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Abstract. We present the detailed construction of a man-1 Introduction
ufactured analytical solution to time-dependent and steady-

dimensional full-Stokes ice sheet models with variable Vis-yg tools to verify models, comparison of numerically com-
cosity. The construction is done by choosing for the speci-pted solutions to analytical solutions when possible,iand
fied ice surface and bed a velocity distribution that satisfiesercomparisonthat is, measuring differences between vari-
both mass conservation and the kinematic boundary condipys models’ results on the sets of simplified geometry bench-
tions. Then a compensatory stress term in the conservatiopark tests.

of momentum equations and their boundary conditions is cal- For shallow-ice approximation (SIA) models, the simpli-

culated to make the chosen velocity distributions as well ASieq geometry tests as well as the results of intercompari-

Fhe c_hosen pressure field into exact solutions. By sgbstltut—son of different SIA models can be found ihiybrechts
ing different ice surface and bed geometry formulas into the

derived solution formul nalvtical solutions for different et al, 1995. As for the exact solutions for SIA equations,
erived solution Tormulas, analytical solutions 1o erent wwo techniques have been used to generate analytical solu-
geometries can be constructed.

The boundary conditions can be specified as essenti t||ons, the similarity reduction technique (an approach that

Dirichlet conditions or as periodic boundary conditions Byafdentif'ies equatiqns for which the'solution depends on certgin
hanai i | th tical soluti ’ I V\prouplngs of the_z independent va_rlables rather than depending

changing a parameter vajue, the analytical Solutions allowg, 50 of the independent variables separatdy,(200Q

investigation of algorithms for a different range of aspect ra'HaIfar, 1981 1983 Bueler et al, 2005 and the manufac-

o o ot ed soluons e (an Sprcac ht crcoses  ea
' Y Sonable “solution” function, for example, a velocity-field and

the numerical error of the.n_”nethod n Fh? case wher_1 the ef, ressure, substitutes them into the Stokes equations, and de-
fects of the boundary conditions are eliminated, that is, wherf

th t soluti | ified as infl d outfl ermines the body force necessary to make the chosen func-
€ exact sol '.O.n values are specitied as inflow and outliow; < into actual solutionBeler et al. 2005 2007 Bueler
boundary conditions.

and Brown 2006.

For higher-order models and full-Stokes models, the sim-
plified geometry tests and the results of intercomparison of
different models can be found ifPéttyn et al. 2008 and
an analysis on the CPU performance of the tests can be
found in Gagliardini and Zwinger2008. As for the ex-
act solutions, mathematical work has mainly focused on the

Correspondence toA. Sargent flow of linear media, and quasi-analytical solutions have
BY (asarge21maine.edu) been found for the first-order approximation equations for
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computing the three-dimensional stress and velocity field2 Model physics
in grounded glaciers inBlatter, 1995. Analytical so-
lutions have been found describing transient two dimen-2.1 Model equations
sional flow Hutter, 198Q 1983 Johannessqrl992 Bahr,
1996), three-dimensional steady-state floRegh 1987 Jo- ~ We consider an ice sheet model in the Cartesian coordinates
hannessonl992 and transient evolution flownQudmunds- X = (%, ¥,2) withthe domain G<x < L,0=<y <L, b(x,y) <
son 2003. 7 <5(x,y,1), wheret is time, 5(x,y,7) defines the surface

All the above solutions give physical insight into the flow andb(x, y) defines the base of the glacier.
processes; however, they cannot be easily used to bench- Bed elevatiorb(x, y) and accumulation raieare time in-
mark the numerical solutions. For example, Gudmundssorflependent, while surface elevatiot, y,7) can change with
in (Gudmundssar2003 obtained the three-dimensional so- time. The solution is the velocity vectdr= (i, v, w) and ice
lution of the linearized zeroth-order problem for a linear vis- Pressurep. Dimensional variables in this work are denoted
cous medium. To use this solution for benchmarking nu_With a tilde and non-dimensional variables without.
merical ice sheet models, the exact error estimate must be The field equations for the isothermal ice sheet model con-
known (Raymond and Gudmundssa@005). sist of the conservation of mass and the conservation of mo-

In this paper, we present the detailed construction of amentum:
manufactured exact solution to time-dependent and steadyy; 55  aw
state isothermal full-Stokes ice sheet problems. The solu-a—)z +a—y+8—§ =
tions are constructed for three-dimensional (3-D) full-Stokes '
and two-dimensional (2-D) flowline ice sheet models with
variable viscosity. The construction is done by choosing for g (2,1%3 +l3) 9 (ﬂ(@ + @)) P (ﬁ (al + alp))
the specified ice surface and bed the velocity distributions 0 + E: + °E =0, (2)
that satisfy the mass conservation equation and the kinematic * Y ¢
boundary conditions, and by then calculating the required
force distribution that makes the chosen velocities and presy (ﬂ (gl + %)> 3 <2ﬂ§j +1;) 3 (;1 (al 4 m))

. =0, (3)

0, (1)

. . . bl
sure into exact solutions of the conservation of momentum a’~ + E
X y

equation and its boundary conditions. In the appendices we
give the formulas that can be used to calculate the compen-
satory stress terms for the momentum equation in the 2-D ang) (/1 (Lw + ﬂ)) 3 (;1 <87u +
3-D full-Stokes models and supplement to the manuscript -
contains a fortran 77 code to calculate stress terms for the
2-D model. wheregp is the ice densityg is the gravitational acceleration,
The steady-state solutions constructed in this paper arg is the effective viscosity
variations of the benchmark experiments A and BRatfyn
et al, 2008. However, by substituting different ice surface . B [1 <812 85)2 1 (812 817;)2 1 <aﬁ aﬁ))z(s)

w
TSN

il ~E‘)712) ~
o7 25 1)>+8(2M;;+p>=’3§’ @)

4

and bed geometry into the derived formulas, analytical solu** = 2 | 4\ 35 T a5 ) Ta\3: T 9% FERET:
tions for different geometries can also be constructed. o
The boundary conditions can be specified as essential _ 9i 0V du 9w 3_5@}2”
Dirichlet conditions or as periodic boundary conditions. By dx dy 0x 9z 0y 0z '
changing a parameter value, the analytical solutions allow_ . . .
modelers to investigate their solutions for a range of aspectB is a temperature-independent rate factor, argkhe stress
ratios as well as for different, frozen or sliding, basal condi- exponent.
tions. Finally, the analytical solutions may help the model-
ers to estimate the numerical error in the case when the e
fect of the boundary conditions are eliminated, that is, whenp o 1\ o4el is time-dependent in the usual sense that the
the exact solutipns values are specified as inflow and outflonCe sheet geometry evolves according to a mass continuity
boundary conditions. equation. We assume that the ice has a hard %%d; 0.
The kinematic boundary conditions applied at the upper and
lower surfaces of the ice mass are as follows:
as - 0 -~

o s . s . . .. B
- » VoS, t) — 3 VoS )= — ,Y,8,1) =a,
Y +u(x,y,s )ax—l—v(x v, )By w(x,y,s,t)=a

fg.z Boundary conditions

_ _3b ~ _3b -
u(x,y,b,t)—+v(x,y,b,t)— —w(x,y,b,t) =0.
ox ay
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The stress-free boundary conditions at the upper surface Dirichlet boundary conditions for velocities are specified

5(x,y,f) are defined as:

1 ﬁ 20 8u+~ a5 8u+87f1
F TG TR AT WY
L[ 05 (0 90\ 98 (.00
e\ o5 Tan) a5 \Fa TP A
EE 4,95, i1 §}§‘+,§E ‘,‘Qi (1 ?j§‘+,ég + 2‘“§E§‘+ 5 __0
Ao \M\ax Taz)) T M\ a5 Tz Koz TP) =%
) N2 9502
wherer; =,/ 1+ (ﬁ) +(ﬁ) :

For the frozen-based grounded ice, the boundary condi

tions at the bed (%, ) can be specified as Dirichlet condi-
tions:

i(%,3,b,1)=0,
3(X,9,b,1) =0,
w(x,5,b,1)=0,

P, 9,b,1)=pg( —b).

along both upstream and downstream boundaries

[.5.2) = fexac(i.3.2), i =0, L;

f(i»]',z) = fexacl(i»j,z), J =0,L;
wheref =i, 9, .

