
The Cryosphere, 6, 71–84, 2012
www.the-cryosphere.net/6/71/2012/
doi:10.5194/tc-6-71-2012
© Author(s) 2012. CC Attribution 3.0 License.

The Cryosphere

A minimal model for reconstructing interannual mass balance
variability of glaciers in the European Alps

B. Marzeion, M. Hofer, A. H. Jarosch, G. Kaser, and T. Mölg
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Abstract. We present a minimal model of the glacier surface
mass balance. The model relies solely on monthly precipita-
tion and air temperatures as forcing. We first train the model
individually for 15 glaciers with existing mass balance mea-
surements. Based on a cross validation, we present a thor-
ough assessment of the model’s performance outside of the
training period. The cross validation indicates that our model
is robust, and our model’s performance compares favorably
to that from a less parsimonious model based on seasonal
sensitivity characteristics. Then, the model is extended for
application on glaciers without existing mass balance mea-
surements. We cross validated the model again by withhold-
ing the mass balance information from each of the 15 glaciers
above during the model training, in order to measure its per-
formance on glaciers not included in the model training. This
cross validation indicates that the model retains considerable
skill even when applied on glaciers without mass balance
measurements.

As an exemplary application, the model is then used to
reconstruct time series of interannual mass balance variabil-
ity, covering the past two hundred years, for all glaciers in
the European Alps contained in the extended format of the
world glacier inventory. Based on this reconstruction, we
present a spatially detailed attribution of the glaciers’ mass
balance variability to temperature and precipitation variabil-
ity.

1 Introduction

Glaciers are prominent features of the alpine landscape.
As they integrate their surface energy and mass fluxes
over multi-annual to centennial timescales (e.g.Jóhannesson
et al., 1989; Oerlemans, 2001), the fluctuations of the
glaciers’ extent constitutes a naturally low-pass filtered

signal of the atmospheric variability. Through this property,
glaciers allow people to directly perceive slow changes of the
climate system, that otherwise would be overwhelmed in hu-
man perception by short-term noise. Changes in glacier ex-
tent have therefore been discussed long before climate vari-
ability and change received the attention they do today (e.g.
Walcher, 1773; Finsterwalder and Schunk, 1887).

But the low-pass filter comes without a manual. In or-
der to understand what the fluctuations of glacier behavior
imply for their atmospheric forcing, it is necessary to under-
stand the interaction between glacier and atmosphere, and
to attribute changes in glacier behavior to specific changes
in the atmospheric forcing (e.g.Mölg et al., 2009). Without
the ability to distinguish between different modes of change
(e.g. between stochastically forced fluctuations and fluctua-
tions caused by anthropogenic warming), the glacier fluctu-
ations are meaningless to the observer interested in inferring
atmospheric variability from them.

The surface mass balance of a glacier is closer related to
the atmospheric forcing than changes in glacier length are.
Because ice dynamics do not complicate the relation between
surface mass balance and atmospheric forcing as they do with
the relation between atmospheric forcing and length varia-
tions, the surface mass balance provides a more direct access
point to understanding glacier-climate interactions. But mea-
surements of the glacier mass balances exist only for much
shorter time spans than observations of glacier length (Oerle-
mans, 1994, 2005; Cogley, 2009). For detecting statistically
robust connections between climate change and glacier ex-
tent on multidecadal and longer time scales, the period of di-
rect measurements is too short (Roe and O’Neal, 2009; Roe,
2011).

Reconstructions of glacier mass balance time series are
therefore desirable, and there are a number of approaches
that have been followed.Scḧoner and B̈ohm(2007) present
two hundred years of mass balances for two Austrian glaciers
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based on a statistical relation between mass balance and sum-
mer temperatures, minimum glacier elevation, area-weighted
mean glacier elevation, winter precipitation, summer snow
precipitation, and a measure of continentality.Huss et al.
(2008) reconstruct spatially distributed mass balances of four
Swiss glaciers back to 1865, based on a temperature index
melt model (Hock, 1999). Nemec et al.(2009) employ a
spatially distributed energy balance model to reconstruct the
mass balance of Vadret da Morteratsch back to 1865.

Similarly, there are studies that attribute observed behav-
ior changes of single glaciers to atmospheric forcing pat-
terns (e.g.Hoinkes et al., 1968; Hodge et al., 1998; Ras-
mussen and Conway, 2004; Huybers and Roe, 2009). Nesje
et al. (2000) find correlations between the mass balance
of several glaciers in western Norway and the North At-
lantic Oscillation (NAO), caused by the strong influence of
the NAO on winter precipitation. Similarly,Reichert et al.
(2001) compare a glacier in Norway (Nigardsbreen) to an
alpine glacier (Rhonegletscher) and find that the decadal
component of the NAO signal is driving the mass bal-
ances of both glaciers, with opposite signs between Nigards-
breen and Rhonegletscher. For the same pair of glaciers,
Reichert et al.(2002) find that the recently observed nega-
tive mass balances exceed the variability of mass balances
that can be explained by internal variability of the climate
forcing. Steiner et al.(2008) use a nonlinear backpropaga-
tion network trained with reconstructions of temperature,
precipitation, and glacier length in order to test the sensi-
tivity of Lower Grindelwald Glacier to scenarios of future
temperature and precipitation changes.Huss et al.(2010a)
present 100-yr long reconstructions of the mass balances of
thirty Swiss glaciers and detect links to North Atlantic multi-
decadal variability.

Here, we present a minimal model of the glacier surface
mass balance, and its application to reconstruct two hundred
years of mass balance variability in the Alps. The aim here
is not to use this reconstruction to drive dynamical glacier
models, which could serve to verify reconstructions of past
climate variability based on a comparison of modeled and
observed glacier extents. We rather intend to present a mass
balance reconstruction that is based on objective measures of
model robustness, that is spatially and temporally detailed,
and that is extending over a time period long enough to al-
low for conclusions on how patterns of atmospheric variabil-
ity influence glacier mass balance variability in the European
Alps. In this contribution, we only present the reconstruction
method and validation together with an exemplary simple ap-
plication, as the analysis of the rich data set created is beyond
the scope of this paper.

