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Abstract. In deriving elevation change rates (dH /dt) from
radar altimetry, the slope-induced error is usually assumed
to cancel out in repeat measurements. These measurements,
however, represent a location that can be significantly fur-
ther upslope than assumed, causing an underestimate of the
basin-integrated volume change. In a case-study for the fast-
flowing part of Jakobshavn Isbræ, we show that a relatively
straightforward correction for slope-induced error increases
elevation change rates by up to several metres per year and
significantly reduces the volume change error with respect to
laser altimetry for the area of interest.

1 Introduction

Several sources of uncertainty affect measurements of ice
sheet surface elevation derived from satellite radar altimetry
(SRA; e.g.Brenner et al., 2007; Bamber, 1994). Potentially
the largest one, referred to as the slope-induced error (Bren-
ner et al., 1983), is caused by regional surface slopes. For
narrow, fast-flowing outlet glaciers, the lowest surface may
not be sampled at all (see Fig. 9 ofThomas et al., 2008),
however these are often the areas that show the largest el-
evation changes (Pritchard et al., 2009). The radar return
signal does not originate from the point directly underneath
the satellite (nadir), but from the closest point to the satel-
lite, which can be significantly displaced upslope from nadir.
For a 1◦ slope and a satellite altitude of 800 km, which is not
unusual at the ice sheet margin, the displacement between
nadir and the actual measurement location is about 14 km,
and the vertical error is about 120 m. Using a regional slope

estimate, it is relatively straightforward to relocate the mea-
surement to its correct location (Bamber, 1994). When ele-
vation changeis concerned, however, it is usually assumed
that the slope-induced error remains constant and the effect
cancels (Thomas et al., 2008). While the error in the vertical
is indeed the same for repeating elevation measurements, the
location of the measured elevation change rate will still be
displaced from its true position. Here, we show that the in-
tegrated volume change can be significantly underestimated,
because elevation changes that are measured at an upslope
location are incorrectly located closer to the margin.

2 Data

To demonstrate the effect of correcting for slope-induced er-
ror, we use data from the radar altimeter (RA-2) on ESA’s
Envisat satellite, that was launched in 2002. It continues the
SRA time series from ERS-1 and ERS-2 and is in a simi-
lar orbit with an altitude of about 800 km, a repeat period of
35 days, and a latitudinal coverage up to 81.5◦. We use En-
visat cross-over clusters (Li and Davis, 2008) from which we
derive average elevation change rates for 2003–2006. The se-
lected study area is the fast-flowing region of Jakobshavn Is-
bræ, Greenland’s largest outlet glacier, located on the south-
west coast. Since about 1998, it has been accelerating and
thinning significantly (Joughin et al., 2008), and has been
densely surveyed by airborne laser altimetry (ATM;Krabill
et al., 2004).

We use airborne (ATM) and spaceborne (ICESat) laser al-
timetry data as a validation dataset. Elevations from these
data sources do not suffer from the same slope-induced error
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Fig. 1. Slope fromBamber et al.(2001), plotted over a MODIS
image from June 2002. Also uncorrected (large black dots) and
corrected (black triangles) locations of Envisat cross-over clusters,
ICESat tracks (red dots), and ATM flight lines (small black dots) are
shown. Velocity is shown as 100, 300, and 1000 m yr−1 contours.

as they have a small footprint with known pointing:≈60 m
for ICESat (Zwally et al., 2002) and 1–2 m for ATM (Kra-
bill et al., 2002). Elevation change rates for 2003–2006
(consistent with Envisat) were derived from ICESat using
the “plane” method (Howat et al., 2008). A plane is fitted
through data from several near-repeat tracks. For each plane,
which is typically about 700 m long and a few hundred me-
tres wide, two-directional slopes and a temporal elevation
change rate dH /dt are fitted using multivariate linear regres-
sion (Moholdt et al., 2010). A regression is only performed
if a plane has at least 10 points from four different tracks that
span at least a year. Prior to the regression, outliers (outside
2σ ) are removed, and only elevation changes with an asso-
ciated standard error on dH /dt of less than 0.50 m yr−1 are
considered. ATM footprints were preprocessed and averaged
over two 150 m platelets on each side of the plane (Krabill
et al., 2002). We used a similar method as outlined above to
derive 2003–2006 elevation change rates from all available
flight lines, but instead of platelets, 1 km pixels were used.

