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Abstract. Finding relevant microstructural parameters be-
yond density is a longstanding problem which hinders the
formulation of accurate parameterizations of physical prop-
erties of snow. Towards a remedy, we address the effective
thermal conductivity tensor of snow via anisotropic, second-
order bounds. The bound provides an explicit expression for
the thermal conductivity and predicts the relevance of a mi-
crostructural anisotropy parameterQ, which is given by an
integral over the two-point correlation function and unam-
biguously defined for arbitrary snow structures. For valida-
tion we compiled a comprehensive data set of 167 snow
samples. The set comprises individual samples of various
snow types and entire time series of metamorphism experi-
ments under isothermal and temperature gradient conditions.
All samples were digitally reconstructed by micro-computed
tomography to perform microstructure-based simulations of
heat transport. The incorporation of anisotropy viaQ con-
siderably reduces the root mean square error over the usual
density-based parameterization. The systematic quantifica-
tion of anisotropy via the two-point correlation function sug-
gests a generalizable route to incorporate microstructure into
snowpack models. We indicate the inter-relation of the con-
ductivity to other properties and outline a potential impact of
Q on dielectric constant, permeability and adsorption rate of
diffusing species in the pore space.

1 Introduction

The inter-relation between different physical properties of
snow and their microstructural origin is crucial for a broad
range of cryospheric applications, e.g. thermal conductivity
and dielectric properties for microwave signatures (Barber

and Nghiem, 1999), thermal conductivity and air permeabil-
ity for mega-dune formation (Courville et al., 2007) or ther-
mal conductivity and shear strength for field characterization
(Domine et al., 2011). Snow microstructure plays also a key
role for natural hazards (Schweizer et al., 2003) or aspects of
climate sensitivity (Fichefet et al., 2000; Flanner and Zender,
2006).

Snow properties are usually parameterized phenomeno-
logically. The ice volume fractionφi , which is proportional to
the snow density, is the most important microstructural quan-
tity which correlates well with physical properties. However,
a large scatter remains if properties are constrained on den-
sity as e.g. revealed for the thermal conductivity in (Sturm
et al., 1997; Domine et al., 2012). This scatter was recently
investigated by simulations and experiments in a comprehen-
sive study byCalonne et al.(2011). The authors hypothe-
sized that the remaining scatter in the thermal conductivity
is caused by microstructural anisotropy. As we show below,
anisotropy has in fact a severe impact on thermal conductiv-
ity and can be utilized quantitatively, if formalized by appro-
priate means.

In the last three decades powerful theoretical concepts
have been developed for heterogeneous materials (Torquato,
2002). In particular, series expansions yield formally ex-
act expressions for various physical properties. Relevant for
snow are so-called strong-contrast expansions which are
available for the thermal or electrical conductivity (Sen and
Torquato, 1989), elasticity (Torquato, 1997) and complex
dielectric tensor (Rechtsman and Torquato, 2008). The ex-
pansion parameter is a rational function of the phase prop-
erties, and the expansion coefficients can be computed ex-
plicitly in terms ofn-th-order correlation functions. In other
words, series expansions provide explicit expressions for the
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physical properties in terms of a complete, hierarchical se-
quence of microstructural parameters with increasing com-
plexity. The advantage of these series is their good con-
vergence properties over a large range of volume fractions,
even for strong contrast, i.e. strongly different phase prop-
erties. This is well suited for snow where ice and air prop-
erties usually differ by an order of magnitude. Truncations
of series expansions at a certain order lead to approxima-
tions for the physical properties, which can be recast into
rigorous bounds e.g. for the conductivity (Torquato and Sen,
1990). For isotropic materials the second-order bounds only
involve the volume fraction (Torquato, 2002, Ch. 21) and
could thus not be used to address the aforementioned scatter
at fixed density. Second-order bounds for anisotropic mate-
rials however include, besides the volume fraction, an addi-
tional microstructural anisotropy parameterQ (Torquato and
Sen, 1990).

