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Abstract. We present four years (August 2003–August
2007) of surface mass balance data from the ablation zone
of the west Greenland ice sheet along the 67◦ N latitude cir-
cle. Sonic height rangers and automatic weather stations con-
tinuously measured accumulation/ablation and near-surface
climate at distances of 6, 38 and 88 km from the ice sheet
margin at elevations of 490, 1020 and 1520 m a.s.l. Using a
melt model and reasonable assumptions about snow density
and percolation characteristics, these data are used to quan-
tify the partitioning of energy and mass fluxes during melt
episodes. The lowest site receives very little winter accumu-
lation, and ice melting is nearly continuous in June, July and
August. Due to the lack of snow accumulation, little refreez-
ing occurs and virtually all melt energy is invested in runoff.
Higher up the ice sheet, the ice sheet surface freezes up dur-
ing the night, making summer melting intermittent. At the
intermediate site, refreezing in snow consumes about 10% of
the melt energy, increasing to 40% at the highest site. The
sum of these effects is that total melt and runoff increase ex-
ponentially towards the ice sheet margin, each time doubling
between the stations. At the two lower sites, we estimate that
radiation penetration causes 20–30% of the ice melt to occur
below the surface.

1 Introduction

With a potential sea level rise of 7.3 m, the Greenland ice
sheet (GrIS) is the largest source of fresh water in the North-
ern Hemisphere (Bamber et al., 2001). Large uncertainties
remain in the present and future balance state of the GrIS
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(Gregory et al., 2004; Parizek and Alley, 2004) and its con-
tribution to sea level change (Cazenave, 2006; Lemke et al.,
2007). Modelling the present-day and future balance state of
the GrIS is complicated by our limited knowledge of the sur-
face mass balance, being the sum of accumulation in the ice
sheet interior and melting and subsequent runoff at the mar-
gins. Part of the meltwater produced at the surface refreezes
in the firn, but how much is still a matter of debate (Pfef-
fer et al., 1991; Janssens and Huybrechts, 2000; Bougamont
et al., 2007). Moreover, the ablation zone, where gradients
are largest and where recent changes in marine terminating
glaciers have been the most pronounced (Zwally et al., 2002;
Krabill et al., 2004; Joughin et al., 2008; Van de Wal et al.,
2008) is only 1 km (along southeast GrIS) to 100 km (along
southwest GrIS) wide, which requires a very high horizontal
model resolution.

Idealized mass balance models do have the required res-
olution, but need prescribed radiation and temperature fields
(Bøggild et al., 1994; Braithwaite, 1995; Van de Wal and
Oerlemans, 1997). Output of meteorological models, on
the other hand, includes the necessary physics but requires
downscaling to obtain the desired resolution (Wild et al.,
2003; Bougamont et al., 2005; Hanna et al., 2006). When
coupled to a physical snow model, regional atmosphere mod-
els have the right mix of high resolution and realistic physics
to study the present-day mass balance of the GrIS (Cassano
et al., 2001; Dethloff et al., 2002; Box et al., 2006; Fettweis,
2007).

Validation of these models requires detailed observations
from the ablation zone. Ablation stakes are measured only
once a year, so they provide no insight in the temporal vari-
ability during the melt season. To resolve this, automatic
weather stations (AWS) are increasingly being used (Steffen
and Box, 2001). The K-transect, a stake array along the 67◦
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Fig. 1. MODIS scene of west Greenland (23 August 2006) with
AWS locations (white dots) and ice sheet elevation contours (dashed
lines, height interval 250 m, from Bamber et al., 2001).

latitude circle in southwest Greenland, was set up during the
Greenland Ice Margin Experiment in 1990 (GIMEX-90, Oer-
lemans and Vugts, 1993) and currently represents the longest
mass balance time series of its kind in Greenland (Van de
Wal et al., 2005). In August 2003, three AWS with sonic
height rangers were installed along the K-transect at 6, 38
and 88 km from the ice sheet margin at elevations of 490,
1020 and 1520 m a.s.l. Here we present the first four years
of data from the sonic height rangers, and compare them to
stake measurements as well as output of a melt model forced
by data of the AWS. In Sect. 2 we describe the experimental
set-up and data treatment methods, followed by a description
of the melt model in Sect. 3, results and discussion in Sect. 4
and a summary and conclusions in Sect. 5.

2 Observations

2.1 Field area and AWS description

Figure 1 is a MODIS scene of the field area on 23 Au-
gust 2006. At this time of year the ablation season in
West Greenland is coming to an end. The image shows the
bare ice zone (white to greyish, between 500–1500 m a.s.l.),
the superimposed ice zone (milky blue, 1500–1750 m a.s.l.)