In Sect.2, the model is first derived for glaciers with exist-
ing mass balance observations. The model is trained for each
glacier individually, and a detailed validation of the temporal
robustness and skill of the parameter estimation is presented.
We compare the results of the individually trained model
to another model, which is based on seasonal sensitivity

characteristics (a simplified version of the method ofOer-
lemans and Reichert(2000), hereafter referred to as the SSC
model). Then, our minimal model is extended to glaciers
without existing mass balance measurements, by applying
the mean of the individually estimated parameters (hereafter
referred to as the mean model). This is followed by a de-
tailed validation of the mean model’s skill, which allows for
a quantification of how changing glacier geometry, and at-
mospheric flow regimes, impact the model error. The results
of the reconstruction are presented in Sect.3, along with an
simple example of how the model may be applied in order
to perform spatially detailed studies that may detect the re-
gional differences between the sensitivities of glaciers to cli-
mate forcing. The potential and limitations of the model are
discussed in Sect.4, before we summarize the results and
conclude in Sect.5.

2 A minimal model of the glacier surface mass balance

2.1 Model derivation

2.1.1 Consideration of the climatological mean

First, the model is established for a glacier that is in equilib-
rium with its climatological forcing. In this case, the annual
mass gain

∑12
i=1Pi,clim, wherePi,clim is the climatological

monthly solid precipitation, integrated over the surface of the
glacier, has to be lost to ablation (basically melt) within the
same hydrological year. The production of melt is controlled
by the energy budget of the glacier. While the determina-
tion of the exact energy budget of a glacier is quite intricate
(see e.g.Kuhn, 1987; Oerlemans, 2000; Mölg and Hardy,
2004), at mid latitudes the air temperature is a reasonable
proxy for the energy available to the glacier for producing
melt (Sicart et al., 2008; Ohmura, 2001), and has been used
to derive a whole set of minimal glacier mass balance mod-
els, also known as temperature index melt models (seeHock,
2003, for an overview). For our glacier in equilibrium, it is
therefore reasonable to determine a temperature sensitivityµ

such that

12∑
i=1

(Pi,clim −µ(max(0,Ti,clim −Tmelt))) = 0 (1)

whereTi,clim is the climatological monthly air temperature at
the glacier terminus,Tmelt is the monthly mean air temper-
ature above which melt at the glacier terminus occurs, and
the maximum operator ensures that only months with mean
temperatures aboveTmelt contribute to the melting of ice. We
use the terminus height of a glacier as the reference point
because it provides a natural temperature threshold: if tem-
peratures at the terminus are below freezing, it is reasonable
to assume that no melt occurs at the entireglacier surface.
Note thatTmelt does not necessarily have to be 0◦C, since
the diurnal cycle and intra-monthly variability may lead to
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Fig. 1. Dependency of the mean of rmsemodel,crossof all glaciers
on the prescribed value ofTmelt.

above-freezing temperatures even if the monthly mean is be-
low 0◦C.

The source of data forTi and Pi used in this study
is the HISTALP dataset (Auer et al., 2007)1, which pro-
vides monthly sums of solid (as well as total) precipitation
and 2 m temperatures on a 5× 5 min grid (approxmiately
9.5×6.5 km) of the greater alpine region, covering the years
1780 to 2008 (temperature) and 1801 to 2003 (precipitation).

2.1.2 Introducing variability

If the forcing of our glacier is variable, then

12∑
i=1

(Pi −µ(max(0,Ti −Tmelt))) = MB (2)

where MB is the annual specific mass balance of the glacier.
If there have been measurements ofN years of MB on the
glacier of interest, we can now in principle determineµ and
Tmelt such that the mean square error

mse=

1

N

N∑
k=1

(
MBk,measured−

12∑
i=1

(Pi,k −µ(max(0,Ti,k −Tmelt)))

)2

(3)

is minimized (least-squares regression). As it turns out, the
mean of the mse of all glaciers considered in this study
is quite insensitive to optimization ofTmelt (the mean of
rmse= mse1/2 is reduced by only 1 mm w.e. if we optimize
our model forTmelt), and when we prescribeTmelt, there is a
minimum in the rmse atTmelt= 0 (see Fig.1).

To obtainTi andPi , we first determine the HISTALP grid
point whose center is closest to the glacier location, and ex-
tract temperature and precipitation time series from that grid
point. However, the heightzHISTALP of the location of the

1Available athttp://www.zamg.ac.at/histalp
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Fig. 2. Modeled versus measured mass balances for all mea-
sured years. Left: results fora = const. = 1. Right: results for
a = aoptimized(see Eq. 5). Gray dots in the right panel indicate the
values of those glaciers that were rejected from the final set based on
the results of the cross validation procedure. Black numbers show
the results for all the glaciers accepted into the final set, gray num-
bers show the results for all glaciers. Values ofr are based on the
cross validation described in Sect. 2.2.

HISTALP temperatureTi,HISTALP is usually different from
the heightzglacier terminusof the glacier tongue, which we ob-
tain fromCogley(2009)2. We therefore correct the temper-
ature for the height difference by assuming a constant lapse
rateγ , such that

Ti = Ti,HISTALP+γ (zglacier terminus−zHISTALP) . (4)

In order to estimateγ , we run our model once for all glaciers
considered in this study and require that any dependency of
Tmelt on zglacier terminus− zHISTALP disappears. This yields
γ = −0.0063 K m−1, which is reasonable. In the following,
we ignore any changes ofzglacier terminusthat may result from
mass balance variability (see Sect.4 for a discussion), and
because of the weak dependence of the model performance
on the optimization ofTmelt, we prescribeTmelt= 0◦C.