In this paper we adapt this approach to snow and demon-
strate the relevance of the parameterQ, which can be for-
mally regarded as a depolarization factor for a random
arrangement of aligned (hard or overlapping) spheroids
(Torquato and Lado, 1991). The treatment of anisotropy is
however very different from the granular viewpoint (Shertzer
and Adams, 2011) based on grain contacts which are dif-
ficult to define. Similar to previous work (Kaempfer et al.,
2005; Flin and Brzoska, 2008; Calonne et al., 2011; Riche
and Schneebeli, 2013) we employ microstructure-based sim-
ulations on tomography image data and restrict ourselves
to purely conductive heat transport while neglecting contri-
butions from latent heat. In addition, the present approach
yields an accurate model for the thermal conductivity which
can be unambiguously evaluated from the geometry of the
ice matrix. The method is not restricted to the thermal con-
ductivity as we outline in the discussion. We believe that our
results constitute an essential step towards a unified macro-
scopic modeling of snow which will certainly benefit from
incorporating anisotropy within a formulation of metamor-
phism in terms of correlation functions.

2 Theory

2.1 Two-point correlation function

Like any two-phase material, snow can be fully characterized
at the pore level by a phase indicator functionφi(r), which
is unity if r ∈ R3 is in the ice phase and zero otherwise. For
the present purpose we need the first- and second-order cor-
relators of the “phase field”φi , namely the volume fraction
φi = φi(r) and the two-point correlation function

C(r) = φi(x + r)φi(x) − φ2
i , (1)

where volume averaging is denoted by•. The two-point cor-
relation function in Eq. (1) does not depend on the reference

pointx ∈ R3 and thus we assume a statistically homogeneous
material.

2.2 Anisotropic second-order bound

Sen and Torquato(1989) derived an exact series expansion
of the effective conductivity tensorke for anisotropic mate-
rials of arbitrary microstructure. This expansion was used by
Torquato and Sen(1990) to derive upper and lower bounds
for ke. To apply the bound, it is convenient to make a sim-
plifying assumption about the structure of snow in the first
place. We assume transverse isotropy in thexy plane. This
is reasonable for snowpacks in which temperature gradients
are usually aligned in thez direction. Then the two-point cor-
relation functionC(r) = C(r,cosθ) solely depends on the
magnituder = |r| and the polar angleθ relative to thez axis,
viz. cosθ = r ·ez. Under these assumptions, the effective con-
ductivity tensorke is diagonal and the diagonal entries are
bounded from below by (Torquato and Sen, 1990)

k(L)
e,x = k(L)

e,y = kair
1+ [φi + (1− φi)Q] (α − 1)

1+ (1− φi)Q(α − 1)
(2)

k(L)
e,z = kair

1+ [φi + (1− φi)(1− 2Q)] (α − 1)

1+ (1− φi)(1− 2Q)(α − 1)
.

Hereα = kice/kair denotes the ratio of the phase conductivi-
ties of ice and air which in fact depend on temperature. Typ-
ical values ofα are on the order of 100. The microstructural
parameterQ in Eq. (2) is defined by an integral over the two-
point correlation function,

Q =
1

3
− lim

δ→0

1

2φi(1− φi)

∞∫
δ

dr

r

π∫
0

d(cosθ)P2(cosθ)C(r) (3)

whereP2(x) = (3x2
−1)/2 denotes the Legendre polynomial

of order two. In the isotropic caseC(r) is independent ofθ
and the integral in Eq. (3) vanishes, viz.Q = 1/3. The bound
Eq. (2) provides an approximation for the conductivity tensor
in terms of the correlation function Eq. (1), which can be
computed for any microstructure. As shown byTorquato and
Sen(1990), the associated upper bound diverges for large
α and is not further considered here. Even in this case, the
lower bound can still provide a useful approximation for the
conductivity (Torquato and Sen, 1990).