Fig. 2. Images of AWS surroundings at S5 (photo taken 27 Au-
gust 2006), S6 and S9 (photo’s 26 August 2006). Photos by Paul
Smeets (UU/IMAU).

and the snow-covered percolation zone (1750 m a.s.l. and
higher). The AWS sites are named S5 (490 m a.s.l.), S6
(1020 m a.s.l.) and S9 (1520 m a.s.l.) and are part of the K-
transect, the mass balance stake array in southwest Green-
land that extends from the ice margin to 1800 m a.s.l. (Van
de Wal et al., 2005). Figure 2 shows the AWS and their sur-
roundings. The surface at S5 is very irregular with 2–3 m
high ice hills, while at S9 the surface is much smoother and
covered by a layer of fresh snow.

The sonic height rangers are attached to three stakes that
are fixed relative to the ice/snow surface (Fig. 2); they re-
solve surface height changes in excess of 1–2 cm. The AWS
stand freely on the ice and are allowed to sink with the ab-
lating surface. They measure wind speed/direction, temper-
ature, relative humidity at nominal heights of 2 and 6 m and
the full radiation balance at a nominal height of 6 m. Air
pressure is measured in the electronics enclosures box. Sen-
sor specifications are listed in Table 1. Most variables are
sampled at 6-min intervals (instantaneous, except for wind
speed, cumulative) after which one-hour averages are stored
in a Campbell CR10 datalogger with separate memory mod-
ule. Ice/snow temperatures are not being continuously mea-
sured at the AWS sites, but a single measurements effort was
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Table 1. AWS sensor specifications. EADT=Estimated Accuracy for Daily Totals.

AWS sensors Type Range Accuracy

Air pressure Vaisala PTB101B 600 to 1060 hPa 4 hPa
Air temperature Vaisala HMP35AC −80 to +56◦C 0.3◦C
Relative humidity Vaisala HMP35AC 0 to 100% 2% (RH<90%)

3% (RH>90%)
Wind speed Young 05103 0 to 60 m s−1 0.3 m s−1

Wind direction Young 05103 0 to 360◦ 3◦

Pyranometer Kipp en Zonen CM3 305 to 2800 nm EADT+/−10%
Pyrradiometer Kipp en Zonen CG3 5000 to 50 000 nm EADT+/−10%
Snow height Campbell SR50 0.5 to 10 m 0.01 m or 0.4%

done in 2000 when 10 m ice temperatures were measured at
all sites along the K-transect. These data have been used to
initialize the model.

2.2 AWS data treatment

Before the AWS data are fed into the melt model, they
are quality controlled and corrected if necessary. Prob-
lems associated with ill-functioning sensors could be ade-
quately addressed by post-processing; radiation and temper-
ature/relative humidity corrections have been described in
detail in Smeets and Van den Broeke (2008a) and Van den
Broeke et al. (2008a, b). The depth of the snow layer cover-
ing the ice was reconstructed using a combination of surface
height and albedo observations. Individual missing snow
height data were linearly interpolated; this may cause un-
realistic hourly ablation rates, which are of no concern for
this paper. Surface height data at S6 are missing from mid-
January to mid-June 2005; we used melt energy from the
energy balance model (see next section) in combination with
an assumed snow density of 500 kg m−3 to reconstruct the
date and magnitude of the maximum snow depth.

3 Melt model

3.1 Surface energy balance

The AWS data serve as input for a melt model that calcu-
lates the atmospheric and subsurface energy fluxes and sim-
ulates the ablation of snow and ice. The amount of melt at the
surface is determined by the surface energy balance (SEB),
which for a snow/ice surface can be written as:

M = SW↓ + SW↑ + LW↓ + LW↑ + SHF+ LHF + Gs

= SWnet + LWnet + SHF+ LHF + Gs

= Rnet + SHF+ LHF + Gs

(1)

where M is melt energy (M=0 if surface temperature
Ts<273.15 K), SW↓ and SW↑ are downward and reflected
shortwave radiation fluxes, LW↓ and LW↑ are downward

and emitted longwave radiation fluxes, SHF and LHF are the
turbulent fluxes of sensible and latent heat and Gs is the sub-
surface conductive heat flux at the surface. All terms are
defined positive when directed towards the surface.