While the modeled mass changes MBmodel have a high
correlation with the observed mass changes MBmeasured(left
panel in Fig.2), there is a strong bias and an underestimation
of the interannual variability of the mass balance (blue line
versus green line in Fig.3). The reason for this is likely an
increase of precipitation with altitude (and potentially accu-
mulation on the glacier from avalanches and aeolian trans-
port), which leads to an underestimation of the mass balance
(since typically,zglacier terminus> zHISTALP). In order to com-
pensate for this precipitation lapse rate, we introduce a scal-
ing parametera such that the final model for the annual mass
balance of the glacier is

MBmodel=

12∑
i=1

(aoptimizedPi −µoptimized(max(0,Ti))) , (5)

whereaoptimized is derived in the same manner asµoptimized
by requiring

2Data available athttp://people.trentu.ca/∼gcogley/glaciology/
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Fig. 3. Standard deviation of the annual mass balance plotted
against the area of the glaciers. Green dots show MBmeasured, black
dots show the values of the glaciers selected based on the cross val-
idation procedure. Blue dots show the results fora = const. = 1,
red dots show the result of the mean model. Horizontal lines show
the respective means; the red line is dashed so that the black line is
visible.

msemodel=
1

N

N∑
k=1

(
MBk,measured−MBk,model

)2 (6)

to be minimal.

2.2 Model validation

In order to validate the model, we construct a time series
of MBmodel,cross, where each value MBk,model,cross, k indi-
cating the year, is independent of MBk,measured. The values
of MBk,measuredare area-integrated mass balances obtained
from Cogley (2009). MBmodel,cross is determined by em-
ploying a leave-one-out cross validation routine (Michaelsen,
1987; Hofer et al., 2010): first, we determine which of the
glaciers in the mass balance data set are situated within the
HISTALP region (a total of 39 glaciers). We then determine
the auto-correlation time lagtr,lag of MBmeasuredfor each of
these glaciers by identifying the lag (in years) after which
the auto-correlation drops below the 90 % significance inter-
val. Finally, we optimize the parametersa andµ, leaving a
moving window of one year± tr,lag out of the data (the left-
out value has to be buffered with the auto-correlation time
lag in order to ensure that the remaining values are truly in-
dependent from the removed value). I.e. for a glacier with
N measured mass balances, we performN optimization rou-
tines, obtainN values foraoptimized,cross andµoptimized,cross,
andN values MBk,model,cross. This is an effective validation
mechanism especially when only short observational time se-
ries are available, as it guarantees that for each time step,
MBk,model,cross is independent of MBk,measured. The cross
validation thus includes an assessment of the temporal model
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Fig. 4. Standard deviation ofaoptimized,cross (top) and
µoptimized,cross (bottom) as a function of the number of
MBmeasured. Black dots are the values of the glaciers accepted into
the final set, gray dots are those of the rejected glaciers. The gray
vertical line indicates the minimum number of mass balances nec-
essary to yield robust results foraoptimizedandµoptimized.

parameter stability, and at the same time allows for the usage
of all available data for the training of the model.

Based on the time series MBmodel,cross we can derive an
estimate of the model error

msemodel, cross=
1

N

N∑
k=1

(
MBk,model, cross−MBk,measured

)2
.(7)

The performance ofN optimization routines also allows
for an assessment of the robustness of the parameter opti-
mization. Figure4 shows the standard deviation of the pa-
rametersa andµ obtained during the cross validation. If only
few measured mass balances exist, the valuesaoptimized,cross
andµoptimized,crossstrongly depend on single measurements,
and the standard deviations are high, indicating that the pa-
rameter optimization is not robust. The principle reason be-
hind the increased parameter uncertainty for small numbers
of measured mass balances is the potential of compensation
between precipitation and melt in our model. If only one
mass balance measurement would exist, there would be an
infinite number of parameter combinations that reproduce the
observed mass balance exactly. With increasing numbers of
mass balance measurements, the parameters have to accom-
modate for an increasing number of different temperature,
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Fig. 5. rmsemodel,crossas a function of the number of MBmeasured.
Black (red) dots are the values of the glaciers accepted into the final
set, gray (light red) dots are those of the rejected glaciers. Red dots
show the result of the mean model. The gray vertical line indicates
the minimum number of mass balances necessary to yield robust
results foraoptimizedandµoptimized.

precipitation, and mass balance combinations, which con-
strain the parameter estimates.

Based on this evaluation, we determine a subset of all
the glaciers with mass balance measurements by requiring
at least 15 values of MBmeasured, leaving 15 glaciers in the
final set (see Table 1).3 Values derived from glaciers rejected
from this final set are omitted in any further analysis. In the
figures, these values are shown in faded colors.

Figure5 (black dots) shows the results of the cross vali-
dation in terms of rmse. There is no apparent dependence of
rmse on the number of available MBmeasured, indicating that
the parameter optimization is robust.

Based on the cross validation results, we then calculate
the skill score of the model using the individually optimized
parameters

SSmodel= 1−
msemodel,cross

msereference,cross
, (8)

where msereference,cross is the mean square error of a
reference model. As the reference model, we deter-
mine MBk,measured,cross for each yeark by averaging over
MBmeasuredleaving out MBk,measured, in order to ensure that
also the reference model is independent of MBk,measured. If
the reference model is based on the observed climatology of
the modeled variable (as is the case here), the skill score can

3We also exclude Aletschgletscher and Rhonegletscher from
the final set, even though they do have more than 15 values of
MBmeasuredeach: for Aletschgletscher, MBmeasuredis not derived
based on glaciological methods, but on hydrological estimates. For
Rhonegletscher, all but four values of MBmeasuredare reconstructed
values for the timespan 1885 to 1909, which are therefore not suited
for our purpose.
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Fig. 6. SSmodel as a function of rmsemodel,cross. Black (red) dots
are the values of the glaciers accepted into the final set, gray (light
red) dots are those of the rejected glaciers. Red dots show the result
of the mean model. Vertical and horizontal lines show the respective
mean values.

be understood to measure the correlation between modeled
and observed values, with penalties for bias and under- (or
over-)estimation of the variance (seeWilks, 2006, for a de-
tailed discussion).