2.3 Simplification of the bound for snow

Equation (3) is a Cauchy-type, principal-value integral where
the limit δ → 0 must be taken after integration. This is elab-
orate to carry out via direct numerical integration on 3-D
image data. We prefer to assume an explicit, anisotropic
functional form for C and compute the integral analyti-
cally. We have shown previously (Löwe et al., 2011) that
the anisotropic behavior of the two-point correlation function
even in the absence of a temperature gradient turns out to be
complex and cannot be described by a single length scale.
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In contrast, in microwave modeling it is common to approx-
imate the correlation function e.g. by a simple exponential
form and a single correlation length (Vallese and Kong, 1981;
Wiesmann et al., 1998). In the absence of available results for
the correlation function for other than isothermal conditions,
we follow the simplification adopted in microwave modeling
and focus on a functional form, which is governed by a single
length scale.

To account for anisotropy we employ a spheroidal scaling
form C(r/l(cosθ)) with a direction-dependent correlation
length l(cosθ) = lxy/[1− (1− (lxy/lz)

2)cos2θ ]
1/2. Herelz

denotes the vertical andlxy the horizontal correlation length.
Denoting the ratio of correlation lengths byε = lz/lxy we
can directly re-use the algebra inTorquato and Lado(1991)
to evaluate the integral in Eq. (3) and obtain

Q =


1

2

{
1+

1

ε2 − 1

[
1−

1

2χb(ε)
ln

(
1+ χb(ε)

1− χb(ε)

)]}
,ε > 1,

1

2

{
1+

1

ε2 − 1

[
1−

1

χa(ε)
atan(χa(ε))

]}
,ε < 1,

(4)

with χa(ε)
2
= −χb(ε)

2
= 1/ε2

− 1. Both expressions in
Eq. (4) yield Q = 1/3 for ε → 1. Together with Eq. (2) this
constitutes our approximation for the effective conductivity.

3 Materials and methods

3.1 Snow samples

To provide a comprehensive data set for validation we com-
piled a heterogeneous collection of 167 snow samples. All
samples were scanned with X-ray tomography (µCT) with-
out casting procedures. Sample sizes vary between 5.1 mm
and 10.7 mm. We have analyzed two time series of isother-
mal experiments (denoted by ISO-1, ISO-5 henceforth), four
time series of temperature gradient metamorphism experi-
ments (TGM-2, TGM-17, DH-1, DH-2) and a set of 37 in-
dividual samples (DIV) comprising various types of snow.
ISO-1 and ISO-5 are described inLöwe et al.(2011). The
sample TGM-17, taken fromKaempfer et al.(2005) was
subjected to a temperature gradient of 50 K m−1. The sam-
ple TGM-2 was measured in the snow breeder (Pinzer and
Schneebeli, 2009) with a temperature gradient of 100 K m−1;
DH-1 and DH-2 are taken fromRiche et al.(2013). A de-
tailed characterization including the IACS international clas-
sification of seasonal snow on the ground (Fierz et al., 2009)
of the snow samples is given in the supplementary material.
In summary we analyzed 62 samples of depth hoar (DH), 54
of rounded grains (RG), 33 of faceted crystals (FC) 10 of de-
composing and fragmented precipitation particles (DF), 5 of
melt forms (MF) and 3 of precipitation particles (PP).

3.2 Two-point correlation function and bound

To calculate the the two-point correlation functionC(r) from
segmented tomography images, we used fast Fourier trans-

formation to compute the convolution in Eq. (1). By fitting
the correlation function along the coordinate axesβ = x,y,z

to an exponentialCβ(r) = Cβ,0 exp(−r/ lβ), we obtained the
correlation lengthslz, lxy = (lx + ly)/2 and the aspect ra-
tio ε = lz/lxy . Obtained values for the correlation lengths
and the aspect ratios are in the range 0.029 mm< lxy <

0.442mm, 0.018mm< lz < 0.731mm and 0.50< ε < 1.84,
respectively. From the aspect ratioε we computedQ from
Eq. (4) and eventually the bound from Eq. (2).