Here we assume that functiofigcactare known.

Dirichlet boundary conditions for pressure may be speci-
fied along either upstream or downstream boundaries:

P(0,9,2) = Pexac(0,y,2), or p(L,y,2) = PexacfL,y,2);
jB(j;a()ﬂz) = 159X21Cﬂ;§’()72)5 or 15(j1 l‘vz) = jieXEiC(jfvlJ»z)'

2.3 Dimensionless equations

To non-dimensionalize variables, we choose the following
typical values:Z — the mean thickness of the ice-shdet-

the length of ice-sheet] — a typical velocity in the horizon-
tal direction,W — a typical velocity in the vertical direction,

P —the mean pressurd, — the mean accumulation/ablation
rate, and introduce the following non-dimensional variables
(variables without tilde):

7=7z2,5§=2Zs,b=27b,

For the ice with sliding bed, the shear stresses may be speck=Lx, y=_Ly,

fied at the bed (%, 7) as Robin conditions:

18b2 .\ +8b o v\ (00 i
ax“ap a5/ \55 Tax) M\ 5z T ax

= —B%i(%,5,b,D),

1| ab . aa+aﬁ +85 2~35+~ . aﬁ+aa))
Aozt \o5 Tax ) T\ oy TP ) T 52 T s

u=Uu,v="Uv, (6)
w=Wuw,

p=PFPp,

t=Tt,

a=Aa,

1-n

B/U\ ™
o\ ) *

To further simplify the equations, we introduce the aspect
ratio parametes:

=t
I

5=2 )

and require that scale factofs U, W, and P satisfy the

=psh, following relationships:
2 b 2 52 - i 1
wherer, =,/1+ ( ) + (—) andg“ is the friction coef- B (U\» __ WL
9y =) =pgZz=pP, — =1, (8)

ficient. 2\L vz

Along the glacier’s upstream and downstream boundaries, ﬁZU

: g T== A=W, %=

either periodic w’ P

~ ~ a
f0.y.2)=f(L.y.2), —f(O ¥ Z)——f(L ¥,2);

FG0n=FGrs Lion=L ¢
0x 0x

wheref =i, 7, w, p,

or Dirichlet boundary conditions may be specified.

www.the-cryosphere.net/4/285/2010/

The nondimensional steady-state conservation of mass and
momentum equations are then as follows:

du odv OJw

—+—+4+—=0, 9
8x+8y+8z ©
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3(“(3;5;3—5» 8(2Magé+p) a(M<%3—§Z—|—83—';)):O’ (11)
Qi) (i ig) s(uden) @2)

where

B 1 Bu ov +1 18u+83w 2+1 18v+88w 2 dudv duow dvow e
m= 4 8 Z)x 4\ 0z ax 4\ 6§ 0z ay dx dy 0x dz dy 0z '

The kinematic boundary conditions are invariant under the chosen set of scalings:

as as as .
—+ ulx,y,s(x,y,t),t)—+v(x,y,s(x,y,0),t) — —w(x,y,s(x,y,1),t) =a, (13)
dt 0x dy
b b
u(x,y,b(x,y),t)a—x+v(x,y,b(x,y),t)5 —w(x,y,b(x,y),1)=0. (14)

The stress-free boundary conditions at the upper susface, ) become as follows:

1[ _os 8s ou Jv 10u ow

2162 (2 i “2 5% <o, 15
N (“a +p) ayt (ay+ax)+“<8az+ axﬂ (15)
1[ _os ou dv as v 10v ow

) S D)5 (2u “2 452 ) =0, 16
rs L 8xu<3y+8X> 3y<M8y+p>+M<83 " By)] (19)
1[ os ow 10u as ow 10v ow

Bl Bl Y F et ) I Sl () F it ou® -0, 17
n L ax<“< 8x+88z)) ay<“< ay+aaz))+<“az+p>] an

35 \2 as |2
wherer, =\/1+82(ﬁ) +82(5)"
The Robin boundary conditions at the lower surface, y) become as follows:

1[ 0db ob du dv 10u w

— 2u— S—ul —+—1)-— §— ) | = —pB%u, 18
rp | 8x< 3 + >+ 8y <8y+8x) <88Z+ 3x>j| pru (18)
11 0b ou v b v 10v ow

—o—pul—+—)+6—(2u— —ul=—4+5—)|=-5%, 19
rp L 8x“<8y+3x>+ 8y< M8y+p> M((S Bz+ 8y):| v (19)
1 ab ow 10u b ow 10dv ow

—5— §—+4+—— §— §— —| 2u— =1, 20
rb_ax<“< 8x+88z>>+ ay(“< +68z)> <“az+”)} (20)

A 2
wherer;, = \/1+82(%)2+82(g—1y’) .

In scaled units, the glacier thickness and length are equal to unity.
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3 Manufactured analytical solutions of the 2-D full- wherew is an arbitrary function of one variable.
Stokes isothermal flowline ice sheet model Thus, to solve Eq.23), we have to find integrals andvy
o _ of the systemZ4). The first integral of the systen24) can
3.1 Deriving an exact solution be found by solving equation
Two-dimensional full-Stokes flowline models have only one dx - _# (28)

horizontal dimensiony. So all terms in the Eqs10-20) that 1 W i T i
have variables or v, as well as all partiay— derivatives of ‘

velocities and pressure can be removed. Equation £8) can be re-written as follows:
To satisfy the 2-D version of the kinematic boundary con- d as _ db as _ g
ditions (13-14), we assume that in the interior of the domain, d—+ dx Zx u=—2 PR (29)
wheres(x,7) > b(x), the vertical velocityw is 5~ 5~
i ; Y We multiply both sides of Eq.29) by s — b and recognize
s§—2 S~ that the left side of the equation is now the following product
w(x,z,t) =u(x,z,t — 21
(.2, 0) =u( )(d s—b  Ox s—b) (1) rule, (s —b) 8 4 (85 — by, — SG=b)] " after replacing the
N (as ) z—b left side of the equation with this product rule, we obtain:
ot s—b d —b 0
AuG=b_ 05 . (30)
From (1), it follows that dx a1
Equation 80) has a solution
w 314 dbs—z 0dsz—b
- +— (22) as .
82 d)CS_b 8XS_b u(s_b):_/ ——a d)c.}-cl7
ﬁ _db d_s —a ot
+uu + —' as .
s—b s—b Or01=u~(s—b)+/ 5—& dx,

If we substitute 22) into the incompressibility Eq.9), we
obtain the following equation containing only variaklend
its derivatives:

wherecs is a constant.
The second integral of the syste@4] can be found by
solving equation

du  u (dbs—z ﬁz—b) 23) dx dz "
ox dxs—b ' axs—b Ey Y= (31)
ds _ db as —a dx s— dx s—b
+u% + ith =0. Equation 81) can be re-written as:
ds _ db 3
Equation 23) is a first-order quasi-linear partial differen- E _ 9 ~dx = Sb_ _s (32)
tial equation with two independent variables gnd z) and dx s—b s—b

one dependent variable)( The system of ordinary differen-

tial equations After multiplying both sides of Eq.32) by

can be transformed into:

dx dz du d z d b
=—— — (24) — i = — . 33
1 ;&;h—i_g__ll; L)‘_%-f-g' —a dx \s—b dx \s—>b (33)

Equation 83) has a solution

=3 the equation

is called the characteristic system of E2B3) If we can find

two particular independent solutions of this system, which_2_ _ b Fep. Ofco= z—b (34)
are called the integrals of syste@¥, in the form s—b s—=b ’ s—b’

Thus, the general solution of E can be written as
¢ (x,z,u)=c1, ¥ (x,z,u) =cz, (25) g w3

s . z—b(x)
wherec; andc; are arbitrary constants, then the general so-? ”'(s(x’t)_b(x)H/ o ) S n—b) =0, (39)

lution of Eq. £3) can be written as . . . . )
a. @3 where 6 is an arbitrary function of two variables. With