The correlation coefficientrmodel, determined as the cor-
relation of MBmodel,cross with MBmeasured, is listed together
with SSmodel in Table1 for all glaciers in the final set, and
Fig.6shows the relation between SSmodeland rmsemodel,cross.
The model shows considerable skill for all the glaciers in the
final set.

In a last step, we determineaoptimized and µoptimized for
each glacier as the means ofaoptimized,crossandµoptimized,cross
(see Table1).

2.3 The benefits of a parsimonious model

Models similar to the model discussed here have been pre-
sented before, e.g. byOerlemans and Reichert(2000) who
determine seasonal sensitivity characteristics (SSC) as a
measure of a glacier’s mass balance sensitivity to monthly
temperature and precipitation anomalies. They determine the
annual mass balance anomaly1MB as

1MB =

12∑
j=1

(CT ,j1Tj +CP,j1Pj ) , (9)

where1Tj = Tj −Tj,ref is the monthly temperature anomaly,
and1Pj = Pj/Pj,ref is the precipitation anomaly. In order
to use such a model for mass balance variability reconstruc-
tions, a total of 24 parameters (12 forCT , and 12 forCP ) has
to be determined, as opposed to 2 parameters in our model
(i.e. a andµ). Here, we will compare the approach of us-
ing as few parameters as possible (our model) to an approach
based on the attempt to mimic seasonal effects by introducing
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Table 1. Summary of skill scores, correlation coefficients, and parameters of the different models. The column SSCfitted shows the correlation
coefficient of the SSC model when derived from the fitted model results instead of the cross validation.

Skill score Correlation coefficient aoptimized µoptimized rmsemodel,cross rmsemean model,cross

model mean model SSC model mean model SSC SSCfitted (mm K−1) (mm) (mm)

Gl de Sarennes 0.64 0.60 0.36 0.77 0.78 0.66 0.90 2.85 120 593 664
Gl St Sorlin 0.63 0.30 0.20 0.75 0.78 0.60 0.92 1.82 122 562 748
Gh Careser 0.78 0.27 0.30 0.85 0.84 0.68 0.96 2.05 156 412 840
Griesgletscher 0.67 0.41 0.44 0.79 0.80 0.75 0.95 1.35 85 451 587
Limmerngletscher 0.73 0.54 0.45 0.82 0.83 0.75 0.97 2.06 96 393 518
Silvrettagletscher 0.53 0.31 –0.04a 0.68 0.73 0.54 0.90 1.60 104 527 667
Hintereisferner 0.72 –0.97a 0.52 0.81 0.83 0.76 0.94 1.21 102 302 791
Kesselwandferner 0.67 0.27 0.62 0.79 0.81 0.80 0.95 1.22 83 269 474
Sonnblickkees 0.74 –1.35a –0.23a 0.75 0.88 0.36b 1.00b 3.13 76 348 1395
Vernagtferner 0.77 0.43 0.80 0.85 0.87 0.90 0.99 1.97 89 266 401
Filleckkees 0.76 0.45 –0.57a 0.79 0.88 0.19b 1.00b 3.13 118 353 702
Jamtalferner 0.72 0.61 –2.32a 0.75 0.82 0.07b 1.00b 1.87 94 342 437
Wurtenkees 0.68 0.20 –7.10a 0.77 0.79 0.15b 1.00b 1.12 92 314 686
Gh Fontana Bianca 0.77 0.75 –8.62a 0.82 0.86 0.66b 1.00b 2.95 139 385 425
Plattalvagletscher 0.70 –0.01a 0.49 0.80 0.85 0.76 0.97 1.77 126 411 779

Mean 0.70 0.34a 0.28a 0.79 0.82 0.72b 0.94b 2.02 107 395 674

a A negative skill score implies that the model has no skill over the reference model. For the calculation of the mean, negative skill scores have been replaced with 0.b The model
has more degrees of freedom than mass balance measurements exist for this glacier; in the calculation of the mean correlation, these values were ignored.

more parameters, or generally to strive for better model per-
formance by including additional parameters (e.g.Scḧoner
and B̈ohm, 2007; Fischer, 2010).

First, the parametersCT ,j andCP,j have to be determined
for all the glaciers in the final set. Here, for reasons of sim-
plicity, we determine these SSC model parameters by cal-
culating a multiple linear regression of1MB on 1Tj and
1Pj , using the climatological monthly means ofTj andPj

(calculated from HISTALP data at the glaciers’ locations) as
reference valuesTj,ref andPj,ref. Note that this is not the ap-
proach taken byOerlemans and Reichert(2000), who, having
substantially more information on the glacier available, de-
termine the SSC model parametersCT ,j andCP,j by fitting
a more complex model of the mass balance to the observed
mass balance profile for a climatological setting, and subse-
quently testing the sensitivity of that complex mass balance
model to changes in monthly temperature and precipitation.
We use the multiple linear regression approach solely as a
straw man substitute for minimal glacier mass balance mod-
eling approaches that try to improve model performance by
including more parameters.

As above for our model, we assess the SSC model by a
leave-one-out cross validation. Therefore, we first determine
N setsCk,T ,j,cross and Ck,P,j,cross for each of the glaciers
(whereN is the number of available mass balance measure-
ments of the yeark). We ensure each of the sets is indepen-
dent of MBk,measured, by leaving out the yearsk±tr,lag during
the multiple linear regression.

