkins, 1991; Hellmer et al.,
1998; Holland et al., 2008; Little et al., 2009; Heimbach and
Losch, 2012). Less frequently asked is how the response of
grounded ice depends on the magnitude and spatial distribu-
tion of melting, thoughWalker et al.(2008) andGagliardini
et al. (2013) have investigated this question. To understand
how large-scale changes in ocean heat content and circula-
tion can affect ice sheets, both questions are important.

Here we address the second question with an idealized ice
sheet–stream–shelf system. Ice is allowed to flow in a rect-
angular domain of 150 km× 150 km, where ice flux input is
constant along thex = 0 boundary (simulating flow from the
ice sheet interior). Along thex = L = 150 km boundary a
calving front boundary condition is imposed, whether ice is
grounded or floating (Weertman(1957); Schoof(2007), Ap-
pendix B. A channel runs the length of the domain, deepen-
ing away from the front. The bedrock elevation is expressed
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Fig. 1. Background steady state of the ice stream-shelf system in Experiment 1. Coloring on
the upper surface is velocity magnitude. The thick black contour denotes the grounding line.

46

Fig. 1. Background steady state of the ice stream–shelf system in
Experiment 1. Coloring on the upper surface is velocity magnitude.
The thick black contour denotes the grounding line.

(in meters) by

R(x,y) = Rx(x)Ry(y) − 200, (9)

Rx(x) = 1+
5

6

(
150− x

150

)
, (10)

Ry(y) =


−100− 600 sin

(
π(y−50)

50

)
50≤ y ≤ 100 km,

−100− 100 sin
(

π(y−50)
50

)
(25≤ y ≤ 50) or

(100≤ y ≤ 125 km),

0 otherwise,
(11)

wherex and y are in km. Sliding is governed by a linear
sliding law, i.e.,

τb = β2ub. (12)

Within the channel, i.e., where 50 km≤ y ≤ 100 km,β2 is
set to 30 Pa (m/a)−1. Outside of the channel it is 9 times
larger. The lateral boundaries aty =0 km, 150 km are no-slip
boundaries, but the resistance to ice stream flow comes from
basal stress in the outer “sheet” region, not the sidewalls.
The Glen’s law parameterA is set uniformly to 9.5× 10−18

Pa−3 a−1, which corresponds roughly to a temperature of
−15◦C. The model is run to equilibrium, shown in Fig.1.
An ice shelf about 50 km long forms over the channel.

To examine changes in grounded ice, we consider volume
above floatation (VAF), defined as volume of ice that would
contribute to sea level rise if all of the ice in the domain were
to melt, and the loss thereof (Dupont and Alley, 2005). Note
that the floating columns of ice do not contribute to VAF.
We calculate the adjoint sensitivities of VAF loss during the
ten-year run to two different input fields: basal melting under
the ice shelf (̇m), and the Glen’s law flow parameterA. A

realistically depends on the temperature and fabric of the ice,
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Fig. 2. (a) Sensitivity of grounded ice volume after 10 years to sub-shelf melt rates, in km3

per (m/a) of melting. The non-colored section of the figure is within the grounded part of the
domain (b) Similarly for Glen’s Law parameter A, but with units of 10−15 km3 Pa−3 a−1. A thick
black contour denotes the grounding line. The largest values in both figures are in the ice shelf
margins. Note the differing x- and y-bounds on the figures.
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Fig. 2. (a) Sensitivity of grounded ice volume after 10 yr to sub-
shelf melt rates, in 10−3 km3 per (m a−1) of melting. The non-
colored section of the figure is within the grounded part of the do-
main. (b) Similarly for Glen’s law parameterA, but with units of
10−15km3 Pa−3 a−1. A thick black contour denotes the grounding
line. The largest values in both figures are in the ice shelf margins.
Note the differingx andy bounds on the figures.

but here we consider dependence onA directly. We define a
scalar function

J =

∑
i

HAF(i)1x1y, (13)

HAF(i) =

(
h(i) +

ρw

ρ
R(i)

)+

, (14)

where “HAF” is height above floatation,R(i) andh(i) are
bed elevation and thickness at final time in celli, and1x

and1y are spacings on the (here uniform) grid.J is the cost
function, or objective function, for this experiment (equal to
final-time VAF), and it is the scalar function of which the
gradient is found, with respect tȯm andA, by the adjoint
model.

Melt rate sensitivities are shown in Fig. 2a. The value at a
location (i.e., in celli) can be interpreted as the loss in VAF
after 10 yr with a constant melt rate of 1 m a−1 in cell i. Sen-
sitivities are only nonzero in locations where ice is floating.
This is due to a rule in the model that melt rates cannot be
applied under grounded ice: so even though adjoint sensitiv-
ities are propagated backward in time, they terminate at the
point in the code where melt rates are applied. The pattern
of sensitivities is interesting: they are largest not in the deep-
est part of the shelf near the grounding line, where melt rates
are generally highest, but rather in the margins of the shelf.
This implication (which should be taken with many quali-
fications, as explained below) that shifts in melt rates near
relatively shallow ice shelf margins could have stronger im-
pacts on grounded ice than shifts of equal magnitude near the
grounding line. Also curious is the fact that sensitivities are
actually negative (though very small) near the ice shelf front.
This effect is in fact realized in forward runs: thinning of the
ice shelf front leads to flux across the ice shelf margin (into
the shelf) and drawdown of the grounded ice cliffs, lessening
their contribution to VAF loss.

Note that these results differs from those ofWalker et al.
(2008) andGagliardini et al.(2013), who found that melt rate
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patterns which concentrate toward the grounding line have
the greatest impact on grounded ice. However, these studies
used flowline models and thus could not resolve the effects of
thinning near shear margins. Therefore, this experiment high-
lights the need to resolve both horizontal directions when as-
sessing the impact of melting on ice shelf buttressing.