(¢, v) =0, (26) Eq. (35) solved foru, the general solution can be written in
the form
where 6 is an arbitrary function of two variables. With Z—b(x)
Eg. 26) solved for¢, the general solution can be written u(x,z,1)= ( ) (36)
in the form s(x,t)—b(x) s(x,t)—b(x)
s
p=0(). (27) _s(x,n—b(x)/(ﬁ_“)dx’

www.the-cryosphere.net/4/285/2010/ The Cryosphere, 4,2852010
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Fig. 1. 2-D flowline steady-state manufactured solution (coefficieat4): horizontal component of velocity scaled to the surface velocity
as a function of dimensionless thickness. Horizontal velocity increases with the fourth power of ice thickness. Most shearing ice concentrated
near the glacier base which is similar to lamellar flow.

where® is an arbitrary function of one variable. This expression shows that the horizontal velocity from in-
The formula 86) shows that the functions satisfying the ternal deformation increases with poweof ice depth. For
kinematic boundary condition48-14) and the conservation A =4 this is consistent with lamellar flondér Veen 1999
of mass Eq.9), derived under assumptiof1), depend on as shown in Figl.
the form of the function? and ice surface and bed curves. As can be seen fron88) for a zero-accumulatiot: = 0)
To generate a solution similar to the benchmark experi-steady—stateg—i =0) flow, if A >0, then
ment B in Pattyn et al.2008 and to keep the mathematics
simple, choose functiott as follows:

9 (x) =cx[1— (1—x)*] +cp, (37)

wherex, ¢y, andcp, are constants. The first term on the right-
hand side of7) may be considered as component of veloc-
ity associated with internal deformation, andas the basal
sliding velocity coefficient.

Then the velocity field satisfying the 2-D versions of the
kinematic boundary condition48-14) and the conservation
of mass Eq.9) is:

cp=u(x,b)(s—b)=u(x,b)h and
cx =[ulx,s) —u(x,b)] (s —b) =[u(x,s) —u(x,b)]h.

These expressions show thgtcan be interpreted as the ice-
flux due to sliding flow and, can be interpreted as the ice-
flux due to deformation flow.

In addition to velocities, the ice pressure function should
also be constructed.

The manufactured solution for the ice pressure can be cho-
sen, for example, as in Pattyn’s higher-order moéhaltiyn
2003:

T I ey [ TR B S
§- 5= TP P=0’x)z—pg(s—z)=2u£—pg(s—z),

w(x,z,t):u(x,z,z)(ﬁs_z +§Z—b) (ﬁ_a> z=b . (39)  Orinnondimensional form:

dxs—b 0dxs—b at

For a zero-accumulatio = 0) steady- state =0) flow Ju

with frozen bed(c, = 0), the horizontal veIOC|ty scaled to P(x.2.1) —2Ma— —(s—2). (41)

the surface velocity can be written as a function of ice scaled

depthd = :=£: The constructed velocity and pressure functions do not

. necessarily satisfy the conservation of momentum Eld- (
Bzt = u (s 0) |:1_<s—z> :|:u(x,s,t)[1—d)‘]. (40) 12) or the surface and basal boundary conditiohs-17)
N

—b and (L8-20). To make the constructed velocity and pressure

The Cryosphere, 4, 28311, 2010 www.the-cryosphere.net/4/285/2010/
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Table 1. Constants for the benchmark experiments.

Constant Value Units
A Ice-flow parameter 1016 Pa a1
p lce density 910 kg mi
g Gravitational constant 81 ms2
n  Exponentin Glen's flow law 3

Seconds per year 31556926 da

functions into exact solutions of these equations, we substi- Constant; shows how fast the ice surface changes (rela-
tute them into the equations and calculate the right-hand sidéve to the value of the ice bed) at the beginning of the test:
functions that match these solutions. This can be done when, = n(—lx)g—ﬂt:o.

a specific surface(x,7) and bedh(x) are chosen. For a flow down an infinite plane with a mean inclination
Equations 88-39) also satisfy prognostic equation de- tany), periodic boundary conditions for a functighare de-

scribing the change of local ice thickness:,7) =s(x,1) = fined as follows:f (0,z+tan(a)) = f(1,z) and the analytical

b(x) In space: solutions 88), (39), (41) satisfy these conditions for geome-

oh . 9 [* try (43-44).

—=a—— | udz. (42) ; ; i

ot ax Jp AppendixA contains the formulas and supplement to this

Equations 88-39) and @1) are solutions of flow with a gen- Manuscript contains a simple fortran 77 code that can be
eral surfaces(x,) and bedb(x). Below are specific solu- Used to calculate the exact solutions and compensatory stress
tions for a particular case of an ice surface and a sinusoidale"ms for the momentum equation in the 2-D flowline model.

2008. All input data are specified in file parameter2d.h  in
the supplement.
3.2 A manufactured solution for a time-dependent flow Values of flow parameters and constants are chosen
with a sinusoidal bed from (Pattyn et al.2008 and are given in Tablel], the start-

ing linear slope of the ice surface= 0.5°. The length scale

To generate a particular solution, assume a flow with zerQy¢ e jomain is chosen 80 km, which results in aspect ratio

accumulation/ablation rateé, = 0, a sinusoidal bed defined
s . 5=1/80.
as in Pattyn et al. 2008, and an ice surface that changes _ -
from a linear sloping surface to the one that is draped over Constants of6the test ar'e'chos.en as f0”0W5'6 coefficient
the topography of the bed: in (45) ¢; =10° and coefficients in38) ¢, =107°, ¢, =
1076, andi =4. This experiment can be considered as an

s(x,1) =s0(x) +n(x)y (1), sox) = —x-tan(a), (43)  ice-stream flow over a bumpy bed. The values of constants
¢x, ¢p, andc; chosen to generate a reasonable dimensional
b(x) =s0(x) =1+n(x), (44)  values of the flow functions which calculated from nondi-
where mensional values using formulas) (@nd @). For the flow

1 L parameters fromRattyn et al.2008, the value of the non-
n(x) = 5 Sin2rx), y (1) = 1-e ", ¢, isaconstant (45)  dimensional ice flux will be around 16:

www.the-cryosphere.net/4/285/2010/ The Cryosphere, 4,2852010
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ih _ u
T UZ (2p8Z)"AL

|3‘1

45000 mat 1000 m

~107°.
(2x 910 kg n19.81 ms-21000 m)>10-16Pa 342180000 mL000 M

The choice of parametey was dictated by the typical scale value of the time parameter:
_ VA _ L _ L _ 1 _ 1
WU (2082)"AL  (2082)"A (2% 910 kg nT19.81 m 521000 n)°10-16Pa 31

~1.7x10 8

Ccr ~

Velocity is shown in km/yr and pressure in MPa.

Figure @) shows the bed4d) and the time-evolution of Choice of coefficient, = 0 generates frozen bed flow with
the ice surface4d) (left graph) and the time-evolution of zero basal velocities, whilg, # 0 generates flow with a slid-
the norm of the surface velocity (right graph) over 14-yearing bed.
period. The ice surface changes from a linear sloping sur- As can be seen fron#8-49), if A > 0 then
face to the surface draped over the topography of the bed.

Ice thickness is spatially uniform when the steady-state soatz=>b, u(x,b) =0, w(x,b) =0;

lution is reached. The surface velocity at the beginning is Cx Cy %

anti-correlated with the ice thickness — it is larger over the@tz=su(x,s) = s—b _n’ w(x,s) = e

bump than over the trough. At the steady-state, the surface

velocity is spatially uniform and does not depend on the bedThe last expression shows the conservation of mass flux,
topography. q = hu = ¢, = constant. This anti-correlated relationship be-

Figure @) shows the horizontal velocity, vertical velocity, tween surface horizontal velocity and ice thickness is consis-
and pressure at the beginning (left graphs) and at the timéent with the simulation of the smallest length scale: 5km
when the steady-state solution is reached (right graphs).  Experiment B in Pattyn et al.2008, by all full-Stokes mod-

Figure @) shows the compensatory horizontal and verti- €IS
cal stress terms in the conservation of momentum equation Figure 6) shows the horizontal and vertical velocity, ice
at the beginning (left) and at the time when the steady-stat@ressure, and the norm of the surface velocity correspond-
solution is reached (right). At the beginning both stress termdng to the flow with a linear sloping surface with a slope
have largest values over the bump. At the steady-state soly = 0.5° and afrozensinusoidal bedd, = 0). The constants
tion, the stress terms are zeroes almost everywhere excepti (48) are chosen as, = 107° andA = 4.0 and the aspect
small surface layer over the bump. ratios =1/80.