Equation (1) describes the SEB of a “skin” layer with-
out heat capacity, the temperature of which reacts instanta-
neously to a change in energy input. By assuming Eq. (1) to
be valid, we neglect subsurface penetration of SW radiation.
This is justified for snow, but not for ice, in which SW radia-
tion is known to penetrate to considerable depths (Brandt and
Warren, 1993). To mimic this process, a SW radiation pene-
tration routine is activated in the subsurface model when no
snow cover is present (Sect. 3.3). The amount of SW radia-
tion that is absorbed below the surface is then deducted from
SWnet in Eq. (1).

3.2 Energy fluxes from the atmosphere

The atmospheric part of the melt model treats the radiation
and turbulent fluxes. SWnet and LW↓ are used as direct input
from (corrected) observations. SHF and LHF are calculated
using the “bulk” method, a robust vertically integrated ver-
sion of the flux-profile relations that uses single-level wind
speed, temperature and humidity measurements. Van den
Broeke (1996) and Van den Broeke et al. (2008b) validated
the bulk method for Greenland AWS data and discussed the
relation of the turbulent fluxes to the local surface layer cli-
mate. The 6 m AWS level values are used for the flux calcu-
lations to minimize the uncertainty in the measurement level
displacement distance due to the rough surface.

Surface temperatureTs follows from solving Eq. (1) and
the bulk fluxes. Because the turbulent fluxes strongly depend
on Ts the solution is found in an iterative procedure. Sur-
face specific humidity is calculated by assuming the snow/ice
surface to be saturated. Also required for the turbulent flux
calculations is the surface roughness for momentumz0. In
the Greenland ablation zone,z0 is highly variable in space
and time (Smeets and Van den Broeke, 2008a). Because
wind speed, temperature and humidity with respect to wa-
ter vapor are measured at nominal heights of 2 and 6 m, the

www.the-cryosphere.net/2/179/2008/ The Cryosphere, 2, 179–189, 2008



182 M. van den Broeke et al.: Melting in Greenland

Table 2. AWS topographic and climate characteristics.

S5 S6 S9

Location (August 2006)

Latitude (N) 67◦ 06′ 67◦05′ 67◦03′

Longitude (W) 50◦07′ 49◦23′ 48◦14′

Elevation (m a.s.l.) 490 1020 1520
Distance from ice edge (km) 6 38 88

Period of operation used for this paper

Start of observation 28 Aug 2003 1 Sep 2003 1 Sep 2003
End of observation 27 Aug 2007 31 Aug 2007 31 Aug 2007

Annual mean climate variables

Mass balance (m w.e.) −3.6 −1.5 ∼0
Pressure (hPa) 950 887 835
2 m temperature (K) 267.7 263.4 260.6
2 m relative humidity (%) 75 87 90
2 m specific humidity (g kg−1) 2.4 2.2 1.9
10 m wind speed (m s−1) 5.0 6.4 7.3
End of summerz0(m) 2×10−2 1×10−2 1×10−5

gradients can be used to calculate the surface roughness for
momentum,z0, using similarity theory. To reduce the un-
certainties associated withz0 determination form only two
measurements levels, but still obtain temporal information,
we adopted a 20-day running mean ofz0. It is shown in Van
den Broeke et al. (2008b) that at S5 and S6,z0 reaches its
maximum value in late August (∼0.01 m) and the minimum
value in March (∼10−4 m). The scalar roughness lengths for
heat (zh) and moisture (zq) are calculated using the expres-
sions of Andreas (1987) and for very rough ice surfaces we
adopted the adjustments proposed by Smeets and Van den
Broeke (2008b).

3.3 Subsurface processes

The temperature evolution of the snow/ice layers is calcu-
lated by solving the one-dimensional heat-transfer equation
on grid levels spaced 0.04 m apart down to a depth of 20 m.
The model takes into account the extinction of SW radiation
in the upper ice layers if no snow is present at the surface,
and heating by refreezing of liquid water:

ρi cp
∂ Ti

∂ t
= −

∂ Gi

∂ z
−

∂ Q
∂ z

+ S

=
∂
∂ z

(
ki

∂ Ti

∂ z

)
−

∂Q
∂ z

+ S
(2)

where fluxes towards the surface are defined positive and z
is positive downward;ρi is the density of the snow/ice layer,
cp its specific heat,Gi the conductive heat flux,Q the sub-
surface shortwave radiation flux,Ti the layer temperature,ki

the thermal conductivity, which is calculated as a function of
density according to Anderson (1976), andS is a source/sink

term that accounts for refreezing/melting. The snow/ice tem-
perature profile is initialized using measured ice temperature
data. Below 20 m depth,Gi is assumed to vanish. The sur-
face value,Gs , is extrapolated upwards from values at 2 and
6 cm depth.