Other datasets that are employed here are a 1 km digital
elevation model (Bamber et al., 2001) from which slope and
aspect are derived, and an ice sheet velocity mosaic used
for interpolation. The velocity field was derived byJoughin
et al.(2010) from a combination of radar interferometry and
speckle tracking using RADARSAT-2 data from the winters
2000–2001, 2005–2006, and 2007–2008. Figure1 shows the
slope, as well as locations of Envisat cross-over points, ICE-
Sat tracks, ATM flight lines, and velocity contours for the
fast-flowing part of Jakobshavn Isbræ.

3 Methodology

The slope-induced error is schematically illustrated in Fig.2a
by a range measurementR to an inclined surface with slope
α and aspectβ. The measurement location is displaced
from nadir by a horizontal distanceD. Three correction
methods for the range exist (Bamber, 1994). First, the di-

rect method corrects the range measured at nadir (corrected
rangeRc = R/cos(α)). The second method, the relocation
method, correctsR to Rc, whereRc is now the range to the
point closest to the satellite (nowR cos(α)), and displaces the
location byR sin(α). The intermediate method, finally, finds
the location whereR = Rc, and relocates the measurement
to that point (Remy et al., 1989). When one is interested in
elevationchanges, errors in the vertical cancel out, but mea-
surements are still located at the wrong locations. This can
lead to underestimation of area-integrated volume changes as
dH /dt values obtained by radar altimetry are actually located
further upslope than assumed (Fig.2). For cross-over anal-
yses, where dH /dt is derived for locations where ascending
and descending tracks cross each other, a two-dimensional
correction should be applied. The displacementD is given
by D = E sin(α)cos(α), whereE is the satellite altitude,
equivalent (but not necessary equal) toRc in Fig. 2a, and
800±20 km for Envisat. Sensitivity to variations in the orbit
altitude is small: a sensitivity experiment indicated that, at 1◦

slope, a 40 km (5 %) range in altitude causes a≈5 % range in
horizontal displacement with respect to the displacement for
an altitude of 800 km. Sensitivity to slope angle is about the
same (a 5 % range in slope causes a≈5 % range in horizontal
displacement); therefore ideally contemporaneous estimates
of slope should be used. The direction of displacement is
opposite to the slope aspectβ, which is the direction of the
steepest downward slope. Ifβ is defined as 0 radians for
north and increasing clockwise to 2π radians, the relocation
in x and y directions are given bydX = D sin(β − π) and
dY = D cos(β − π). Although small-scale undulations can
also cause error (Bamber and Gomez-Dans, 2005), we use
average slope and aspect over a 100 km2 area centered on the
nadir location to correct for regional slope, as 10 km is the
approximate length scale of the expected displacement.

We illustrate the effect of the correction on volume change
using a hypothetical testcase. We simulated a 100× 100 km
surface with a slope increasing linearly toward lower ele-
vations from 0.5 to 1.5 degrees (Fig.2b). Synthetic dH /dt

data, ranging linearly from 2 m yr−1 at 1.5◦ slope to 1 m yr−1

at 0.5◦ slope, are evenly spaced at 10 km intervals. dH /dt

data coverage is assumed to extend linearly beyond the do-
main, so the correction displaces data points “into” the do-
main. A full 1 km resolution dH /dt field is obtained using
inverse distance interpolation. In Fig.2c, all data locations
are corrected for slope-induced error, enlarging the area with
the largest dH /dt . For this particular testcase, the relative
difference in volume change (i.e. between Fig.2b and c) is
10.4 %. It should be noted that dH /dt values are relatively
modest compared to Jakobshavn Isbræ.

4 Results

Figure 3a shows a scatterplot of dH /dt from Envisat
cross-over clusters versus dH /dt from interpolation of
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Fig. 2. (A) Geometry of the two-dimensional slope-induced error correction.α andβ are, respectively, the slope and aspect (both in radians),
R is the range (≈800 km),Rc the corrected range and1R the vertical correction.D is the horizontal distance over which a cross-over point
is displaced, anddX anddY are its components in the x- and y-direction.(B) shows dH /dt on a synthetic slope without correction for
slope-induced error, and(C) with correction. Black dots show dH /dt data locations without(B) and with(C) correction.