Figure 2b shows sensitivities with respect toA. (Values
are large because the nominal value ofA is on the order of
10−17 Pa−3 a−1.) Here values are nonzero in grounded and
floating ice, and are largest in the margins of the ice shelf
(and negative, but small toward the ice shelf front).A is
sometimes referred to as the “fluidity” of ice; i.e., the larger
it is the more easily the ice flows. A positive change corre-
sponds to weakening of the ice, and weakening in the mar-
gins leads to the most grounded ice loss.

That the thinning (through melting) and weakening of an
ice shelf can lead to grounded ice loss is well established on
theoretical (Thomas, 1979) and modeling (Dupont and Alley,
2005; Goldberg et al., 2009; Little et al., 2012) bases. But
less-oft discussed is whichpartsof the shelf are most sensi-
tive to this mechanism, that is, the structural integrity of the
ice shelf. The result of our idealized case, with a small, con-
fined ice shelf, suggests that the margins are the weak points
of the shelf. It is not clear to what extent this applies to ice
shelves in general, although intuition suggests that margins
play a similar role in all confined, relatively small shelves.
This demonstration shows that a similar analysis can be done
on any ice shelf–ice stream system (although a baseline solu-
tion free of artificial model drift would be required for mean-
ingful results).

The computational advantage of the adjoint in producing
data sets such as those shown in Fig.2 is considerable. Using
a domain decomposition over 9 processors (with a 50× 50
grid belonging to each process) took approximately 12 min-
utes, or 5 seconds per time step. The adjoint run that pro-
duced both data sets in Fig.2 (and could have produced ad-
ditional adjoint sensitivity fields as well) took approximately
4 times longer, giving a total run time of about an hour. (The
additional run time is because parts of the forward model
must be run multiple times to provide state information for
the reverse-time adjoint run.) If, on the other hand, one were
to approximate sensitivities by perturbing single parameter
values and using one-sided finite differencing, the melt rate
sensitivities would take approximately 50× 50× 0.2 h≈ 25
days (since only a portion of the domain is ice shelf) and the
A-sensitivities about 9 times as long.

While the efficiency of the adjoint in finding sensitivities
is obvious, it should be kept in mind that the analysis is in-
herently linear: a forward trajectory is needed around which
to perturb. In this case the trajectory was a quiescent one,
as the run began in steady state with no melting. As dis-
cussed above, melting increases flux across the grounding
line through loss of ice shelf buttressing; sufficiently high
melt rates would lead to grounding line retreat. This, in turn,
would result in increased grounding line thickness (due to the

shape of the bedrock), leading to further mass flux increase
(Schoof, 2007). The latter effect is nonlinear, however, and is
not detected by our adjoint results. When calculating adjoint
sensitivities, the results should not be taken at face value,
but rather serve as a starting point for further investigation.
It is worth noting thatGoldberg et al.(2012b), using a cou-
pled ice–ocean model that allowed grounding line migration,
found that thinning of an ice shelf at the margin due to melt-
ing was a key factor in unstable retreat of grounded ice – giv-
ing credence to the high sensitivities of VAF loss to values in
the ice shelf margin.

5.2 Experiment 2: inversion of basal sliding coefficients
from surface velocities

In our first inversion experiment we infer basal sliding coeffi-
cients from surface velocities, considering only the momen-
tum balance of the model (i.e., no time dependence). This
is an identical-twin experiment, in that the surface velocities
come from model output with prescribed parameter values
(or “true” values), and the inverted parameters are then com-
pared with the truth. The forward model is one-dimensional
(only one horizontal direction is considered, and the SSA bal-
ance is implemented) with periodic boundary conditions, and
surface slope and thickness are constant.

Many authors have carried out similar inversions over the
past two decades, both with synthetic observations and real
ones (e.g.,MacAyeal, 1992, 1993; Vieli and Payne, 2003;
Khazendar et al., 2007; Sergienko et al., 2008; Morlighem
et al., 2010; Joughin et al., 2009). The purpose of this ex-
periment is not to introduce a new type of glaciological in-
version, or to improve upon an existing one, but rather to
enable direct comparison with existing methods. As one of
the simplest glaciological inverse problems, our adjoint opti-
mization framework must, at a minimum, perform as well as
other inversion methods.

The experiment is based on Experiment B from the
ISMIP-HOM intercomparison (Pattyn et al., 2008) with L =

40 km, and 1 km resolution. The intercomparison specifies
a constant thickness of 1000 m, a constant surface slope of
0.1◦, and a linear sliding law with a mode-one sinusoidally
varying sliding coefficient, or lubrication,β2 (Fig. 3a). This
profile ofβ2 represents our true parameter values. The Glen’s
law parameterA is uniformly set to 10−16 Pa−3 m a−1. We
define asu∗

1 thex velocities from the model with these pa-
rameters.

For the inverse problem to determineβ2, we define a cost
function on the model output:

J =
1

2

N∑
i

(u∗

1(i) − u(i))2

σ 2
i

, (15)

where the summation is over all cellsi, andu∗

1(i) andu(i)

are the nodal values of the observed velocitiesu∗

1 and model
output velocitiesu, respectively, where the latter depend on
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Fig. 3. (a) Data for inverse problem. ”True” basal sliding coefficient β2
true (left axis) and corre-

sponding velocity profiles (right axis) for low and high surface slopes. (b) Cost function J versus
number of model evaluations for full and approximate adjoint, low surface slope. (c) Same for
high surface slope. (d) Gradient found by full and approximate adjoint in first iteration (solid)
and second iteration (dashed), high surface slope.
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Fig. 3. (a)Data for inverse problem. “True” basal sliding coefficient
β2

true (left axis) and corresponding velocity profiles (right axis) for
low and high surface slopes.(b) Cost functionJ versus number
of model evaluations for full and approximate adjoint, low surface
slope.(c) Same for high surface slope.(d) Gradient found by full
and approximate adjoint in first iteration (solid) and second iteration
(dashed), high surface slope.

the current guess forβ through the stress balance. (In this
inversion, we attempt to recoverβ, notβ2, which is the eas-
iest way to impose the constraint that sliding coefficients are
nonnegative.) The numbersσi are scaling factors for the cost
function. Generally these scaling factors represent a priori
knowledge or first guesses regarding observations or param-
eters; for instance,σi might be the uncertainty in the velocity
observation. In practice, this prevents poorly constrained ob-
servations from leading to overspecification. In this example,
the scaling factors are set uniformly to 1: this presents no loss
of generality, as long as values ofJ are compared to the ini-
tial value.