3.3 A steady-state manufactured solution for a flow
with a linear sloping surface and a sinusoidal bed 4 Analytical manufactured solutions of the 3-D
isothermal full-Stokes ice-flow model
To generate a steady-state solution, assume thai3)ntlje
functiony () =0, that is, a linear sloping surface and a sinu- Assume as in the 2-D case that in the interior of the domain,
soidal bed are defined similar to the ones of the benchmark(x,y,?) > b(x,y), the vertical velocityw is:
experiment B in Pattyn et al.2008:

obs—z 0sz—Db
s(x) = —x-tan(a), (46) w(x’”’”=“(x’y’z’”<as_b+Es—b> 50)
ol )<8bs—z asz—b)
vX,y,2 — —
1. _ _
b(x) = s(x) — 1+ =sin(2rx). (47) dys—b dys—b
2 dos . \z—b
If we substitute the above functions for bed and surface into * ar —a s—b’
(38-39), then the corresponding steady-state flow’s veloci- ) ) - o
ties are as follows: then the kinematic boundary conditiori$3¢14) are satisfied.
N From 60), it follows that
—z—xta
u(x,z):# 1- (%) (48) ow du (dbs—z dsz—b (51)
~zsin@nx) —zsin(@rx) o0z 9z\oxs—b dxs—b
Ch s _ db
42 =—= Qv (dbs—z 0dsz—b
N ’ dx __ 0x el Bhd )
1—3sin(@rx) Ty g (ays—b 8ys—b>

as ab

dbs—z dsz—b oy oy 1 (o5 .
_ ds , 49 ‘ ).
w(x,z2) u(x’Z)(dxs—b_{_dxs—b) (49) tv s—b +s—b 9t a
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Fig. 2. 2-D flowline time dependent experiment — ice stream flow over bumpy bed; the steady bed and transformation over time of the ice
surface (left) and transformation over time of the norm of the surface velocity (right). Ice surface and the norm of the surface velocity are
shown every 1.5 years over the 14-year period, green curves are the initial values and red curves are the final values.

If we substitute $1) into the incompressibility Eq9j, we
obtain the following equation containing only variables
and their derivatives:

ds _ b
du  Ou(dbs—z 0sz—b +uﬁ_ﬁ (52)
ox 0J0z\dxs—b Odxs—b s—b
B dv(dbs—z dsi=b gt
dy 0z \dys—b 0dys—b s—b

1 as
——a)=0.
+s—b<8t a)

Equation 62) is a first-order quasi-linear partial differen-
tial equation with three independent variables ¥, andz)
and two dependent variablas &éndv) of type:

du du ov v
F(x,y.z,u(x,y,z,0),v(x,y,2,t),—, —,—,— | =0. (53)
ox dz dy 0z

www.the-cryosphere.net/4/285/2010/

Similar to the 2-D flowline manufactured solutions, we
choose velocity: (x, y, z,t) as the following function:

A
u(x,y,z,n:cx(s—b)”[l—(S_Z) l}mxﬁ, (54)

s—b

or
5 1
u(x,y,z,t)=cyh" (1—d*t) b

where y1, A1, cx, cpy are constantsd(x,y,z,t) = ;= is
scaled ice depth, andx, y,r) = s — b is ice thickness.

Then the derivatives of functian(x, y, z,1) are
u oh od cpy 0N
-~ =120 (1 M) — e pqhVigh 1 S b T
7y =T ) —exh ax W2 9x
u_ cxih gt

0z

. (59)
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Fig. 3. 2-D flowline time dependent experiment — ice stream flow over bumpy bed. The graphs show the horizontalwelloeityertical
velocity w (both in km/yr), and the ice pressupe(in kPa) at the beginning (left) and at the time when the steady-state solution is reached
(right). At the beginning, the horizontal velocity is anti-correlated with ice thickness: it is larger over the bump than over the trough. At the
steady-state, the horizontal velocity is spatially uniform and increases from the bed to the surface with powdr affthe ice thickness.

At the beginning, the vertical velocity is largest at the bed where ice shearing is the largest. At the steady-state, the vertical velocity is

almost uniform in every vertical slide. This is consistent with ice-stream flow. The ice pressure is proportional to the ice thickness. At the
steady-state, it is equal zero at the ice surface.
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Fig. 4. 2-D flowline time dependent experiment — ice stream flow over bumpy bed. The graphs show the compensatory Hoyizontal
vertical X, stress terms (in kJ) at the beginning (left) and at the time when the steady-state solution is reached (right). At the beginning the

stress terms have the largest values over the bump. At the steady-state solution, they are zeroes almost everywhere except a small surfa
layer over the bump.
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Fig. 5. 2-D flowline steady-state experiment - version of experiment B frBattyn et al.2008 (flow with a linear sloping surface and
a sinusoidafrozenbed); the graphs show horizontaland verticalw velocity in [km/yr], the ice pressure in [MPa] and the norm of the

. 12, . o . . . . . .
surface velocny(u2+w2) in [km/yr]. The horizontal velocity is anti-correlated with the ice thickness. Pressure is proportional to the

ice thickness. The norm of the surface velocity is larger over the bump and smaller over the trough. This is consistent with the observation
that in 2-D flowline experiments the ice cannot flow around the bumps.
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Fig. 6. 3-D time dependent experiment — ice flow over a bumpy bed. The graphs show the bed and ice surface at the beginning (left) and at
the steady state (right). All distances are scaled. Ice flow is from left to right. The ice surface changes from a linear sloping surface to the
surface draped over the topography of the bed. Ice thickness is spatially uniform when the steady-state solution is reached.
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Fig. 7. 3-D time-dependent experiment. The left and right graphs show the ice surar®l y- horizontal velocity respectively at the
beginning. At the time when the steady-state solution is reached, both velocities at the surface are uniform and have values of 46 km/yr.

Substituting $4) and 65) into (52) and using relation%ﬁ + g—;% = h% generates a first-order quasi-linear partial
differential equation with four independent variablesy( z, and¢) and only one dependent variablg:(

v 8v< , 5=z ,z—b>+vs;—b/y

5—}_5 ys—b+sys—b s—b

— o\ M 1 [9s
Ay (s, =B s —byt 1 (=5 5 4] =0
+C ( +yl)(sx x)(s ) [ (S—b +S—b at “

/098 3 _0b 3/ __ b
y—ay’bx—ax’by— .

(56)

/ __ ds
wheres; = 77,5
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Fig. 8. 3-D time dependent experiment; the graphs show the ice surface vertical veld@itkm/yr) and the ice surface pressyréin kPa)
at the beginning (left) and at the time when the steady-state solution is reached (right).

The characteristic system of E&S) is as follows:

d d
Ty = - (57)
ys=b T8y 5=
dv
s/ / Al . '
V2 e (1 DS, — b (s —byn- 1[ -(5%) }+ﬁ(3—f—a)
Two independent particular solutions of this system can be found by solving the equations:
d d
=1 (58)
ys=b T8y 5=
d d
@9 _ v : (59)
1 s/

b A
I e (1 1)(s) — b (s — by 1[ -(:%) 1}+S%b(%—f—d)
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Fig. 9. 3-D time-dependent experiment. The graphs show the the norm of the ve(a@ityv2+w2) / along they =1/4 slide at the

beginning (left) and at the time when the steady-state is reached (right). At the beginning, velocity has two local maximums, over the bump
and over the bed where the bed changes the most. At the steady-state position, velocity is spatially uniform and proportional to the ice

thickness.
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Fig. 10. 3-D time dependent experiment; the ice surface elevation (left) and the norm of the surface eiaeity2+w2)l/2 (right)

change along = 1/4 slide. Ice surface and the norm of the surface velocity are shown every 1.5 years over the 14-year period, green curves
are the initial values and red curves are the final values. At the beginning, velocity has two local maximums, over the bump and over the bed
where the bed changes the most. At the steady-state position, the norm of the surface velocity is spatially uniform.