Figure 7 shows the resultingCT ,j and CP,j , together
with their uncertainty determined as the standard deviations
of Ck,T ,j,cross and Ck,P,j,cross, for two exemplary glaciers
(Hintereisferner, with 51 measurements of MB within the
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Fig. 7. Parameters of the SSC model as derived by multiple lin-
ear regression for Griesgletscher (left) and Hintereisferner (right).
(Light) shading indicates (double) standard deviations calculated
from the cross validation.

HISTALP period, and Griesgletscher with 42 measure-
ments). The uncertainty of the parameters increases strongly
with decreasing number of available measurements. The
negative values ofCP , and positive values ofCT found for
some months indicate that using a multiple linear regression
for parameter estimation without considering the physical
meaning is problematic, as e.g. positive values ofCT imply
that higher temperatures lead to a more positive mass bal-
ance.
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Based on this cross validation, analogous to the routine
described above, we also determine the skill score and the
correlation SSSSC and rSSC of the SSC model. The results
for all glaciers in the final set are listed in Table1.

Both SSSSCandrSSCare considerably lower than the cor-
responding values from our model for most glaciers (see Ta-
ble 1). Statistically, this can be understood as a result of
lesser parsimony (i.e. more model parameters) of the SSC
model, which leads to stronger dependence of the values of
CT ,j and CP,j on single measurements, and which is de-
tected by the cross validation procedure.4 Physically, it can
be understood as the extra demand on the SSC model to re-
produce information which is readily available in the forcing
(Tj andPj ), but which has been removed from the forcing
before it is fed to the model. E.g.CT = 0 during the winter
implies that a positive temperature anomaly during the win-
ter, no matter how strong, will not produce any changes in
MB. But this is only the result of the model not experienc-
ing warm enough temperature anomalies in winter during the
training period, a fact which is an expression of the low cli-
matological winter temperatures. By removing the seasonal-
ity from the forcing (i.e. using1Tj and1Pj as input instead
of Tj andPj ), the SSC model has to reproduce not only the
connection between temperature and precipitation anomalies
and MB, but also the mean climate and the seasonality of the
forcing.

The disadvantages of lacking parsimony go unnoticed if
the model is not validated with scrutiny: for illustrative pur-
poses, we have also calculated the correlationrSSC,fitted by
usingCT ,j andCP,j instead ofCk,T ,j,crossandCk,P,j,crossto
determine1MBSSC. The results are listed in Table1. Calcu-
lating rSSC,fitted instead ofrSSC, i.e. omitting an independent
model validation – as is frequently done (e.g.Oerlemans and
Reichert, 2000; Wildt et al., 2003; Fischer, 2010) – leads to
a significant overestimation of the model’s skill.

2.4 Extending the model to unmeasured glaciers

While the optimized model parameters differ between the
glaciers, their standard deviation is close to an order of mag-
nitude smaller than the parameters (σ(aoptimized) = 0.71, and
σ(µoptimized) = 22), indicating that the model may have skill
even if applied to glaciers without any measured mass bal-
ances available for training. In order to test this hypothesis,
we perform a cross validation of the mean model (i.e. the
model employing the arithmetic mean of the parameters op-
timized for all the glaciers in the final set).

For each of the glaciers in the final set, we build a
mean model that is independent of that glacier’s mass bal-
ance measurements by excluding from the calculation of

4This limitation is particularly obvious when using multiple lin-
ear regression to determine the parameters. If they are determined
by other approaches, the dependency on single measurements may
be hidden, e.g. in the fitting of the mean MB profile, and will get
less significant the more independent data are available.

the mean model parameters the optimized parameters from
that glacier. We then calculate the rmse of the mean model
for that glacier, the results are shown in Fig.5 (red dots).
While the rmse of the mean model increases compared to
that of the individually trained model, the error is not ex-
cessive (rmsemean model,cross= 674± 246 mm w.e., up from
rmsemodel,cross 395±101 mm w.e., see Table1). As above,
we also calculate the skill score of the mean model5, and
the correlation based on the cross validation; the results are
listed in Table1 (see also red dots and lines in Fig.6). As
is to be expected, the skill score of the mean model is con-
siderably lower than that of the individually trained model.
However, the skill that can be expected from the mean model
(SSmean model= 0.34±0.23) is still considerably higher than
that of the less parsimonious SSC model, which furthermore
is limited to application on glaciers with measured mass bal-
ances.

Note that the correlation coefficient from the cross vali-
dation actually increases slightly for most glaciers when the
mean model is applied, which can be understood as the ben-
efit of a strongly enlarged data basis of the mean model com-
pared to those of the individually trained model.

Since the mass balance variability reconstructed by the
mean model is not notably different from that of the indi-
vidually trained model (red dots and red line in Fig.3), we
can infer that the reduction in model skill is based on an in-
crease in model bias. This is confirmed by the determination
of the model bias (see Fig.8): while the mean bias for all
glaciers is quite small for both the individually trained model
(24 mm) and the mean model (94 mm), the spread between
glaciers is considerably larger for the mean model (standard
deviation of 506 mm) than for the individually trained model
(standard deviation of 73 mm). This relatively unconstrained
bias of the mean model poses strict limits on the applicabil-
ity of the results. This is especially the case for glaciers with-
out existing mass balance measurements, and where absolute
values of the mass balance are necessary, such as driving an
ice dynamics model, or calculating contributions to sea level
change. But it does not narrow the applicability for studies
concerned with spatio-temporal mass balance anomalies (see
discussion in Sect.4).