For a givenβ, the adjoint finds sensitivities ofJ with re-
spect toβ. The cost function is then minimized using the op-
timization algorithm described in Sect.4. Notice that no reg-
ularization terms have been added to the cost function to en-
sure a priori properties of the lubrication field, e.g., smooth-
ness and boundedness, although we include such terms in
later experiments.

Figure 3b shows howJ evolves, eventually reaching cost

reduction, defined as
(

J
J0

)
, on the order of 10−6. J0 is the

value ofJ using the initial guess forβ2 (described below).
For comparison, an inversion is also carried out where the
“approximate” adjoint ofMacAyeal (1993) is used, rather
than the adjoint sensitivities from the AD-generated adjoint
(the “full” adjoint). The approach is termed approximate be-
cause the dependence of viscosity on strain rates is ignored.

In both cases, the same optimization algorithm is used, so
calculated adjoint sensitivities are the only difference be-
tween the two inversions.

The invertedβ2 is not shown, but it is very close to the
true profile. The same is true of the experiment with higher
surface slope, described below. This is because of the lack
of high-frequency variability in the initial guess. If the initial
guess had a broad spectrum with power at high frequencies,
such as a Gaussian shape (not shown), the inversion would
still decreaseJ as in Fig. 3b, and the invertedβ2 would have
the same broad pattern as the true profile, but there would be
high-frequency variability as well. This is because the veloci-
ties in the model are insensitive to high-frequency variability
in β2; they are muted by longitudinal stresses.

Both optimizations begin with the same initial guess for
β2, a half-mode sinusoid of the same amplitude. A uniform
β would be the simplest guess, but with a constant thickness
and surface slope there is zero strain rate, and this leads to
very high values for viscosity. The performance of the in-
verse model then depends on the viscosity regularization pa-
rameter. With the hybrid balance, this is not an issue; but in
this experiment the SSA balance is used so that different in-
version approaches can be compared.

The full and approximate adjoints perform equally well
in the experiment with a surface slope of 0.1◦, with the
full adjoint actually leading to greater values ofJ early on.
However, when surface slope is increased to 0.5◦ (as in the
ISMIP-HOM experiments with flow over a wavy bed), their
performances differ. Now the target surface velocitiesu∗

5(i)

are an order of magnitude larger (Fig. 3a), and it is important
to maintain the nonlinear dependence of viscosity on strain
rates in the adjoint, as evidenced by the poor performance of
the approximate adjoint (Fig. 3c). This can also be seen by
examining the adjoint sensitivities from the two models. Af-
ter the first iteration of the inversion (Fig. 3d) the sensitivity
profiles are similar, yielding similar search directions in the
optimization algorithm. On the next iteration, however, the
profiles look very different, and upon being provided with
the approximate adjoint sensitivities, the optimization algo-
rithm is unable to lower the cost function.

This is not to say that the AD-generated adjoint model is in
all cases an improvement over the approximate adjoint in this
type of inversion. The optimization algorithm has a number
of associated parameters; it is possible that, for the experi-
ment considered, different parameters might yield better per-
formance with the approximate adjoint, or worse with the full
adjoint. It is clear, nevertheless, that instances exist where the
full adjoint is advantageous.

5.3 Experiment 3: estimation of past conditions

We test the ability of our inversion framework to recover
two different parameter fields simultaneously based on time-
dependent data. Previous studies have considered time-
dependent observations, for exampleJay-Allemand et al.
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Fig. 4. (a) ”True” profile of glacier at time t=0 and transient surface profiles spaced one year,
exaggerated by a factor of 100. The last 5 profiles (in red) correspond to data used to constrain
β2 and h(t=0). (b) ”True” β2. (c) Thickness at final time (t=10a). (d) Surface speed at final
time. Region where flow is strongly divergent (convergent) is indicated by solid (dotted) black
contours.
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Fig. 4. (a) “True” profile of glacier at timet = 0 and transient sur-
face profiles spaced one year, exaggerated by a factor of 100. The
last 5 profiles (in red) correspond to data used to constrainβ2 and
h(t = 0). (b) “True” β2. (c) Thickness at final time (t = 10 a).(d)
Surface speed at final time. Region where flow is strongly divergent
(convergent) is indicated by solid (dotted) black contours.

(2011). However, the assimilation in this study consisted of
a series of “snapshot” inversions of surface velocities; no dy-
namic consistency between the states at different times was
enforced. We re-emphasize that the propagation of sensitiv-
ity/misfit information back in time by the adjoint model im-
plies that the inversion takes advantage of available observa-
tions not only forward in time (as do filter or sequential as-
similation methods) but also backward in time (smoother or
variational methods), mediated through the model dynamics.