Equation B8) has a solution

z b ter o _z—b
s—b s—p VAT

wherec; is a constant.

Equation 69) can be re-written as follows:

dv _ sy—b, r -1
E—%—ﬁv:—cx(yl-l-l)(sx—bx)(s—b)”l 1-

www.the-cryosphere.net/4/285/2010/

§—z
s—b

J']-25(5-9)

(60)

(61)
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This is a first-order ordinary differential equation. The solution of the homogeneous equation is

_a(y)
v_s—b' (62)

wherea(y) is an unknown function.

Substituting Eq.§2) into Eq. 1), we obtain an equation far:

A
d'() ==+ D5y~ b s — b [1— (j:;) } - (% _a),

which has a solution:

s—z\M as
a(y):—/{cx(y1+1)(s;—b;)(s—b)y1 |:1_(s—b> :|+(E—d>}dy+cz. (63)

Substituting 63) into Eq. 62), we obtain

»
—f{cx(l/kl—l)(S,’C —b)(s—b" [1— (s‘%;) 1] +(& —éz)}dy+c2
s—>b

V=

or

s—z\M ds
cr= v(s—b>+f {cx<n+1)(s; _) (s =By [1— (ﬁ) } + (5 —c'l) ,dy 64)

Then, the general solution of Ec) can be written as

A
0 (v(s—b)+/ {cx(nJrl)(s;—b;)(s—b)yl [1— (S;Z> l} + <a—s—a) }dy, ﬂ) =0, (65)
s—b ot s—b

wheref is an arbitrary function of two variables. With E§5) solved forv, the general solution can be written in the form

1 b 1 . —z\t ds .
v(x,y,z,z):S_bﬁ(i_b)—s_bf{cx(y1+1)(sx_bx)(s_b)n[l_(i_;) :|~|—(a—j—a>}dy, (66)

where is an arbitrary function of one variable.

If we assume again that functi@nin (66) is of the form
() =cy[1— L—x)"2]+cpy, (67)

wherel, ¢y, andcy, are constants, then functiors, (50), and 66) satisfying the mass balance equation and the kinematic
boundary conditions are as follows:

s—z\M 1
u(x,y,z,t) = cx(s —b)"| 1- +cox—r, (68)
s—b s—b
A2 Al
Cy s—z 1 1 P s—z as .
= [1— - = (s, — —pn|1— Z_
vy, 2:1) s—b[ (s—b) i|+cb)s—b s—b {CX(VH_ AL |: <s—b> :|+<8t a)dy. (69
obs—z 0sz—Db obs—z 0dsz—b as z—b
s Vs 7t = ' Vo ~ ~ ' Vo - n — —a — 70
wnynh) =ulx yZ)<8xs—b+8xs—b>+v(x yZ)(Bys—b+8ys—b)+(8t a)s—b (70)
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The manufactured solution for the ice pressure can be chosen again as in Pattyn’s higher-ordd?attyded03):

/

_ ou v __ .

p=oy+ §;—pg(s—z)—2u —+20 y—pg(s—z),

or in nondimensional form:
ou v

p=2p—+2u——(s—2), (71)
ax ay

where non-dimensional ice viscosity

1-n

1/0u dv\° 1/1lou dw\?> 1/1dov dw\’ dudv dudw dvow] 2
p=—+—) +3(=—46— ) +>(=>—+6—) ——— - ————— . (72)
4\ 09y ox 4\ 6 9z dax 4\ 6 9z ay dx dy 0x 9z 0Jy 0z

The constructed velocities satisfy the surface and bed kinematic boundary condiefhd) (and the mass conservation
Eq. ©). However, the constructed velocities and pressure do not necessarily satisfy the conservation of momentum equations
and the basal and surface boundary conditions. To make the constructed functions into exact solutions of these equations, w
substitute them into those equations and calculate the right-hand side functions which accommodate the solutions. This can b
done when specific surfacéx, y,t) and bedh(x, y) are chosen.

The constructed solutions do not satisfy ice-sheet evolufrom a linear sloping surface to the one that is draped over the
tion equation describing the change of local ice thicknessbed:
h(x,y, t):s(x y t)—b(x,y) in space:
oh
—=a udz — — d 73
or T ax ), "° / v (73)
To make the constructed functions into exact solutions of ?(»¥) =s0()+nx,y)—1,

Eq. (73), the equation can be modified by adding to the right-
hand side of the equation a compensatory term.

s(x,y,1) =so(x)+n(x,y)y (@), solx) =—x-tan(@), (74)

(75)

where

1. . .
n(x,y) = =sin2rx)sin2ry),y () =1—e ", ¢, is a constant
. . : ) 2
4.1 Atime-dependent analytical solution for a flow with
a sinusoidal bed To calculate integral in69), substitute functions7é4-75)

for bed and surface into the integral B9. Since it is diffi-
To generate a particular solution, assume a flow with a sinu<cult to calculate the integral analytically for general constants
soidal bed defined similar to the bed in the benchmark experiy;, andaj, particular values, for example; =1 andi; =1,
ment A in (Pattyn et al.2008 and an ice surface that changes can be chosen.
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4.1.1 Parametergy1=111=1

I :/|:20x(z—b)(s; —b)+ <% —d)}dy

=/{[z—so(x)+1—n<x,y)]2cxn;<y(r>—1>+y’<r>n—c‘z}dy

=2mcy(y()—1) COS(an)f |:z —so(x)+1— %Sin(an)Sin(Zny)} sin(2ry)dy

+7 2(’) sin(2x) / sin(2y)dy — / ady
— 2me (v () — 1) OS2 x) { —*j”l _ %sin(an)/[l— cog4ny)] dy}

Y ()

TT

sin(2rx)cog2ry) —ay

=cy(1—y(t))cog2rx)cos2ry)(z —so(x)+1) — 7/47(-:)

sin(2rx)cog2ry) (76)
+ [%cx (1—y (1)) sin(4rx) — a] y— i—’é (1—y (1)) sin(4rx)sin(4r y).

the horizontal domain is chosen 80 k80km which results
) _ ) in aspect ratios = 1/80, the starting linear slope of the ice
If we substitute the calculated integral and functiofg~( surfacer = 0.5°, sliding bed parameters,, = cj, = 1078,
75) for bed and surf_ace int®B-70), we obtain the following 514 the remaining constants ifi7] and (78) ¢, = c, = 1078,
formulas for velocities: *2=4, andc; =1075. As in 2-D case, all graphs are given
for the dimensional values of variables which are calculated
from non-dimensional values using formul&s. (
Figure @) shows the bed75) and the ice surfacerd) at
o s—z\*2 I 1 the time zero and at the time when the steady-state solution
v(x,y,z,1) = —— [1—( ) }— +epy——, (78) is reached. Ice flow is from left to right. The ice surface
s — s—b s—b : :
changes from a linear sloping surface to the surface draped
over the topography of the bed. Ice thickness is spatially uni-
form when the steady-state solution is reached.

1
w(x,y,2,1) = ex(@=b)+epe —, (77)

obs—z dsz—Db
W, ¥, 2, =ulx,y,2,1) <£ s—b  dxs— b) (79) Figure (7) shows the horizontal and vertical velocity at the
beginning. Atthe steady-state, the horizontal velocity field is
+o(x,y,2,1) (% 572 3_5 2 _b) (% —d) 2 _b. smoothed out, both- andy- horizontal velocities are almost
dys—b dys—b ot s—b spatially uniform ¢ 46 km/yr).

Figure 8) shows the vertical velocity and pressure at the
For a flow down an infinite plane with a mean incli- beginning and at the time when the steady-state solution is
nation taria), periodic boundary conditions for a function reached.

f are defined as follows:f(0,y,z +tan(@)) = f(1,y,2), Figure @) shows the norm of the velocity along tye=
f(x,0,z+tan(a)) = f(x,1,2). 1/4 slide at the beginning and at the time when the steady-
The constructed solution§71-79), (71) satisfy periodic  state is reached. Figur&@ shows change over time of the
boundary conditions only in the horizonted direction and  ice surface elevation and the norm of the surface velocity

do not satisfy periodic boundary conditions in the horizon- along they =1/4 slide. At the beginning, velocity has two
tal y- direction for all values of the input parameters. To local maximums, over the bump and over the bed where the
satisfy periodic boundary conditions in all lateral directions, bed changes the most. At the steady-state position, the norm
the accumulation-ablation rate may be chosen as followsof the velocity is spatially uniform and at each vertical slide
a=a(x,t) = (/8 cy(L—y(t))sin(4mx). is increasing with ice thickness.