When ice is at the surface, the model of Brandt and War-
ren (1993) is used to calculate the subsurface shortwave ra-
diation flux (Q). The radiation grid has 1 mm resolution to
a depth of 5 m, after which radiative heating is interpolated
to the coarserGi grid. Radiation transport is based on Mie
scattering in a medium of perfectly stacked spherical parti-
cles with 2.5 mm diameter combined with the two-stream ap-
proach of Schlatter (1972). The model uses 118 wavelength
bands to account for the highly wavelength-dependent ab-
sorption properties of ice.

In the case of surface melting, meltwater is assumed to
runoff instantaneously when the surface consists of ice; when
a snowpack is present, meltwater is allowed to percolate to
deeper layers, be retained in the snow matrix or refreeze, fol-
lowing Greuell and Konzelmann (1994). When liquid water
reaches the ice horizon, it is assumed to run off. Because di-
vergence ofQ acts as a local heat source, sub-surface melting
may occur in the upper ice layers. The associated meltwater
is assumed to leave the ice matrix instantaneously as runoff.
The model does not treat snow densification, as we have no
information on whether changes in the snow depth are caused
by melting, settling or other processes. Rather, snow depth is
prescribed from observations and snow density is kept con-
stant at 500 kg m−3. This value was obtained by assuming
the modelled snowmelt energy to be correct and combining

The Cryosphere, 2, 179–189, 2008 www.the-cryosphere.net/2/179/2008/



M. van den Broeke et al.: Melting in Greenland 183

Fig. 3. Reconstruction of snow depth and ice surface lowering using
albedo and sonic height ranger data at S5 (blue line), S6 (red line)
and S9 (green line). The dashed line indicates the reconstructed ice
horizon. Surface height data at S6 are missing from mid-January
to mid-June 2005, and have been reconstructed using output of the
energy balance model (see text).

this with observed snow depth changes in spring. Prescribing
snow depth in the model ensures that snowmelt stops and ice
melt starts at the correct time.

3.4 Calculation of melt energyM

With the AWS data at hand, there are two ways to detect
melting and calculateM. One method is to prescribe a
threshold value in “observed” surface temperatureTs (i.e. de-
rived from LW↑ assuming the surface to have unit emissiv-
ity) to detect melt, and sum the individual SEB components
in Eq. (1) to calculateM. The problem with this approach is
that the measurement of LW↑ leads to uncertainties inTs , so
that an arbitrary threshold value ofTs smaller than 273.15 K
must be chosen to represent melting conditions. If all values
of Ts<273.15 K were simply ignored for the melt calcula-
tion, M would be systematically underestimated.

A more objective method to detect and quantify melt is to
cast Eq. (1) in a form that only hasTs as variable, i.e. writ-
ing the expressions for SHF, LHF,G and LW↑ in terms ofTs

and settingM=0. The resulting equation is then solved forTs

using the method of bisection in a 15 K search space around
the value ofTs from the previous timestep. IfTs exceeds the
melting point, it is reset to 273.15 K and this value is then
substituted in Eq. (1), which directly yieldsM. This way of
working assumes a closed energy balance and differs from
Van den Broeke et al. (2008a, b), who did not need a value

Fig. 4. Aerial view (a) and ground view(b) of the surroundings
of S5 at the end of winter (April 2008) but before the start of the
melting season. Photos by Paul Smeets (UU/IMAU).

for M and therefore used “observed”Ts , which is the most
direct way to obtain radiation and turbulence climate at the
AWS sites. It should be noted thatTs is fixed under melting
conditions and that the calculated melt rate is not affected by
uncertainties inTs . Further verification of the method used
here can be obtained by comparing the modelled ice melt
with that observed with the sonic height ranger, see next sec-
tion.

4 Results and discussion

4.1 Reconstructed snow depth

Figure 3 shows the cumulative height of the ice and snow sur-
face as reconstructed from the sonic height ranger. The an-
nual stake measurements (squares) nicely confirm the sonic
height ranger data. Over this four-year period, the net an-
nual surface mass balance is about zero at S9, and negative
by about 1.8 and 4.1 m of ice at S6 and S5, respectively.
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Fig. 5. Measured ice lowering as a function of modelled melt en-
ergy, for 10 day periods at S5 and S6. Dashed lines are the linear
regressions.

A remarkable and important feature is that the winter snow
cover at S5 is very shallow (<0.2 m) and only episodically
present. Apparently, precipitated snow is blown into gullies
and crevasses or eroded/sublimated from the surface. Be-
cause at S5, the sonic height ranger stands on a small ice
hill, it will not register snow that collects in the surrounding
gullies.