We consider a mountain glacier undergoing adjustment in
response to a perturbation in basal conditions. We assume
we have knowledge of surface velocities at the end of this
adjustment (the “present”) and of thickness and surface el-
evations at certain discrete times during the adjustment, but
not of the initial thickness, nor of the basal conditions dur-
ing this adjustment. Perfect knowledge of bed elevation is
also assumed (this is not, in general, the case, and in the next
experiment we deal with bed topography uncertainty). We
ask whether we can recover this initial thickness and basal
traction with adjoint-based optimization. Reconstructions of
past glacier configuration, coupled with inversions of basal
properties, could be very useful in certain glaciological set-
tings. For instance, if an ice stream is known to be out of
balance due to relatively recent changes in its basal environ-
ment, such an inversion could give us thickness of the stream
prior to its observational history or, conversely, could pin-
point the time of onset of the changes.

The forward model is again a periodic domain with a con-
stant bed slope of−0.5◦ in the x direction. Both horizon-
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Fig. 5. (a) Value of cost function versus iteration. (b) Final inverted initial thickness (h(t=0)).
”True” field is uniformly 1000 m. Compare with Fig. 4(c), which is used as the initial guess.
Maximum misfit is reduced from 9 m to 1.8 m; r.m.s. misfit is reduced from 2.6 m to 0.25
m. (c) Inverted initial thickness when velocity is ”frozen” in its observed state (Fig. 4(d)). (d)
Inverted initial thickness when only the observed thickness at t = 10 years is used to constrain
the problem.
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Fig. 5. (a)Value of cost function versus iteration.(b) Final inverted
initial thickness (h(t = 0)). “True” field is uniformly 1000 m. Com-
pare with Fig. 4c, which is used as the initial guess. Maximum mis-
fit is reduced from 9 to 1.8 m; rms misfit is reduced from 2.6 to
0.25 m.(c) Inverted initial thickness when velocity is "frozen" in its
observed state (Fig. 4d).(d) Inverted initial thickness when only the
observed thickness att = 10 yr is used to constrain the problem.

tal dimensions are resolved, and the domain isy periodic as
well, with zero bed slope in they direction. The domain is
40× 40 km with 1 km resolution. The initial thickness is uni-
form with a value ofH0 = 1000 m. The Glen’s law parameter
A is as in the previous experiment. A hybrid stress balance is
used. The sliding law is again linear, with sliding coefficient
β2. The trueβ2 is defined as

β2
= 1000− 750 exp

(
−

( r

5

)2
)

, (16)

with units of Pa m a−1, wherer is distance from the center
of the domain in km. The model is integrated forward with
30-day time steps for 10 yr, at the end of which the model
is close to a new equilibrium. Figure 4a shows the initial
surface and thickness, as well as annual surface elevations
during the adjustment (magnified a hundred-fold), along the
center liney = 20 km.

For data in our identical-twin inversion to recoverβ2 and
the initial thickness, we take annual surface elevation over
the last 5 yr (the red curves in Fig. 4a) and surface velocity
averaged over the last year (Fig. 4d). These are referred to
below as the “target data”. We define a cost function

J =

N∑
i

(
1

Nσ 2
u

|us
∗(i) − us(i)|

2
+

1

Nσ 2
s

10∑
n=6

(
s(n),∗(i) − s(n)(i)

)2
)

, (17)

where the outer summation is over all cellsi. us
∗(i) is the

target surface velocity in celli, ands(n),∗(i) is the target sur-
face elevation in celli in yearn. σu andσs are meant to sig-
nify uncertainties in velocity and surface measurements, but
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since the observations are synthetic there is no rationale to
use spatially varying uncertainties. The relative values ofσu

andσs affect the results of the inversion, however. We use
1 m/a forσu and 2 cm forσs . Thus whenJ ∼ O(1) then the
model misfit is on the order of observational uncertainties on
average. This value is motivated by the spread of surface ele-
vations over the 5 yr sampling period; field measurements of
surface elevation generally have O(∼ 1 m) errors, at least in
relatively flat regions (Griggs and Bamber, 2008). GPS mea-
surements are capable of much higher accuracy than remote
sensing, provided the presence of a nearby exposed promon-
tory, or ice for which the surface elevation is changing on
much slower timescales (N. Gourmelen, personal commu-
nication, 2013), but we concede that GPS observations are
unlikely to be collected with such high spatial resolution.

For initial guesses, a uniform value ofβ2
guess≡

400 Pa m a−1 is used forβ2; as forh(0), the observed thick-
ness att = 10 yr is used. That is,

h(0)
guess= R + s(10),∗ (18)

whereR is the bedrock, the rationale being that, in this arti-
ficial experiment, the glacier is in this configuration (or close
to it) during the period of observation.

Figure 5a shows the cost function trajectory. About 60 to
80 gradient evaluations are required forJ to be O(1), but
the inversion is carried farther than that. Figure 5b shows the
final estimate ofh(0). Remnants of the initial guess can be
seen, but the associated misfit (when compared with the true
h(0)) has a maximum amplitude of about 1.8 m, whereas that
of the initial guess has a maximum of 9 m. In terms of root
mean square error,

errrms =

(
(h(0) − 1000)2

)1/2
, (19)

this value is reduced from 2.6 m for the initial guess to
0.25 m. The estimatedβ2 is not shown; it differs from the
trueβ2 by at most 2 %.

To appreciate the complexity of this inverse problem, one
should contrast with that of reconstructing the history of
an advected field in a flow that is fixed, or independent of
the field. Such problems have been dealt with frequently in
generic flow fields. Our problem is more complex, in that the
velocities depend nonlinearly and nonlocally on the advected
quantity (thickness). To illustrate this, another experiment is
carried out, in which depth-averaged velocity is fixed to the
target surface velocity, independent of time. The cost func-
tion consists only of the second term in Eq. (17), and the only
control field is initial thickness, with initial guess the same
as before. The forward model is essentially just the mass bal-
ance equation. The estimatedh(0) is shown in Fig. 5c. In this
experiment the cost function only decreases by a factor of 20
(as opposed to the O(106) decrease shown in Fig. 5a). More
interesting is that the final estimate ofh(0) is actually worse
than the initial guess. This is because the divergence pattern

in the target velocity field (Fig. 4d) differs from that through-
out much of the “truth” simulation.