Appendix4.1.1contains the formulas that can be used to
calculate the compensatory stress terms for the momentum
equation. For the 3-D ice-stream flow over a bumpy bed ex-
periment, the parameters of the flow are chosen as follows:
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4.2 A steady-state analytical solution for a flow with a efits to potential ice sheet modelers. By changing a param-
linear sloping surface and a sinusoidal bed eter value, the analytical solutions will allow the modelers
to investigate their algorithms for a different range of as-
To generate a steady-state solution, assume tha4jntife  pect ratios as well as for different, frozen or sliding, basal
functiony (1) =0, that is, a linear sloping surface and a slop- houndaries. The lateral boundary conditions can be speci-
ing sinusoidal bed are defined as in the benchmark experified as periodic boundary conditions or as essential Dirichlet
ment A in (Pattyn et al.2008. conditions. Specifying Dirichlet conditions, when the exact
solutions are specified as inflow and outflow boundary con-
ditions, allows the modelers to check the model accuracy in
the inside of the problem domain.

s(x,y) = —x-tan(a), (80)

1
b(x,y) = s(x,y)—1+ ESin(an)Sin(Zny), (81)
The coefficients arex = 0.5°, Az = 2.25, ¢y = ¢y = Appendix A

1, ¢px =cpy =0, 6§ =1/80, and accumulation raté = . ] )
7 sin(4rx) Calculation of compensatory stress functions in the

4 . . . 2-D flowline full-Stok jagnosti jon
All functions, the surface horizontal and y- velocities, owline full-Stokes diagnostic equations

the ve_zrt|calz- velocities as well as the surfa_ce_ ice pressure, ¢ Compensatory terms in diagnostic equations and in
for this steady-state experiment are very similar to the cor- the boundary conditions
responding graphs in Figs/)(and @) of the time-dependent

experiment at the beginning time. The constructed velocitie88-39) satisfy the 2-D versions
of the surface and bed kinematic boundary conditidrg-(
14) and the mass conservation E8) but do not necessarily
satisfy the conservation of momentum EdqE){12) and its

The detailed constructions of manufactured exact solutiondasal and surface boundary conditiod§17) and (8-20).
to 3-D and 2-D flowline time-dependent and steady-state-ollowing (Bueler et al. 2007), we introduce compensatory
isothermal full-Stokes ice sheet problems are presented. Thglresse<, andX, in the conservation of momentum equa-
solutions are valid for non-linear Glen-type flow. The con- tions to ma}<e the chosen ve_Iocny and pressure functions into
struction of exact solutions done by using manufactured so€Xact solutions of the equations.
lution technique Bueler et al. 2007 while the suggested A Low  <ow
experiments follow directly from ice sheet intercompari- a(zy,g—z +p) 3(# (35‘*‘537))
son Pattyn et al.2008. 8 9x + 9z =Xy, (A1)
The steady-state solutions, constructed in this paper, are
variations of the benchmark experiments A and B Batf
tyn et al, 2008. However, by substituting different ice sur- 8 M(é%—l; + %3—‘;)) 3 (Zu%—lg +p)
face and bed geometry formulas into the derived formulas, ¢ ™ + 2z -1=5%, (A2)
analytical solutions for different geometries can also be con-
structed. To make the chosen velocities satisfy the boundary condi-
Although artificially constructed, the solutions may be tions, we introduce compensatory termsv,, 75, andz; in
useful for testing numerical methods. They offer several benthe boundary conditions.

5 Conclusions

www.the-cryosphere.net/4/285/2010/ The Cryosphere, 4,2852010



304 A. Sargent, J. L. Fastook: Analytical solutions for isothermal full-Stokes ice sheet models

At the upper surface(x, t), the boundary conditions are as follows:

1 d d 10 0
—2[_5£(ZM£+,,)+M<38_“+5§)} o, (A3)
1+62(g3) ‘
1 d d 19 a
st (2 ) ) (2224 -
1+82(4) . .
At the lower surfacé(x), they are as follows:
1 db d 19 d
SRS P T T =
1+82(db) .
1 db ad 10 d
(2 ) (2l )| o)
1452(%) . .

A2 Calculation of derivatives

Calculation of the compensatory stress terms requires calculation of derivatives of the exact sd@8}idB9)( and @1). To
simplify calculation of the derivatives, we re-write these functions as follows:

u(x,z,t) = }—j;|:cx (1—dl)+cb—/(%—d>dxj|, (A7)
od as .
w(x,z,t) = uha+<¥— )(1—d), (A8)

whereh = h(x,t) is ice thickness and = d(x,z,1) = {=; is scaled ice depth. Then, the first derivatives of functi@xs-A8)
are

a_u:@dlfl

9z h2 ’

du 1[oh N Adk—ladJras . 1[oh N 23u8d+35 .

— =——|—u+c —+——a|l=—-|—u ——+——al,

dx hla * ax ot h|ox 9z dx = ot

9 9

aw_ (A9)
0z 0x

dw du_ dd  dhad 92d 92s  da ds ad

— = —h—4u——+tuh—+4|——— |- - [ ——a | —,

ox ox ax axax M 8x2+(8x8t 8x)( ) <8t a)ax

and the second derivatives are

9%u exA(i—1) 5 5

— = g2 Al10
972 h3 (A10)
du 1| 9% Ohdu  20%u (0d\? ,0ud’d 9% da

— = —=u42—— 3= — et —— — |,

dx2 h| 0x2 dx dx 9z2 \ ax 9z 0x2  03xdt Ox

axdz K3 X h? ox h\"9x 9z ' oax 972

2w 3% dd _dudhdd _ou 9%d  9%h dd ah 92d 33d
—i—uh—3 3
X

u _ 2y q0h cdO=D) , p0d 1 (28u u  od 8214)7

ax2  ox2 ox  “oxaxox @ “ox ax2  Vox2ax  ax ax2

N 83s  92a Aed)—2 9%s  da\od [os .\ 9%d
-— —d)— —— ) —\7——a)—,
9x20t 9x2 dxdt 0dx ) ox ot ax2

Pw %
axdz  ox2’
32w _ 0%u
922~ axdz’
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where, for a surfaced@) and a sinusoidal bedl),

dh 0

o =0’ (y@)-1), £ =s50(x) +1' () y (0, (A1)
B d

8—j=n(x)y’(t), /ﬁdx:y/(t)/ﬂ(x)dx’

82S ’ / 33S " /

Fyrviall )y (@), 5x23; =" )y (@),

921 ah

2 n"(x) (y()=1), Py n" () (y ()= 1),

92s 3

9
o2 n"()y @), gss ="y @),

od _1(9s oh \ ad 1
ox h\dx ox ) 9z A
Bzd_1|:82s ,h dd 82h:|

9x2  h

9x2 T 9x 9x  09x?

% 1]933% _0%hod 3" 9%d d83h
ax3  h|ax3 Tox2dx < oxdx2  9x8

If we name the expression

1/10u _dw\? dudw

=2 (2= 45— ) ———, A12
Y 2(88z+ Bx) ax 0z (A12)

1-n

thenu=v2 .

For further calculations we need the following derivatives:
0 1—nul1/10u ow 1 9% 92w 32u dw  du 9w |
1 iy R R a9
0x 2n v|2\8 0z ax 8§ 0x0z ax 0x< 0z  0x 0x0z
0 1-npl1/10u ow 102%u 92w 32u dw  du 32w |
A Bl 2% et |~ |, (A14)
0z 2n v|2\48 0z dx 8 0z 0x0z dxdz dz 0x 9z

Substituting A9-A10) and A13-Al4) into (A1-A2), (A3-A4), and A5-A6) generate formulas for compensatory terms
Xy, 2z, Ux, Uz, Ty, @ande.
If constanti in (37) is chosen so that > 2, then the calculation of the second derivatives is well defined.