3.3 Finite element simulations

To simulate the thermal conductivity tensorke we have used
a parallel version of a finite element code (Garboczi, 1998)
which solves the variational formulation of the conduction
problem through ice and air. The numerical solution imple-
ments periodic boundary conditions on sample boundaries
to minimize finite-size effects and the usual continuity con-
ditions for the temperature and the normal heat flux at the
ice–air interface.

To incorporate the effect of temperature raised byCalonne
et al. (2011), we adopted the scaling formke(kice,kair) =

kairke(kice/kair,1) (Torquato, 2002, Ch. 13.2.5). Thus the
effective conductivity tensor depends only on the ratio
α = kice/kair of the phase conductivities. For temperatures
−20◦C< T < 0◦C the ratio varies roughly in the inter-
val 90< α < 110. By simulatingke for three ice conduc-
tivities kice = 2.107,2.34,2.6 WK−1m−1 at fixed air con-
ductivity kair = 0.024WK−1m−1, we obtainα = kice/kair =

87.8,97.3,108.3, which covers the relevant temperature
range.

4 Results

4.1 Vertical conductivity vs. volume fraction

The simulated vertical conductivityke,z (kice = 2.107,kice =

0.024) is shown in Fig.1 as a function of volume fraction.
We follow Calonne et al.(2011) and Sturm et al.(1997)
and fitted the data to a second-order polynomial of the form
ke,z = kair+aφi +bφ2

i . The fit (solid black line) yields a root
mean square errorσ = 0.025Wm−1K−1 and a coefficient of
determination ofR2

= 0.89. To make contact to previous re-
sults we also show the directionally averaged conductivity in
Fig. 2. Again the black line is the respective least squares fit
(σ = 0.012Wm−1K−1, R2

= 0.95) and the red line is the fit
obtained inCalonne et al.(2011) for the same values ofkice
andkair.

4.2 Vertical conductivity vs. bound

Next we compared the simulated vertical conductivityke,z

with the prediction of the boundk(L)
e,z from Eq. (2). For all

values ofα = kice/kair we find a linear relation between
simulations and the bound withσ = 0.015Wm−1K−1 and
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Fig. 1.Simulated vertical conductivityke,z as a function of volume
fraction and best quadratic fit (black line,R2

= 0.89).
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Fig. 2. Simulated conductivity (arithmetically averaged) as a func-
tion of volume fraction and best quadratic fit (black line,R2

=

0.95). Red line: fit obtained byCalonne et al.(2011)

R2
= 0.96 independent ofα. We can thus employ a simple

linear correction to obtain the parameterization

ke,z = kair

[
Az(α)k(L)

e,z /kair − Bz(α)
]

. (5)

A comparison between simulated values for
kice = 2.107,kair = 0.024 and Eq. (5) is shown in
Fig. 3. The coefficientsAz(α) = 0.0663α + 0.8733 and
Bz(α) = 0.0837α − 0.8002 can be well described by linear
functions as shown in the inset in Fig.3. To further illustrate
the impact ofQ, we compare Eq. (5) with the simulations
for an individual time series (TGM-17) as shown in Fig.4.
In the inset we have plotted the time evolution of the two
dimensionless parametersφi andQ during the experiment.
This reveals that high-frequency modulations in the evo-
lution of ke,z stem from fluctuations inφi , while the slow,
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Fig. 3. Comparison of the simulated vertical conductivity to the
bound-based model Eq. (5). Deviations from the 1: 1 correspon-
dence (black line) yieldR2

= 0.96. The inset shows the best fit co-
efficients in Eq. (5) obtained for differentα.
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Fig. 4. Comparison of the bound-based model Eq. (5) with simula-
tions for one metamorphism time series (TGM-17). The inset shows
the evolution of the parametersQ andφi .

non-monotonic modulation inke,z originates from the evolu-
tion of Q. The distribution of the microstructure parameters
in the(φi,Q) plane relevant for the parameterization (Eq.5)
is shown in Fig.5.