It is also interesting to consider how the time dependence
of the constraints affects the inversion. The forward model
is close to steady state by the end of the 10 yr integration,
and the observed surface fieldss(n),∗ differ on the order of
centimeters. Since they are so close, one might guess that
constraining the surface at years 6 through 9 of the simula-
tion adds little information beyond that contained in the sur-
face elevation at year 10. However, this is not the case. We
carry out another inversion in which the cost function given
by Eq. (17) is modified so that the summation overn only
contains one term,n = 10. That is, only the final surface ele-
vation is constrained. In this experiment, the stress and mass
balances are again used, rather than solely the mass balance.
Figure 5d shows the result of this inversion. In this case the
estimated initial thickness is much closer to the initial guess
than the trueh(0). Valuable information about the thickness
trajectory is contained in the intermediate surface observa-
tions, even though the temporal variability is small. This par-
ticular result hinges on a level of measurement accuracy that
is not generally attained; still, it demonstrates the importance
of time-dependent information in estimating past ice sheet
behavior and other unknown parameters.

To our knowledge, a similar inversion experiment has not
been carried out with a higher-order model; although numer-
ical inversions for historic data, including prior ice thick-
nesses, have been carried out using a model that makes the
shallow ice approximation (e.g,Waddington et al., 2007). For
this reason, Experiment 3 is intended as a preliminary in-
vestigation in inferring unknown parameters based on time-
dependent data, in which different types of data (surface el-
evation and velocities) are not co-temporal. There are many
other questions that can be asked of such inversions: for in-
stance, how is the inversion affected if data is not spatially
complete, and if the “holes” in data at different times are not
coincident? Does the quality of the estimation decay with the
hindcast horizon? The choice of duration of our experiment
was based on the adjustment time of the forward model, but it
is unclear at which point the signal of observations gets lost
in the noise of the model. Also, we did not allow for time-
dependent lubrication, as inJay-Allemand et al.(2011); how
does this affect the ease of solution?

Further, the assumed accuracy of surface elevation mea-
surement (centimeter scale) is far below that expected by
satellite or airborne sensing (meter scale). Nevertheless, the
exploratory nature of our experiment is warranted and pro-
vides considerable substance, with more realistic accuracy
and spatial resolution of measurements being an avenue of
further investigation.
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5.4 Experiment 4: simultaneous inversion of basal
topography and sliding coefficients

Two prevalent challenges in modeling dynamic behavior of
real glaciers and ice sheets are those of basal topography and
of model initialization. Basal topography is often collected
by sparse flight lines of airborne ice-penetrating radar, lead-
ing to very low-resolution representations of ice thickness
much lower than that required by models used to study highly
dynamic features such as ice streams. Recent published er-
rors of gridded Antarctic ice thickness uncertainty are tens
of meters or more (e.g.,Fretwell et al., 2013). Given the sen-
sitivity of models to representations of bed topography (Du-
rand et al., 2011; Seroussi et al., 2011), this introduces large
uncertainties into model response.

Model initialization is important for studies that aim to as-
sess the time-dependent response of ice sheets and glaciers
in their current configurations to external forcing. In these
studies it is important to start from a quasi-balanced state, in
which there is no unrealistic model adjustment or drift that
will contaminate the results. Long-timescale spinups can be
computationally expensive, and due to parameter uncertainty
there is no guarantee that the steady state produced is close
to the observed state.

A number of studies have made use of the adjoint method
introduced byMacAyeal(1993) to estimate these parameters.
However, these inversions are problematic in that the various
data sets used are gathered using different methods and res-
olutions at different times. Very often the solutions can lead
to large anomalous mass balances when used to initialize a
time-dependent model. Contributing greatly to the error in-
herent in the inverted solutions are the uncertainties in basal
topography (Morlighem et al., 2011).

Two related issues emerge: uncertainties in ice thickness
and basal topography, and their impact on the usefulness of
assimilated products in model initialization. To deal with the
latter, some studies run spinups (albeit shorter ones due to
improved parameter guesses) or add “flux corrections” in the
term of surface or basal mass balances (e.g.,Joughin et al.,
2009; Larour et al., 2012a). Such approaches are not ideal,
because the model response may be influenced by the ad-
justed configuration or artificial mass balance.Morlighem
et al.(2011) carries out an adjoint-based method that is con-
strained by the continuity equation with observed velocities,
thus guaranteeing a stable mass balance. Basal lubrication
and ice stiffness can then be estimated using other methods.
However, the method does not consider the stress and mass
balance equations together, and thus it does not truly provide
a balanced state. In particular, the resulting model velocities
may agree well with observed velocities in theL2-norm, but
this does not guarantee that the divergence patterns will be
identical.

With a time-dependent ice model adjoint it is possible to
constrain both the continuity equation and the momentum
equations in simultaneous inversions for basal lubrication

and topography. In this section we explore the potential of
using this approach both to minimize drift in model initializa-
tions and to provide improved estimates of basal topography.
We note that methods for such inversions have been previ-
ously developed (Thorsteinsson et al., 2003; Gudmundsson
and Raymond, 2008). However, these methods assume New-
tonian rheology and rely on linear transfer functions of small
perturbations, so it is not clear that their results carry over to
large deviations and nonlinear rheologies.

We also point out that, in the general case, the retrieval of
basal lubrication and topography is ill-posed. Consider a slid-
ing glacier of infinite extent, with constant thickness, surface
slope, and basal lubrication. With negligible horizontal ve-
locity divergence, the glacier would be in steady state. There
are an infinity of lubrication/bed elevation parameter pairs
that would give the same surface velocity with the given sur-
face elevation. This is an extreme case, but we will keep this
potential limitation in mind. On a related note, the degree
to which existing studies of inversions for basal lubrication
have compensated for errors in bed topography has remained
largely unquantified.