Appendix B

Calculation of compensatory stress functions in 3-D full-Stokes diagnostic equations
B1 Compensatory terms in diagnostic equations and in the boundary conditions

The constructed velocitie$8-70) satisfy the surface and bed kinematic boundary conditi@B8s14) and the mass conser-

vation Eq. 0). They do not necessarily satisfy the conservation of momentum equations and its basal and surface boundary
conditions. Following Bueler et al.2007), we introduce compensatory stresdgs X,, andX, in the conservation of mo-
mentum equations to make the chosen velocity functions into exact solutions of the equations.

g e(Ee8) o(u(3 %)

=3,, Bl
ax Ay 3z * (B1)
el )) | p(on) ook
y ' ox dy 3 9z dy
) ) =2, B2
ox + ay + 9z Y (B2)
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i) (e
ox ay 0z

—-1=3.. (B3)

To make the chosen velocities satisfy the boundary conditions, we introduce compensatory tefms; , 7, 7y, andz; in
the boundary conditions.
At the upper surface(x, y,t), the boundary conditions are as follows:

17 885 5 8u+ 685 8u+8v N 18u+88w (B4)
Z g2 - s =42 s )l=u
re | 0x Max P ByM ay  0x ” 8 0z ox *
1 ds ou dv as v 10v ow
— |- —ul—+—)-86—|(2u— -—— 45— | [=vy, B5
L ax“<ay+ax) 8y< ’“‘ay+p>+“(aaz+ ayﬂ o (B5)
1 9s ow 10du as ow 1dv ow
— | =6— §—+—-——])—-86— §—4=— 2u— =uv,, B6
s | ax(ﬂ( &x+88z>> By(u< %/+881>>+(iuaz+p)} v (86)
. , 2

wherersz\/1+82(g—;)2+82<g—;> :
At the lower surfaceé(x, y), the boundary conditions are as follows:
1T 9b ou b [(du v 10u ow
—|5— | 2u— S—pul —+—\)—pul-——=+8—\) | =1, B7
rh_ax<“ax+p>+ ay“<ay+ax> ’“‘(aaz+ 8x)] b &7
1T ab ou v ab v 10v ow
— | §—pul —+— §— | 2u— —ul=——+— ) |=1,, B8
n,_axu<8y+8x>+_3y< M8y+p> IL<881+ By)] Ty (B8)
1T ab ow 10du ab ow 1dv ow
—|§— §—+-—— §— S—+—-——))—(2u— 1=1, B9
@__8x<u( ax_%881>>+-8y<u< By_%88z>> ( MBZ_%p>}+- % (89)

2
_ 2(3b\2 | <2( db
Wherer;,_\/1+8 (52)°+3 (5) .
B2 Calculation of derivatives

Calculation of the compensatory stress terms requires calculation of derivatives of the exact s@8to0,s7(). To simplify
calculation of the derivatives, we re-write these functions as follows:

1 1
M(X,y,Z,l):Cx(Z—b)-I—Cbe:Cx(l—d)h-l—Cbe (BlO)
,—1
v(x,y,2,t) = %(1—d*2)+c”}T, (B11)
od od oh
w(X,y,ZJ):Mh——i‘Uh—-i- ——a (1_d)1 (Blz)
dax dy ot
0 0
p=2u 2~ (s—2). (B13)
ox ay

whereh = h(x,y,t) =s(x,y,t) —b(x,y) is ice thickness and = d(x, y,z,t) = *;* is ice scaled ice depth.
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The first derivatives of function8(0-B12) are as follows:

ou ob  cpy Oh Ou b  cpy Oh  Ou
S o, = T o
ox dx  h2 3x’ Ay dy hZ2 9y’ 0z

a 1/ oh ad 0d1
—U = ——<U—+Cy)\,2d)tz 1 —+ — )

=y, (B14)

0x h\ 0x ox 0x
0 1/ oh od 0l
v V— +cyhpd? 1
ay h\ 0dy 8 ay
W _eta 101

0z h? h oz’

dw auh8d+ 8h8d+ 82d+8v 8d+v8h8d+v 92d
ow _ou,o0d  oned on od
ax dx ox dx 0x dx2 ay dx dy axay

9% 0a ds dd
-—)a-d—(—=-a)—.

+ <8x8t 8x>( ) (Z)t a) ox
ow _du dd  0hdd 9%d  9v dd = dhdod & 0%d

= — u uh——+ — V—— +vh—5
ay dy 0x dy dx dxdy dy dy ay dy dy2

N 82%s  da d—d) ds ad
—d)—|——a
ayat By at 8y
dw  du dd 92d  9v . dd 92d l<8s )
—h— 4+ al,

T h— L vh——
9z 9z ox ! 8x81+8z 8y+v dydz h\ 0t

o (ou  ov 9%u 9%v as
—=2——+— 2ul—+—]——,
0 0x <8x+8y)+ M(8x2+8x8y> dx

du (du  dv du %\ s
P () o ) -2,
ad dy \dx 0Jy dxdy dy dy
9 o (du  dv 2u 9%

— =2— 2 1,
3z oz <8x+8 )+ “(axaerayaz *

and the second derivatives are:

)
=S

)
S

<

<

32u 32b HCox ((Bh 2 e 020 0% 32b b (D 2 pye 920
—_— = —Cy —= _— _— — 5 5, —_— —Cy = _— _— — s 5,
dx2 T ox2 K3\ ox h2 3x2 9y2 T 9y2 h3 \ 3y h2? 9y2

92 3%b dh dh 3%h 92 92 92

U O e BhOR cpx 9T 9w 0T 9w (B15)

dxdy dxady h3 9x dy  h? 9xdy 322 0x0z ayoz

3%y dv oh 32 ad\2 32d 921

— r2(ho—Dd*e 2 — rpd*2 1 —

9x2 ( ax Bx 8 ax2 Tertate=h <8x) ax 2+8x

92 1(d ah dvdh 9% ad dd 3%d 921

0 0 I I PO PO | A D P L Sy

Bxay “h\ax 8y 8y ax dx0dy dax dy dxdy 0xdy
32v 1(,0von 32 ad\? 32d 921
—=—_[2— Aa(ro—1d*2 7% — Apd? Tl 4 2 ),

9y? h( ay oy Vgye Tere2m D <8y> et e Ty

%v _ 1fdvoh cyro(ha— oree=1) ;. p0d adie 3%d 0% 921
dz0x h\ oz ox h dx dxdz  dxdz )’