4.3 Horizontal conductivity vs. bound

Finally we fit the horizontal conductivityke,xy = (ke,x +

ke,y)/2 linearly to the boundk(L)
e,xy and obtain the behavior

shown in Fig.6 (σ = 0.014Wm−1K−1,R2
= 0.90). Again,

our results for different phase contrasts can be summarized
in an empirical relation between the bound and the simulated
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Fig. 5. Distribution of microstructural parameters in the(φi ,Q)

plane. The dashed lineQ = 1/3 indicates isotropy.

values

ke,xy = kair

[
Axy(α)k(L)

e,xy/kair − Bxy(α)
]
. (6)

The valuesAxy and Bxy obtained for different phase con-
trasts are shown in the inset of Fig.5. They are similar to
the values obtained for the vertical conductivity and can be
well described by linear functions of the phase contrastα,
viz. Axy(α) = 0.0645α + 1.0732 andBxy(α) = 0.0890α −

0.6898.

5 Discussion

5.1 Improvement of microstructural characterization

Anisotropy and scatter are concealed if the diagonal en-
tries of the conductivity tensor are arithmetically averaged
(Fig. 2). Note that our data set comprises more depth hoar
samples than the one inCalonne et al.(2011) and a system-
atic difference between the respective fits for the orientation-
ally averaged conductivity in Fig.2 can be expected.

However, thermal fluxes in snowpacks are predominantly
governed by the vertical conductivityke,z alone, which is
subject to significantly larger scatter if plotted as a function
of ice volume fraction (Fig.1). The scatter of vertical con-
ductivity can be significantly reduced (Fig.3) by incorporat-
ing the new microstructural parameterQ, which is suggested
by the second-order lower bound Eq. (2). It is not surpris-
ing that the bound must be empirically corrected in mag-
nitude viaAz(α) to yield the bound-based model Eq. (5).
Second-order bounds are generally known to be not very
close to the true values; a significant improvement is typi-
cally achieved only by using third-order bounds (Torquato,
2002, Ch. 22.1). However, a key finding is thelinear re-
lation between the bound and simulations. This is surpris-
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Fig. 6. Comparison of the simulated horizontal conductivity to the
bound-based model Eq. (6). Deviations from the 1: 1 correspon-
dence (black line) yieldR2

= 0.91. The inset shows the best fit co-
efficients in Eq. (6) obtained for differentα.

ing since the two-point correlation function does not capture
connectivity properties of the ice matrix (Torquato, 2002,
Ch. 9.2.2). Loosely speaking, second-order density corre-
lations only characterize connected “paths” to neighboring
structural units. In contrast, third-order density correlations
already include the next-nearest neighboring units, and only
the entire hierarchy of correlation functions characterizes the
entire ensemble of paths through the ice matrix, i.e. the tor-
tuosity. How many correlations must be included depends on
the particular complexity of the microstructure and cannot be
guessed in the first place.

The linear relation between the bound and the simulated
conductivity then implies that the non-linear interplay be-
tween ice volume fractionφi and anisotropyQ is reason-
ably well reproduced by the functional form of the bound
in Eq. (2). This is confirmed by Fig.4, which discerns the
impact of φi and Q on the overall evolution of the con-
ductivity ke,z for a temperature gradient experiment TGM-
17. The non-monotonic evolution ofke,z(t) stems from the
non-monotonic evolution of anisotropyQ(t) which is only
slightly modulated by fluctuations in the ice volume fraction.
These fluctuations on the order of 10 % of the mean value are
likely a consequence of the sample sizes in the TGM exper-
iment which are still too small to entirely suppress volume
fraction fluctuations. However, these fluctuations are present
in the simulations and likewise captured by the bound-based
model, cf. Fig.4.