3 Results

3.1 Individually trained model

Figure 9 summarizes the results of the reconstructed mass
balance time series for the glacier Hintereisferner as an

5For consistency with our objective to test the model for unmea-
sured glaciers, as a reference model for calculating the skill score
of the mean model we use the mean mass balance of all the other
glaciers.
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exemplary case.6 Figure9a shows the observed (green) and
reconstructed (black) time series of the annual mass balance,
together with the rmse derived from the cross validation. The
visual inspection mirrors the results of the cross validation
procedure: while there is generally good agreement between
measured and modeled mass balances, the variability of the
model is slightly smaller than that of the measurements. Fig-
ure 9b, c shows the annual anomalies of temperature and
solid precipitation from the climatological mean at the site
of the glacier, calculated from the HISTALP data set used
as forcing. In order to estimate their respective influence
on the modeled mass balance, we repeat the reconstruction
twice: in the first case, we replace the variable precipita-
tion of the HISTALP data with the climatological monthly
mean precipitation. This yields the mass balance time series
shown in Fig.9d, a measure of how temperature variabil-
ity imprints on mass balance variability. In the second case,
we replace the variable temperatures of the HISTALP data
with the climatological monthly mean temperatures. This
yields the mass balance time series shown in Fig.9e, a mea-
sure of how precipitation variability imprints on mass bal-
ance variability. In order to determine the relative impor-
tance of temperature and precipitation on the reconstructed
mass balance, we then calculate a running 10-yr window cor-
relation between temperature-driven and precipitation-driven
mass balance and the full reconstruction (i.e. correlation be-
tween Fig.9a and d, and between Fig.9a and e). The results
are shown in Fig.9f. With a few exceptions, temperature
variability contributes significantly to the mass balance vari-
ability, while the contribution from precipitation variability is
generally less important and only intermittently significant.

6Equivalent figures for all glaciers in the final set are available
as online material.

This reflects the typical situation of a glacier situated in the
inner region of the Alps (see Sect.3.3), and is different for
other glaciers (see Supplement).

3.2 Mean model

The result of applying the mean model to Hintereisferner is
shown in Fig.9g. Again, the green line shows the measured
mass balance, while the black line shows the reconstruction.
Note that here, opposed to Fig.9a, the reconstruction is de-
rived completely independent of any measurements of Hin-
tereisferner. Note that with a skill score of−0.94, Hintereis-
ferner is one of the glaciers where the mean model performs
comparatively weak (see Table1, and Supplement). But the
relatively high mean skill score of the mean model, as well
as the high mean correlation, indicate that it is indeed mean-
ingful to apply the mean model to glaciers without existing
measurements of the mass balance.

3.3 Spatial attribution of variability to temperature and
precipitation

In order to demonstrate potential applications, we employ
the mean model to reconstruct time series of annual mass
balances for all glaciers in the European Alps contained in
the extended format of the World Glacier Inventory (WGI-
XF) data base (Cogley, 2005)7. We then repeat the proce-
dure for the derivation of the time series in Fig.9d and e for
each of these glaciers, and calculate the correlation between
temperature-driven and full variability, and precipitation-
driven and full variability over the entire time series, and for
each of the glaciers. The results are shown in Fig.10.

On the scale of the whole alpine region, temperature
slightly dominates precipitation as the driver of mass bal-
ance variability. But a pattern emerges which indicates that
the further west, and the closer to the margin of the Alps
the glaciers are situated, the more important precipitation be-
comes. This confirms the analysis ofKerschner et al.(2000),
who found that during the Younger Dryas, glaciers in the
inner Alps responded weaker to precipitation changes than
those closer to the margin of the Alps. It also reflects the
finding of Oerlemans and Reichert(2000) that glaciers with
high annual precipitation tend to have a stronger sensitivity to
precipitation changes than glaciers in dry climates (see also
Ohmura et al., 1992; Kaser, 2001).

Another pattern emerges in the vertical: the higher the
glacier terminus is situated, the stronger the influence of pre-
cipitation becomes relative to the influence of temperature
(see Fig.11): the correlation of precipitation-driven vari-
ability itself correlates with terminus altitude withr = 0.33,
and the correlation of temperature-driven variability with
r = −0.44. This result can be understood as a consequence
of the freezing threshold that affects temperature and precip-
itation in opposite ways: the generally colder temperatures

7Available at:http://people.trentu.ca/∼gcogley/glaciology/
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Fig. 9. Timeseries of the reconstruction for Hintereisferner.(a) green: MBmeasured, black: MBmodel, light gray shading:± 2·rmsemodel,cross,
dark gray shading:± 1·rmsemodel,cross. (b) annual temperature anomaly at the location of the glacier.(c) annual precipitation anomaly at the
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of higher glaciers imply that temperature variability on a
higher situated glacier has to be strong for a greater amount
of months in order to bring temperatures above freezing. But
at the same time, precipitation variability, also because of the
colder temperatures, shows through in the mass balance for
a greater number of months.

4 Discussion

A similar approach for estimating the monthly glacier melt
water runoff was taken byKaser et al.(2010), based on the
assumption of the glaciers being in equilibrium with the cli-
matological mean forcing. Additionally, they did not distin-
guish between solid and liquid precipitation onto the glacier
surface, which implies that the negative side of the mass bal-
ance equation−µ(max(0,Ti,clim −Tmelt)) not only has to in-
clude melting of ice, but the runoff of liquid precipitation
from the glacier as well.

The annual runoff in their model can then be understood
as the sum of ice melt and liquid precipitation onto the ice

12∑
i=1

µ(max(0,Ti)) =

12∑
i=1

µM(max(0,Ti))+µLP(max(0,Ti)) (10)

whereµM +µLP = µ are parameters for melting and liquid
precipitation onto the glacier, and where

12∑
i=1

µLP(max(0,Ti)) = Pliquid (11)

is the annual amount of liquid precipitation. This approach
has the advantage that less detailed knowledge on the cli-
matic forcing of the glacier is necessary, since information
on the total monthly precipitation is generally more readily
available and accurate than information on solid precipitation
alone.