5.4.1 Uncertainties in bed elevation

We perform an identical-twin experiment, in which the sur-
face elevation and velocity are known for an idealized glacier
in steady state. This steady state is found by time-integrating
the model in a doubly periodic, 40× 40 km domain. A linear
sliding law is used, with sliding coefficientβ2. Bed topog-
raphy and lubrication are given very simple analytical pre-
scriptions, with single-wavelength variation in bothx andy

directions:

R(x,y) = R0(x) + 200 sin

(
2πy

40

)
sin

(
2πx

40

)
, (20)

β2(x,y) = 1000− 800 cos

(
2πy

40

)
cos

(
2πx

40

)
, (21)

given in units of m and Pa (m/a)−1, respectively, wherex and
y are in km andR0(x) gives a constant downward slope of
0.5◦ in the x direction. The Glen’s law coefficient is as in
the previous two experiments. Horizontal resolution is 1 km.
Note thatR andβ2 are uncorrelated. This is not motivated
by any realistic model relating basal lubrication to basal ele-
vation; the physics of basal sliding are far too complicated to
be addressed in this simple experiment. Rather, it is a simple
experimental setup intended to serve as proof of a concept.
To achieve steady state, the surface is allowed to adjust, and
the state is presumed steady when the surface elevation rate
of change is O(10−4 m a−1). Figure6 showsR andβ2, along
with the steady-state surface elevation and speed. A hybrid
stress balance is used, so the surface speeds do not reflect
their depth-averaged values; vertical shear accounts for up to
∼ 30 % of the surface velocity.
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Fig. 6. (a) True basal topography R in Experiment 4, with constant trend in x-direction removed.
(b) True β2 in Experiment 4. (c) Steady-state surface elevation, linear trend removed. (d) Ice
surface speed corresponding to steady state.
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Fig. 6. (a) True basal topographyR in Experiment 4, with con-
stant trend inx-direction removed.(b) Trueβ2 in Experiment 4.(c)
Steady-state surface elevation, linear trend removed.(d) Ice surface
speed corresponding to steady state.

We set up our identical-twin experiment by assuming per-
fect knowledge of surface elevation and surface velocity, and
little or no information about basal topography and basal lu-
brication, aside from their general scales. We define a cost
function

J =
1

Nσ2
u

∑N
i |us

∗(i) − us(i)|
2
+

γd

N1t2

∑N
i(

h(1)(i) − h(0)(i)
)2

+
γo

N
‖∇h(0)

‖
2

+ γb

∑N
i exp

(
β(i)2

β2
max

)
,

(22)

where the summation is over all cellsi. The forward model
runs for a single time step, andus andh(1) are the model
surface velocity and thickness after that time step.us

∗ is the
observed surface velocity shown in Fig. 6d. The first term
in Eq. (22) penalizes misfit with observed velocities.σu is
as in Sect.5.3. The second term penalizes model drift, i.e.,
the amount by which thickness changes over the single time
step. If we were constraining the rate of thickness change
to be close to a nonzero observed rate, the term would be
different, but here we are constraining the model to be close
to steady state.γd is chosen so that the term is order unity
when thickness rate of change is on the order of 10−4.

The third and fourth terms in (Eq.22) pertain to the
“model” norm, rather than the misfit norm (Waddington
et al., 2007), meaning they deal with a priori knowledge of
the unknown parameters. The third term is a simple Tikhonov
smoothing term that penalizes large oscillation in thickness
(and bed topography; see below). The norm|·| is that induced
by summing the square of the centered finite difference ap-
proximation to the gradient over all cells.γo is chosen so that
the term only makes a contribution if thickness gradients are
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Fig. 7. Inversion for basal topography and lubrication with uniform initial guesses (basal eleva-
tion R≡-1000 m, β2 ≡400 Pa(m/a)−1) . (a) Cost function versus forward and adjoint iteration
number. (b) Inverted basal topography; compare with Fig. 6(a). rms error is 5.9 m, compared
with an initial value of 100 m. (c) Inverted β2.
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Fig. 7. Inversion for basal topography and lubrication with uniform
initial guesses (basal elevationR ≡-1000 m,β2

≡ 400 Pa m a−1).
(a) Cost function versus forward and adjoint iteration number.(b)
Inverted basal topography; compare with Fig. 6a. rms error is 5.9 m,
compared with an initial value of 100 m.(c) Invertedβ2.

larger than∼0.1 on average. The fourth term penalizes basal
lubrication if it becomes too large during the minimization. It
was found that without this term, the minimization algorithm
can sometimes favor extremely large values ofβ2 in favor of
making adjustments to initial thickness, and this term helps
to prevent that. For the experiment shown here this term was
found not to be necessary.

The basal lubricationβ and the bed elevationR are the
control variables in the minimization of Eq. (22). The surface
elevation,s, is constrained to be that of the computed steady
state,sss (the same as that shown in Fig. 6c). Rather than
penalizing the misfit ofs in the cost function, the surface
elevation is controlled exactly through the initial guess for
ice thickness. That is, the initial guess for thickness,h

(0)
guess,

and topography,Rguess, are defined such that

h(0)
guess+ Rguess= sss. (23)

When the guess forR is updated by a functionδR, the
topographyh(0) is updated by−δR.