3%v __Lfwdh c202-D) 5, 20d a1 32d 0% 321

dzdy h\ozay h gy O dydz  dydz

& _ _C)’)”Z()”z_l)d)»z—Z

972 h3
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92w ah dd 8u+ 92d 8u+ ad 32u+32h ad +28h 82d +ha3d
—s =2—— — — St ——u ——u —u
x2 0x 0x 0x 9x2 dx dx 0x2  9x20x dx 0x2 ax3
dh dd dv 92d 9v  dd 0%v  9%h ad ah 92d 93d
+2———+2h — — S t—S—v+2— v v
0x dy dx 9xdy dx  dy 9x2  9x2 3y dx 0xdy 9x29y
N 83s  9%a A—d)—2 92s ad [ds .\ 8%d
—_—— J— J— __a _’
9x20t 9x2 axor ax)ox \or dax?2
92w oh ad 8u+ 02d du  dd 82u+82h ad N oh 82d 83d
—s =2 —_— — St —S—u ——u —u
dy?2 dy dx 9y dxdy dy  9x dy2  9y2 dx dy 9xdy dxdy?
dh dd v 82d 8v+ ad 82v+82h ad +28h 92d +ha3d
—_— — — =tV — =V —3
dy dy dy dy2dy 9y dy?  dy2dy dy 9y? ays
83  92a 9%s  da\od [ds .\ 9%
+ -——|a-a)-2 - ——a)—,
9y20t  dy2 ayar ay ) ay \ar 9y2
92w 92d du . dd 9%u 93d 92d dv  ad 9%v 93d
— =2h —4h——th——u+2h—— — +h— ——+h——v,
072 dxdz dz  dx 9z2  9x0z2 dydz dz 9y 9z2  9ydz2
2w  0hodou  9%dou  dd 9%u  dh 9%d 93d 92d du
= ——— — — — u u —
dxdz  0x dx 0z 9x2 9z dx 0xdz Ox 0x0z 9x297 9x9z 0x
N oh ad 3v+ 92d 8v+ ad 9%v +8h 92d ot 93d ot 92d dv
dox dy 0z 0x0dy 0z dy 0xdz  dx 0yoz 0x0yoz dyoz 0x
N 1( 9% da 10h[(ds .
- L R A
h\oxdr ox h29x \ ot
92w N ah ad 8u+ 92d 8u+ ad 9%u +8h 92d N 83d N 92d du
oJow  onodou , 04 ou ,od on " u ou
aydz  dy dx 9z 0x0y 0z dx dydz dy 0x0z 0x0yoz dxdz dy
oh ad v 9%d 8v+ ad 3% +8h 92d N 33d N 92d dv
dy dy 9z  0y29z  dy dydz dy dydz 02ydz dydz dy
1( 8% 9a 19h (ds .
+ - —— ) -=—(=-a),
h\dydr 9y h2 9y \ 9t
where
as aso an
- - _:_ 1),
Bx Bx v (@, Byy( )
925 9%y o, 28 2s 82n 0. 2s 9% o,
9x2 x2 2 8x3y Bxayy
% oy By(t) 82 _dndy ()
dxdr  dx dt ~ dydt 9y ot
35 %oy 3 9*may@)
0x29r  9x2 3t  dy2ar 9y2 ot
h=1+n(,»(y® -1,
oh 9y h dn
—=—(y(t)—1), —=—(y(t)—1),
dax ay
Zh 8277 2 827’ 82]’1 827’
— -1 H-1), — =—L(y@)-1),
92 = ox ——®-1), 52 8yz(y() ) oxdy EM)y(y() )
oh ( )By(t) %h  Andy() 9%h  Andy()
= X, 3 = 3 =
o YT Gxar ox or  ayar  dy ot
ad _1(ds dah ad 1 (s dah od 1
ax h\dx dx) dy h\dy ady) 9z k'
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0%d _1(0% 9%h ,0hod\ 9% _1(o% 9%h ,0hod
ax2  h\ax2 “oax2 Taxox ) ay2 h\dy2 " ay2 “ayoay)’

dxdy dx dy dy dx 0xdy

h T 9xdz  h2dx’ dydz h2dy’

0% _1( 0% ohdd 9hod 9%\ 9%d _ 1ok 9%d _ 109k
axdy h

ax3~  h

83d 1( 0hd%2d _d%2hod 3%h 93
— 33— 43—~ PR —
dx 9x2 9x2 0x ax3  9x3

33d 1(38h82d 332h8d 33h a3s>

3 h\Cay 2 CayZay  Ca@ ay3

93d 1(0hd%d _dh 9%d 92h ad  3%h ad 93h 93s
PO ok il s ot 2 Py Seni e reniaiwn ol B
dx<dy h\ dy ox dx dxay dxdy dx  0x< dy dx<dy  0x<dy

axdy2  h

93d 1(0ho%d _dh 9%d 92h od  3%h ad a3h 93s
= S T2 2 Y i v poniiewe poull B
dx dy dy 0xdy dxdy dy  0y< ox ay<dx  dy<ox

% 1 [9%n 2(0n\?| 9% 1|8 2(on)?
dx20z  h2| 9x2 h\dx/) | 8y23z h2|dy2 h\dy) |

33d 1 [ 92h 2 0h ah} 93d 33d

’

—_— = = —_— |, :0’ =
dxdydz  h2| dxdy hox dy | 9xdz? dydz2

and

g—i =—cy(1—y(¢))cog2ry) [271 (z—so(x)+1)sin(2m x)+s5(x) COS(ZJTx)] - YT(I) co9 2w x)cog2ry)

+ |:7126x (1—y(r))coq4nrx)— z—ﬂ y— n:x (1—y())cog4nx)sin(4ry),

g—i — —2rey (1= y (1) COL2Tx)SIN2Ty) (2 —s0(x) +1) + L

+ [%cx(l— v (1)) Sin(4m x) —a] -

sin(2r x)sin(2r y)

”Z" (1—y (1)) sin(4r x) cog4ry),

o =1y (1) cos2ra)c08 ),
Z
2
% — —¢.(1—y(1))cog2ry) [4ﬂ2(z — s0(x) + 1) cog2mx) — 4ns6(x)sin(2n'x)]
X
+7y'(t)sin(2r x)cog 2 y)

2.
- |:4713cx (1—y@))sin(drx)+ %:| y +72c(1— y(t))sin(4rx)sin(4ry),
X

2
aa al =21, (L—y(1))sin2my) [ 27 (z — so(x) + 1)SiN(2 x) +50(x) CO 27 x) |
xdy
+my’(t)cos 2 x)sin(2r y)
+ [nzcx(l— y(1))cog4rx) — ;)_a] —72%c(1—y(t))cog4m x)cos4n y),
X
921 .
=—2mcy(l—y(t))co2ry)sin(2rx),
0x0z
2
g—y; = —4m?c, (1—y (1)) cog2mx) cO2y) (z — so(x) + 1) + 7y (1) sin(2 x) cos(2r y)
+7%c, (1—y (1)) sin(4rx) sin(dr y),
dyoz
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If we name the expression

1 3u+3v 2+1 10u +88w 2+1 1ov +88w 2 dudv dudw v ow then L
v=—|—+— -\ =—4+5— -4+ - —- - ——, =V,
4\ 0y Ox 4\6 0z ax 4\ § 03z ay dx dy dx dz Jy 0z #

For further calculations we need the following derivatives:
ou l1—nu|l/0u oOdv 2u 9% 1/10u ow 1 9% 92w
— = Nz =+ )—+— N|=—+é—)|-—+6— B17
x  2n v|:2<8y+8x><8x8y+8x2 *3 88z+ dx 88x8z+ 9x2 (B17)

+1 18v+88w 1 9% 45 92w
2\ 48 0z ay 8 0x0z 0xdy

32udv  du 9%v  dw ou 92w 0% dw  dv 82wi|

0x20y 9x dxdy 0x2dz Ox dxdz dxdy dz Oy dx9z
ow l1—np|d1/0u Jv 2u 9% 1/10u ow 1 9%u 92w
—=——"| =+ )5+ +olc—ts— )T +8
ay 2n v |[2\0dy odx/\dys 0xdy 2\48 9z ox 6 dydz  0x0dy

+1 18v+58w 1 9% Hazw
2\89z 9y J\soydz ~ 9y?

92u dv  Ou d%v 92u dw  du %w  dZvow v 82w:|

dxdy dy 0x dy2 9xdy dz Odx dydz 9dy2 dz dy dydz
ou l1—npul|l/0u Odv 3%u 9%y 1/10u ow 102%u 92w
—= sl =+t + 2 Brdewnie sl bl | b sl b
0z 2n v |[2\dy ox/\dydz 0x0z 2\ 0z ax 8 0z 0x0z

+1 18v+88w 182v+882w
2\809z 9y )\80z2 " dydz

92u dv  du 9%v 0% dw dudw 9% dw v 82w]

dxdz dy dx dydz 0xdz 0z dx 9z2 0dydz 0z  dy 972

Substituting B10-B14) and 817) into (B1-B3), (B4— Bueler, E. and Brown, J.: On exact solutions and numerics for cold,
B6), and B7-B9) generate formulas for compensatory terms  shallow, and thermocoupled ice sheets, Tech. rep., physics.geo-
X, By, X2, Ux, Uy, Uz, Ty, Ty, @ndr. ph, arXiv:physics/0610106v1, 2006.

If constanth, in (B11) is chosen so that, > 2, then cal- Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and

culation of the velocities’ first and second derivatives is well Bowman, L. N.. Exact solutions and verification of numerical
defined. models for isothermal ice sheets, J. Glaciol., 51, 291-306, 2005.
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