The increase in conductivity is generally attributed lit-
erally to chain-like or columnar structural features (Arons
and Colbeck, 1995), while a decrease might again occur
in the depth hoar regime (Sturm et al., 2002a). At the
same time only minor changes in the density are observed,
which is the origin of stated limitations of density-based
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parameterizations (Sturm and Johnson, 1992; Sturm et al.,
2002a; Domine et al., 2012). This is confirmed in Fig.5,
whereQ evolves almost independently toφi for temperature
gradient experiments. The stronger densification of TGM-2
compared to TGM-17 was probably caused by settling as a
result of a lower initial density. Our results suggest that the
anisotropy parameterQ well embodies what has been termed
“metamorphic component” inSturm et al.(2002b) to em-
pirically constrain the conductivity of snow on sea ice for
gradient-dominated snowpack conditions.

We do not observe apparent outliers, neither for isother-
mal metamorphism nor for other snow types (Fig.3). We
note that this has been achieved even by approximating the
correlation function in each coordinate direction by an expo-
nential, i.e. by a single length scale. We have shown inLöwe
et al. (2011) that a single-length scale form is not valid, at
least for metamorphism under isothermal conditions. Going
beyond a single-length scale characterization in each coor-
dinate direction would require finding a generally applicable
model for the correlation function which does not exist yet.
We would however expect that the improvement caused by
a better model for the two-point correlation function is mi-
nor compared to the improvement caused by the inclusion
of anisotropy or even higher-order density correlations in the
approximation.

The identification of a new relevant parameterQ, which
is unambiguously defined for arbitrary snow structures in
terms of the correlation functionC(r), defines the remain-
ing task of investigating the evolution ofQ or C(r) during
crystal growth under various metamorphism conditions. We
note that this does not require predicting the evolution of the
entire 3-D microstructure: the model for the correlation func-
tion employed here is compatible with a random arrange-
ment of identical (overlapping or non-overlapping) spheroids
(Torquato and Lado, 1991). Hence only the ratio of horizon-
tal and vertical correlation lengths must be predicted to cap-
ture the evolution ofQ. It might be thus sufficient to aim at
a mean field description of non-spherical “ice grains” as a
microstructure model. It seems thus feasible to include these
effects into snowpack models required e.g. to assess the sen-
sitivity of sea ice on snow conductivity (Fichefet et al., 2000)
in ice–ocean models. Besides the thermal properties, we ex-
pect the anisotropy (andQ) also to be relevant for other phys-
ical properties of snow as we indicate below.

5.2 Implication on other snow properties

Inferring the relevance of anisotropy for other properties
is facilitated by mathematical similarities between the ther-
mal conductivity and the dielectric tensor, diffusion of reac-
tive tracers and fluid permeability (Sen and Torquato, 1989;
Torquato, 2002). For the effective dielectric tensorεe of
anisotropic materials we resort to the long wavelength ap-
proximation (Rechtsman and Torquato, 2008), applicable to
microwave scattering. Their treatment is completely analo-

gous toSen and Torquato(1989), which is employed here for
the conductivity. The second-order approximation (Rechts-
man and Torquato, 2008, Eq. C.2) reveals that thez com-
ponent of the dielectric tensor can be written in terms of
Q. However, the phase contrast in the dielectric caseα =

εice/εair ≈ 3 is significantly lower compared to the ther-
mal caseα ≈ 100. Specifically forα ≈ 1 the influence of
anisotropy vanishes as correctly reflected by Eq. (2). We thus
expect only a minor influence of anisotropy on the dielectric
tensor.