The initial guesses for basal lubrication and topography
are

β2
guess(x,y) ≡ 400 Pa(m/a)−1, (24)

Rguess(x,y) = R0(x). (25)

The results of this inversion are shown in Fig.7. While
there is significant reduction inJ , indicating not only good
agreement of model and observed velocities but also small
model drift (i.e., steady state is achieved),J does not include
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Fig. 8. An inversion similar to Figs. 6-7, but with β2
true ”in phase” with Rtrue, such that the

sticky spots coincide with the topographic minima. Initial guesses for R and β2 are the same
as before. (a) Steady state surface elevation with trend removed. (b) Steady state surface
velocity. (c) Inverted basal topography. rms error is 16 m. Inverted topographic minima are
smaller in amplitude than the ”true” topography by ∼ 50. This is compensated by lower β2 in
those regions (d).
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Fig. 8. An inversion similar to Figs.6–7, but withβ2
true “in phase”

with Rtrue, such that the sticky spots coincide with the topographic
minima. Initial guesses forR andβ2 are the same as before.(a)
Steady-state surface elevation with trend removed.(b) Steady-state
surface velocity.(c) Inverted basal topography. rms error is 16 m. In-
verted topographic minima are smaller in amplitude than the “true”
topography by∼ 50. This is compensated by lowerβ2 in those re-
gions(d).

a measure of the misfit ofR andβ2. This can be assessed
directly, however, since the true values of these fields are
known. The invertedR andβ2 fields compare well with their
true values; the root-mean-square (rms) error in the inverted
basal topography is∼ 6 m (reduced from 100 m in the initial
guess).

Such accuracy cannot always be expected. To demonstrate
this an equally simple identical-twin experiment is carried
out. It is similar to the experiment discussed above, only the
basal traction is in phase with the basal topography, such that
the “sticky spots” that can be seen in Fig. 6b are shifted and
coincide with the topographic lows in Fig. 6a. Again, there
is no specific physical motivation behind the spatial relation-
ship between basal lubrication and topography. Rather, it is
to examine the degree of compensation between the two pa-
rameters in their inverted fields: since both lubrication and
topography control velocity, it is possible that the inversion is
nonunique. This type of compensation is similar to the “mix-
ing” referred to byGudmundsson and Raymond(2008).

The results of this experiment are shown in Fig. 6a. While
the reduction in the cost functionJ is similar (not shown), the
inversion is not as accurate, with an rms error in inverted to-
pography of∼ 15 m. The regions of difficulty can be seen to
be those of the topographic lows, where the inverted basal to-
pography perturbation is about 50 m less than the true value.
At the same time, inverted basal traction is lower than its
true value here. The smaller thickness is compensated by the

weaker bed in order to match the observed speeds. Over the
topographic bumps, inverted values are more accurate. We
draw the tentative conclusion that, when bed strength and to-
pography are uncorrelated, their inversions are more accurate
with the procedure used here.

5.4.2 Uncertainties in bed elevation and surface
elevation

In the above experiments, theexact surface elevation
sss(x,y) corresponding to the steady state of the model was
used as ahardconstraint, i.e., the initial surface elevation was
constrained to be exactly equal tosss, no matter the guess for
bed topography or lubrication. (The surface elevation after a
single time step was obviously not directly constrained.) The
rationale behind this choice was the relative magnitudes of
error in measurements of elevation and ice thickness in gen-
eral. However, one might ask how sensitive the above results
are to uncertainties in surface elevation. We carry out addi-
tional experiments of two distinct types: in the first, we still
impose a hard constraint on surface elevation, but we con-
strain to an inexact estimate ofsss. In the second we impose
asoftconstraint on surface, i.e., we add an additional penalty
term to the cost function, and allow for an additional control.
In these experiments, only runs where the true topography
and lubrication are out of phase (as in Fig.6) are considered.

In the hard-constrained experiments, we perturbsss to pro-
duce our error-prone surfaces0 with a mode 2 pattern:

s0 = sss+ ηs sin

(
4πy

40

)
sin

(
4πx

40

)
, (26)

whereηs is a specified amplitude.s0 now takes the place
of sss in Eq. (23). The results are not shown, but when
ηs = 0.1 m (implying accuracy higher than that achieved by
satellite or airborne altimetry), the inverted patterns of lubri-
cation and topography are similar to those shown in Fig. 7c
and b, and therms topography error is 5.6 m, similar to
that achieved when constraining tosss. Whenηs = 0.5 m, a
slightly more realistic value, the patterns are again similar,
but with a rms error of 11.4 m still a significant decrease in
error relative to the initial guess. However, one can assume
the accuracy of inversion will worsen when errors are larger,
or when true topography and lubrication are correlated.

In our final experiment we weaken the constraint on sur-
face elevation: we do away with Eq. (23) and instead allow
for independent controls ofβ, R, andh. To the cost function
given in Eq. (22) we add the termJs , defined by

Js =
1

Nσ 2
s

N∑
i

(
s(1)(i) − s0(i)

)2
, (27)

wheres0 is as in Eq. (26). Both η andσs are set to 0.1 m,
implying an accuracy of 0.1 m in surface elevation measure-
ments. Note that the constraint is on the surfaceafter a time
step is taken, in contrast to the other experiments, but this
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Fig. 9. (a) The error inherent in the initial guess for bed topography, weakly-constrained surface
elevation. (b) The error in bed topography at the end of the inversion. Note that error is reduced
where surface velocities are high or true bed topography is relatively flat. (c) Corresponding
inversion for β2.
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Fig. 9. (a)The error inherent in the initial guess for bed topography,
weakly constrained surface elevation.(b) The error in bed topog-
raphy at the end of the inversion. Note that error is reduced where
surface velocities are high or true bed topography is relatively flat.
(c) Corresponding inversion forβ2.

should not matter if the system is in steady state. An ex-
periment was carried out with an initial guess of a flat bed,
which did not lead to the recovery of an accurate bed to-
pography (not shown). However, the level of accuracy in the
prior bed topography estimation in the above experiments
was quite low; in practice bed elevation is known at least
somewhat accurately from ice-penetrating radar, or seismic
inference, along with interpolation. Therefore we choose an
initial guess with an error pattern similar to that ofs0, and
with magnitudes of 30 m rather than 200 m:

Rguess(x,y) = R(x,y) + 30cos

(
4πy

40

)
cos

(
4πx

40

)
. (28)

The initial guess forβ was as in the previous experiments.
The results of this experiment are shown in Fig.9. Bed to-

pography is depicted in terms of error with respect to the true
bedR(x,y), not in absolute (i.e., with respect to sea level).
Overall, the reduction in rms bed error was not large (from
15 to 8.3 m.) Nevertheless, the pattern of error is instructive:
by comparison between Figs. 6a, b and 9b, it seems that error
reduction was significant in areas of high surface velocity or
relatively flat bed. Inverted bed lubrication is shown as well,
but in an absolute sense, as the initial guess is uniform. The
pattern is qualitatively correct, but there are obvious errors,
to be expected given the related errors in bed topography.