In order to determine the implications of not distinguish-
ing between solid and liquid precipitation, we repeated the
entire model calibration and validation process, including

www.the-cryosphere.net/6/71/2012/ The Cryosphere, 6, 71–84, 2012
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the topography of the HISTALP data set.

liquid precipitation into the positive side of the mass bal-
ance equation. Remarkably, doing so reduces the rmse of
the model by 11 mm to 384 mm. While it is counterintuitive
to include liquid precipitation into the mass balance, this re-
sult indicates that the amount of liquid precipitation includes
information that is relevant for the mass balance, and that is
not included in the temperature data. There are several rea-
sonable explanations how liquid precipitation may influence
the mass balance (e.g. directly by percolation and refreez-
ing, which would also change the subsurface energy balance,
or by changing the ablation via altering the surface energy
balance, or it may include relevant information on more in-
direct influences, such as cloudiness), but from our model it
is not possible to conclude which is the most important in-
fluence. Taking only solid precipitation into account disables
the model to take advantage of that information. If a pure re-
construction of the mass balance anomalies is the objective,
because of the lower rmse it is reasonable to follow the ap-
proachKaser et al.(2010). However, since the parameterµ

corresponds not only to melting of ice in their approach, the
sensitivities to precipitation and temperature variability may
be flawed. Therefore, if an attribution of mass balance vari-
ability to variability in the forcing is of interest (as is the case
in our study), one cannot take advantage of the information
contained in the amount of liquid precipitation.Huss et al.
(2009) show that the parameters of a temperature index melt
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Fig. 11.Correlation between reconstructed mass balance variability
and mass balance variability driven only by temperature variability
(red) and mass balance variability driven only by precipitation vari-
ability (blue), for all glacier within the Alps included in the WGI-
XF, as a function of the terminus altitude. Circles (crosses) show
the values of the measured glaciers included in the final set, corre-
sponding to red (blue) dots.

model similar to our model vary considerably throughout the
20th century for glaciers in the Swiss Alps. While the small
standard deviations of the parameter estimates obtained dur-
ing the cross validation (Fig.4) indicate that the temporal
variabilities ofaoptimizedandµoptimizedare small, the param-
eters may be impacted by e.g. changes in insolation, or snow
albedo caused through the deposition of black carbon. How-
ever, such errors introduced by time-varying parameters are
included in the error estimate obtained by the cross valida-
tion, as long as the range of parameter variability outside the
period of mass balance observations is not larger than the
range within the period of observations.

While we are able to quantify the model performance in
depth for the time period where measurements of the mass
balance exist, it is worthwhile to consider effects that might
act to reduce the quality of the reconstruction outside of the
period of mass balance observations.

One source of uncertainty in the reconstructed mass bal-
ance which we are not able to quantify during the cross val-
idation is the increasing uncertainty of the forcing, i.e. the
HISTALP data, further back in time.Auer et al. (2007)
provide a detailed description of the sources and methods
used to create the homogenized data sets of precipitation and
temperature used here. After 1880, the number of stations,
and therefore the station network density is nearly constant
at present day numbers. Before that, there is a significant
decrease in the number of stations, and the mean distance
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between stations in 1800 is approximately three times that of
today. However, the HISTALP data do not include estimates
of the error range, and we are therefore unable to quantify the
increase in uncertainty in the past. This means that the error
estimates of the reconstructed mass balance time series ob-
tained during the period of mass balance measurements are
likely to underestimate the error before 1880.

If major reorganizations in the atmospheric circulation
around the Alps occurred during the reconstruction period,
but not within the observational period, the model errors de-
rived by the cross validation may be to small. On the other
hand, the glaciers in the final set resemble a wide variety of
different climatic settings and glacier geometries. The cross
validation of the mean model shows that it is applicable both
to glaciers in the Western Alps, exposed to the maritime in-
fluence, as it is to dry glaciers in the center of the Eastern
Alps. This indicates that such changes in the atmospheric
flow regime may be a lesser source of error, probably con-
nected to the fact that our model, depending on only two
parameters, gathers most information on the setting of the
glacier from the forcing, and not from model parameters.

Since we calculate reference-surface mass balances (i.e.
the mass balance that would have been observed if the
glacier’s surface topography had not changed – seeCog-
ley et al., 2011, for a detailed definition), another inter-
esting question is the role of changes in the glaciers’ ex-
tent during the reconstruction period. Since the observed
mass balances are affected by changes in the glaciers’ ex-
tent, but the modeled mass balances are not, errors caused
by changes in extent that are comparable to those changes
that occurred during the observational period are already in-
cluded in the model error derived by the cross validation. But
if the changes outside the observational period are substan-
tially larger, the error is likely underestimated. This point has
been subject of discussion regarding the influence of Atlantic
multidecadal temperature variability on Swiss glaciers’ mass
balance (Huss et al., 2010a). As Leclercq et al.(2010) point
out, long time scale changes in the forcing are damped in
the specific mass balance of a glacier, because the glacier re-
sponds to long time scale changes in forcing by adapting its
area. There are two ways in which this source of error may
enter our model presented here: (i) the long term variabil-
ity in the measured specific mass balances, which we use to
estimate the model parameters, is potentially underestimated
with respect to a constant reference surface area. (ii) Changes
in glacier extent that include a vertical displacement of the
glacier terminus, and thus a change in temperature, are ig-
nored by our model. Regarding (i),Huss et al.(2010b) show
that for the reconstruction inHuss et al.(2010a), this error is
only of minor importance. Since the length of the measured
mass balance time series used in our study is significantly
shorter than the time series used byHuss et al.(2010a), we
conclude that this way of entry of the error is of minor impor-
tance in our reconstruction, but we are not able to quantify it.
Regarding (ii), errors caused by changes in altitude similar

to the changes that occurred in the period of mass balance
observations are included in the error estimate obtained dur-
ing the cross validation. It is likely that this error will be
larger on longer time scales, and we are not able to quantify
it using our method. Since the height of the glacier termi-
nus does not react instantly to changes in the forcing, this
error will be more significant the longer the time scales of
interest are, and care should be taken when interpreting the
reconstructed mass balance variability on time scales that are
as long or longer than the typical time scale of glacier ad-
vance and retreat. But note that the 15 glaciers used in this
study represent a wide range of glacier geometries, and that
the cross-validation of the mean model effectively assesses
the impact of not representing this variability.