Next we comment on the so-called trapping constantγ

(Torquato, 2002), which specifies the rate at which reactive
species diffusing in the pore space get adsorbed on the ice in-
terface. Using Eqs. (3.1-4), (2.40), and (4.14-15) ofTorquato
and Lado(1991) we infer that the second-order anisotropic
lower boundγ ≥ γ (L)

= φ2
i /(4l2xy 〈x〉0)[1− (2Q − 1)(ε2

−

1)]−1 can again be expressed in terms ofQ, the ratio of cor-
relation lengthsε and another constant〈x〉0 which can be
computed from the two-point correlation function. This is in-
teresting insofar as the permeability tensorKe is also related
to γ by a bound (Torquato, 2002, Ch. 23.2), yielding aQ-
dependent expression for thez permeability viaK−1

e,z ≥ γ (L).
The relevance of the bound for the permeability and its de-
pendence onQ can be immediately assessed via direct nu-
merical simulations (Zermatten et al., 2011). We note that an
isotropic version of the latter bound has been employed for
the permeability of sea ice (Golden et al., 2007) which might
also benefit from incorporating anisotropy, given the geomet-
rical variability of brine pockets under temperature cycling.

All examples ubiquitously demonstrate that bounds and
low-order truncations of exact expressions (i) suggest well-
defined and generalizable parameters and (ii) suggest func-
tional forms between them which abandon a purely empir-
ical treatment. Thereby cross-property relations can be for-
mulated, which are often observed for natural snow and re-
quired for a deeper understanding of the associated processes
(Courville et al., 2007; Barber and Nghiem, 1999; Domine
et al., 2011).

5.3 Limitations of second-order bounds

Second-order treatment has indeed limitations which be-
come apparent particularly for the horizontal component
ke,xy (Fig. 6). In contrast to the vertical direction, the lin-
ear, bound-based model (Eq.6) for the horizontal direction
shows significantly greater scatter when compared to the
simulations. Such a difference in performance between dif-
ferent coordinate directions is not unexpected. It has been
shown byTorquato and Lado(1991) that the sharpness of
the bounds for dispersions of aligned spheroids depends on
coordinate direction, where in some cases the vertical con-
ductivity is better characterized by the bound than the hori-
zontal conductivity. We attribute this behavior to the connec-
tivity of the ice matrix inxy direction which is apparently
more complex than the one inz direction. This suggests that

The Cryosphere, 7, 1473–1480, 2013 www.the-cryosphere.net/7/1473/2013/



H. Löwe et al.: A general treatment of snow microstructure 1479

higher-order density correlations are required to capture this
structural complexity. The corresponding evaluation of avail-
able third-order bounds (Torquato and Sen, 1990) is left for
future work. This will also help to abandon the remaining
empiricism contained in the coefficientsA andB in Eqs. (5)
and (6).

6 Conclusions

Arons and Colbeck(1995) postulated incorporating mi-
crostructure parameters based on first principles into param-
eterizations for thermal conductivity. We have shown that
second-order bounds for anisotropic materials provide such
an approach, which benefits from the strong, naturally occur-
ring differences in snow anisotropy. Though based on first
principles, we acknowledge that the resulting model still con-
tains empirical prefactors. The methodology demonstrated
here for thermal conductivity can be generalized to other
physical quantities for which series expansions or bounds
have been derived in terms of anisotropic correlation func-
tions. We have shown that even the strongly simplified treat-
ment of approximating the correlation function by an expo-
nential form with a orientation-dependent correlation length
leads to a considerable reduction of scatter. This demon-
strates the importance of characterizing vertical and horizon-
tal correlation lengths of snow. The connection between the
thermal conductivity and other macroscopic properties via
the same parameterQ will certainly help to unify modeling
efforts for various applications. The advantage for macro-
scopic snowpack modeling is apparent since the evolution
of the parameterQ or C(r) during metamorphism remains
to be understood.

Supplementary material related to this article is
available online athttp://www.the-cryosphere.net/7/
1473/2013/tc-7-1473-2013-supplement.pdf.
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