Here we have examined two approaches that allow for un-
certainty in surface elevation measurements; but for a simi-
lar order of accuracy, the first (hard-constrained) produces a
far more accurate estimate of bed topography and lubrication
than the second (soft-constrained). It seems that when the

thickness and bed are independent controls, the minimization
scheme is free to find agreement with the imposed surface el-
evation at the expense of the constraint on elevation change.
Since both methods incorporate uncertainties in surface ele-
vation, we therefore suggest the former (hard constraint on
surface elevation) when recovering bed topography and lu-
brication based on surface information. However, one would
not be able to use such hard constraints for a time-dependent
inversion, such as that of Sect.5.3.

6 Conclusions and further work

Using a synthesis of AD tools and analytical considerations,
we have successfully generated the adjoint of an ice model
which accounts for both a time-dependent mass balance and
a nonlocal, higher-order stress balance. The adjoint model
is capable of providing transient sensitivities, allowing for
exploration of very large parameter spaces. Coupled with a
large-scale optimization algorithm, the adjoint is able to suc-
cessfully perform the inversions that are typically carried out
in glaciological settings (retrieval of basal lubrication param-
eters) and some that are not (simultaneous retrieval of basal
topography and past thickness). The fact that the adjoint is
time-dependent means that an evolving model state can be
found consistent with observations, enabling ice model ini-
tialization without costly spinups or artificial flux adjust-
ments. Perhaps most importantly, this opens up a fundamen-
tally different approach to the use of ice observations for con-
straining transient ice flow, in particular with respect to satel-
lite remote sensing data that are resolved in time.

The process of adjoint generation is streamlined: a change
to the ice model requires simply another application step of
AD tools, rather than the derivation of a new set of adjoint
equations. The forward and adjoint models are fully paral-
lel, meaning the costly solves of large linear systems can be
spread across a number of processors. Currently the linear
solver is a very simple conjugate gradient algorithm with a
trivial preconditioner. However, the decoupling of the matrix
solve from the AD tools means that the efficacy of differ-
ent solvers can be investigated without affecting the adjoint
model. A possible future development is to replace our solver
with an external package for higher efficiency, similarly to
other ice models intended for large-scale studies (Bueler and
Brown, 2009; Larour et al., 2012b).

A number of developments remain to be made in our
model in order to apply it to many relevant glaciologi-
cal issues. As mentioned in Sect.5.1, the floatation con-
dition at the grounding line introduces nondifferentiabil-
ity in the expressions for basal and driving stress. In its
present form sensitivity studies cannot account for ground-
ing line migration, and neither can observation-based inver-
sions involving ice thickness and basal topography as con-
trols. In other adjoint studies these types of issues have been
approached by “smoothing out” these nondifferentiabilities
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(Losch and Heimbach, 2007); we will investigate whether
grounding line issues can be dealt with by such smoothing.

An important physical process currently absent in our
model is temperature transport. Ice internal temperature,
while difficult to observe on large scales, can play an im-
portant role in ice flow and in the controls on basal melt-
ing and freezing of grounded ice. Many parameter estima-
tion studies assume temperature is steady (Joughin et al.,
2009; Morlighem et al., 2010), but there is evidence in cer-
tain locations that there is ongoing thermal adjustment due to
unsteady transport (Engelhardt, 2004), and complex thermo-
mechanical coupling in shear margins (Schoof, 2012). Using
the existing tracer transport framework of MITgcm, we plan
to implement thermal advection/diffusion in our ice model.
This will enable investigations of the adjoint sensitivities of
ice evolution to poorly constrained ice internal temperatures,
and to even less well-known geothermal fluxes. Such sensi-
tivities are important to constrain, especially for areas under-
going large change, such as Pine Island (Larour et al., 2012a).

Our forward and adjoint model lay the groundwork for a
fully coupled land ice–ice shelf–ocean model that are based
on the same model infrastructure.Heimbach and Losch
(2012) used an ocean model adjoint to investigate the sen-
sitivities of melt rates under Pine Island ice shelf to ocean
forcings. Our ice model is not currently coupled to an ocean
model, but such coupling studies have been carried out (with-
out the capability of adjoint generation;Goldberg et al.,
2012a). Similarly coupling our model to the MITgcm ocean
model (for which an adjoint exists) would allow adjoint sen-
sitivities to then be propagated across the ice–ocean inter-
face, and the sensitivities of ice evolution to ocean forcings
could be investigated, among other questions. As demon-
strated in Sect.5.1, the structural “weak points” of an ice
shelf do not coincide with the places of strongest melting, or
necessarily with those areas where melt rates are most sen-
sitive to a given ocean forcing. A coupled ice–ocean adjoint
model could reveal which ocean trends are relevant to land
ice evolution, which is not currently known.

Lastly, we point out the ubiquity of our approach, as we
believe many higher-order ice model codes could potentially
be amenable to automated differentiation techniques, as long
as the costly linear solvers are hidden from the AD tools
(although there may be complicating factors not considered
here, such as discrete grid remeshing). Given the utility of
being able to generate an adjoint code, we make the sugges-
tion that next-generation ice model code be written with this
in mind.
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