ATM/ICESat, for both the uncorrected and the corrected En-
visat locations. Interpolation was conducted using kriging
with external drift (KED), which uses the spatial pattern of
ice velocity as a proxy for that of dH /dt , i.e. a steep spa-
tial gradient in velocity leads to a similarly steep gradient
in dH /dt in the absence of local dH /dt measurements. The
method is described in detail elsewhere (Hurkmans et al.,
2012), where they found that for Jakobshavn Isbræ, KED re-
sults in more realistic dH /dt patterns (with respect to ATM)
than other methods investigated. The sparsity of Envisat data
is illustrated by the fact that there are only 23 Envisat cross-
over clusters in the study area. Uncorrected values are gen-
erally corrected towards the ATM/ICESat values effectively,
sometimes with elevation change corrections of several me-
tres per year. There is still, however, considerable noise
in the corrected scatterplot, because (i) the correction only
corrects Envisat data for the footprint-average slope and not
for smaller scale undulations, (ii) interpolated values from
ATM/ICESat were used because Envisat and ATM/ICESat
footprints never exactly overlap, and (iii) various differences
between radar and laser altimetry, such as footprint size, orbit
errors, and the backscattering correction necessary for radar
altimetry. The effectiveness of the correction is illustrated by

the correlation coefficient which increases from 0.35 to 0.88
after the correction for slope-induced error.

Interpolated dH /dt values are shown in Fig.3b and c. In
Fig. 3b, a transect is shown constructed by calculating the
average north-south dH /dt within the 300 m yr−1 velocity
contour for each 1 km pixel moving east from the ground-
ing zone. The difference in thinning rates between corrected
and uncorrected Envisat data increases from about 0.4 m yr−1

at 80 km from the grounding zone to about 2.5 m yr−1 at
5 km. A three kilometre zone adjacent to the presumed
grounding line was not taken into account because of un-
certainty in its location (Hurkmans et al., 2012). After cor-
rection for slope-induced error, interpolated thinning rates
are both larger and more widespread. This can be seen in
Fig. 3c, where the difference between interpolated dH /dt

values with and without slope-correction are shown. The ef-
fect of the correction can also be quantified by calculating
the integrated volume change for the area. The volume loss
for the area enclosed by the 100 m yr−1 velocity contour is
8.6 km3 yr−1 for uncorrected Envisat, 11.4 km3 yr−1 for cor-
rected Envisat, and 19.6 km3 yr−1 for ATM/ICESat. With re-
spect to ATM/ICESat, the error of the Envisat based volume
change rate thus reduces from−56 % to−42 %. For the area
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Fig. 3. Comparison of dH /dt from Envisat, before and after slope
correction.(A) shows dH /dt from Envisat cross-over clusters ver-
sus interpolated dH /dt from ATM/ICESat at the corresponding lo-
cations. Red dots show uncorrected, blue dots corrected data.ρ is
the Pearson correlation coefficient for both cases.(B) shows inter-
polated dH /dt along a transect inland from the grounding zone. All
values along the transect are calculated as the north-south average
within the 300 m yr−1 velocity contour, and the asterisks indicate
the (corrected and uncorrected) location of the only Envisat mea-
surement in this area (Fig.1). Also dH /dt from ATM/ICESat and
velocity are shown.(C) shows the difference between the interpo-
lated dH /dt based on Envisat, before and after correction. Negative
values indicate higher values after correction, and velocity is shown
as 100, 300, and 1000 m yr−1 contours.

between the 100 and 300 m yr−1 velocity contours (Fig.1),
with a more complete Envisat coverage, the equivalent er-
ror reduces from−55 % to−44 % (with respect to a volume
loss of 6.6 km3 yr−1 for ATM/ICESat). One explanation for
the much larger volume changes for ATM/ICESat compared
to Envisat is the better sampling by ATM/ICESat of regions
affected by increased surface melt. This is not captured by

the KED interpolation, which only accounts for dynamically
induced dH /dt (Hurkmans et al., 2012).

5 Conclusions

In deriving volume change estimates over the ice sheets, and
from these mass change, from satellite radar altimetry, the
effect of slope-induced error on the dH /dt location is often
ignored because the vertical error cancels out in repeat mea-
surements, or the direct method is employed. The estimated
dH /dt values are, however, representative of locations fur-
ther upslope than assumed, resulting in an underestimate of
the volume change, and the elevation rate at the sub-satellite
location. We show that this underestimation is substantial
for an outlet glacier such as Jakobshavn Isbræ, where slopes
can be up to 2◦. For the fast flowing section of the catch-
ment (where the density of the volume change is approxi-
mately that of ice) the error in volume change with respect to
ATM/ICESat reduces from−56 % to−42 %. Correcting for
slope-induced error is a relatively straightforward procedure,
but is important in deriving accurate ice sheet mass loss.
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