The derivation of the model does not lend itself for a cor-
rection of a model bias. Consequently, as shown above, the
model exhibits a significant bias at some glaciers. This does
not impede the application of the model in analyses rely-
ing on mass balance anomalies, such as correlation-based
techniques which are insensitive to bias. However, it poses
limits to applications that rely on absolute values, or time-
integrated mass balances, such as driving a dynamic ice
model, or estimating sea level rise. Reconstructions of mass
balance variability have been presented before for a number
of glaciers, e.g. byScḧoner and B̈ohm(2007); Nemec et al.
(2009); Huss et al.(2010a). In order to illustrate how ours
relate to their reconstructions, Fig.12 shows a direct com-
parison of the reconstructions ofScḧoner and B̈ohm(2007)
for two glaciers,Nemec et al.(2009) for one glacier, and
Huss et al.(2010a) for five glaciers with our reconstruction
from the mean model. As can be expected from the cross val-
idation, the variability of the reconstructions is very similar,
with a correlation between the different reconstructions that
is comparable to the correlation between our mean model and
the measured mass balances as obtained from the cross vali-
dations. As discussed above, the main difference between the
reconstructions is that ours, based on the mean model, suffers
from a non-negligible bias (that has been corrected for clarity
of the figure, but its value is given in the figure, where e.g.
“bias corrected by 807 mm” indicates that the mean model
produces too positive mass balances).

Finally, we find it remarkable how well the model per-
forms even for glaciers with only few mass balance measure-
ments. The gray dots in Fig.5 indicate that the individually
trained model performs comparably well for glaciers with
only 7 or 8 measured mass balances as it does for glaciers
with 40 or more measurements. The motivation to exclude
these glaciers from the final set was therefore not based on
the evaluation of their performance, but on the lack of ro-
bustness of the parameter estimation that is evident in the
large standard deviations shown in Fig.4 (gray dots). This
result encourages applying the model also on glaciers with
few mass balance records, as long as the model trained on
such a glacier is not transferred to other glaciers.

www.the-cryosphere.net/6/71/2012/ The Cryosphere, 6, 71–84, 2012



82 B. Marzeion et al.: Reconstructing interannual mass balance variability of glaciers in the Alps

1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

−3000
−2000
−1000

0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

 

 
Hintereisferner, r = 0.87 observed Schöner & Böhm (2007) mean model (bias corrected by 807 mm)

 

 
Vernagtferner, r = 0.89 observed Schöner & Böhm (2007) mean model (bias corrected by −96 mm)

−3000
−2000
−1000
0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

 

 
Vadret da Morteratsch r = 0.69

r = 0.87 Nemec et al. (2009) Huss et al. (2010) mean model (bias corrected by 804 mm)

−3000
−2000
−1000

0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

 

 
Aletschgletscher, r = 0.85 Huss et al. (2010) mean model (bias corrected by 1100 mm)

−3000
−2000
−1000
0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

 

 
Rhonegletscher, r = 0.68 Huss et al. (2010) mean model (bias corrected by −26 mm)

−3000
−2000
−1000

0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

 

 
Griesgletscher, r = 0.79 observed Huss et al. (2010) mean model (bias corrected by −713 mm)

−3000
−2000
−1000
0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

 

 
Silvrettagletscher, r = 0.84 observed Huss et al. (2010) mean model (bias corrected by −701 mm)

−3000
−2000
−1000

0
1000
2000

m
as

s 
ba

la
nc

e 
[m

m
]

Fig. 12. Comparison of the mass balance reconstructions from the mean model (black, dark (light) shading± 1(2) · rmsemean model,cross)
with reconstructions fromScḧoner and B̈ohm(2007), Huss et al.(2010a) (blue), and the “interpolated” reconstruction ofNemec et al.(2009)
(red). Green: MBmeasured. Correlations given are those between the two reconstructions (for Vadret da Morteratsch blue withHuss et al.,
2010a, red withNemec et al., 2009).

5 Conclusions

We have presented a minimal model, able to reconstruct the
annual glacier surface mass balance based solely on monthly
temperature and precipitation data. Using a cross validation
routine, the model’s skill was first assessed individually for
15 glaciers in the European Alps that have measurements
of the surface mass balance available. Then, the model’s
skill was assessed for glaciers without available mass balance
measurements, by cross-validating the mean model on the
glaciers with mass balance measurements. While the model
skill is smaller for unmeasured glaciers, there is a significant
advantage of our model over applying the mean mass bal-
ance, and over a less parsimonious SSC model.

Due to the potentially substantial bias of the mean model,
we cannot recommend the application of the model in anal-
yses relying on absolute values of the surface mass bal-
ance. However, the model is well-suited for applications in-
dependent of a bias, such as anomaly- or correlation-based

analyses. As a simple example of such an application, we
have presented a spatially detailed analysis of all the alpine
glaciers’ sensitivities on temperature and precipitation vari-
ability.

Supplementary material related to this
article is available online at:
http://www.the-cryosphere.net/6/71/2012/
tc-6-71-2012-supplement.pdf.
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