Figure 4a shows an aerial view of the accumulation pat-
tern close to S5 in April 2008, at the end of winter and be-
fore melting started. It shows that a shallow snow cover is
present in the gullies surrounding the ice hummocks. The
image taken on the ground (Fig. 4b) confirms that the ice
hummocks remain snow-free while the surrounding gullies
are filled with a shallow snow layer. The lack of a contin-
uous snow cover on the tundra hills in the background sug-
gests that winter accumulation is indeed small in this area,
and certainly less than sites higher up along the K-transect.
As a result of the low winter accumulation, ice melting at S5
starts as early as May and continues well into September.

With 20–70 cm of snow, winter accumulation at S6 is more
significant. At this site, this winter snow typically melts
away in June, followed by ice ablation in July and August.
In 2006/2007, winter accumulation was especially small at
S6. Followed by the warm summer of 2007, this resulted in
record ice melting at this site. For S9, which is situated close
to the equilibrium line, we assumed that (superimposed) ice
was at the surface at the beginning of the observation period
in August 2003, following the warm 2003 summer. After

Fig. 6. (a) ice ablation summed over 10-day periods in kg m−2 per
day, modelled (solid lines) and observed (dots), using an ice density
of 910 kg m−3, for S5 and S6;(b) modelled (dots) and observed
(dashed lines) cumulative ice ablation at S5 and S6.

that, the glacier ice horizon was not reached again until Au-
gust 2007, when a small amount of ice melted. As a result,
ablation at S9 consists predominantly of snowmelt with occa-
sional melt of (superimposed) ice. From the above, it is clear
that the three sites represent very different ablation regimes.

4.2 Validation of modelled ice ablation

Validation of the melt model is limited to periods of ice melt-
ing at S5 and S6, as hardly any ice melted at S9, and the
density of the melted snow is not known. Hourly or even
daily ice melt rates cannot be used as validation, as the sonic
height ranger has an accuracy of 1–2 cm while typical daily
ice melt rates are only marginally larger. To improve the sig-
nal to noise ratio, we use 10-day observed cumulative ice
melt rates, obtained by performing a linear regression on
hourly surface height values over consecutive 10-day peri-
ods. Figure 5 compares measured to modelled melt rate (ex-
pressed in kg m−2 day−1) at S5 (blue dots) and S6 (red dots).
To convert observed ice ablation to mass, we used an ice den-
sity of 910 kg m−3 in line with laboratory measurements per-
formed on ice samples from the GrIS ablation zone. The
correlation is very high for both sites (r=0.99) and the re-
gression slopes equal to unity within the uncertainty range.
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Fig. 7. Detail of observed (red) and modelled (blue) hourly cumu-
lative ice ablation at S5, summer 2004, assuming an ice density of
910 kg m−3 for the observations.

The largest relative errors are found for 10-day periods with
low melt. The reason for this may be that for these low melt
amounts (<10 cm), the measurement uncertainty becomes
relatively large and dominates the comparison.

Figure 6 shows time series of (a) observed and modelled
10-day melt rates and (b) cumulative ice ablation at S5 and
S6. Maximum observed 10-day average melt rates are close
to 60 kg m−2 day−1 at S5, extremes that are well captured
by the model. The model also reproduces non-summer melt
events at S5 (Fig. 6a). Apart from a small (<10%) melt over-
estimate at S5 in 2005, the cumulative melt (Fig. 6b) is also
well modelled, confirming the absence of systematic errors.

To qualitatively assess the performance of the melt model
at daily and sub-daily time scales, Fig. 7 compares modelled
and observed ice melt at hourly resolution at S5 for 40 days in
the summer of 2004. The daily cycle in melting is at the limit
of what the sonic height ranger can resolve, but is nonethe-
less clearly visible in the observations and faithfully repro-
duced by the model. Episodes with enhanced melt rates, dur-
ing which the daily cycle becomes small and strong melting
continues during the night (e.g. around 5 and 18 July), are
well captured, as are episodes with a reduced melt rate (11–
12 July), reflecting cold air outbreaks and cloudy conditions.

Fig. 8. Example profiles of subsurface heat flux (G, green and multi-
plied by 10 for clarity), penetrating shortwave radiation (Q, red) and
temperature (T, blue) for 29 July 2006, 12:30 GMT, with SWnetwas
245 W m−2. Open symbols: without radiation penetration; solid
symbols: with radiation penetration.

4.3 Effect of radiation penetration

Figure 8 shows modelled vertical profiles in the ice at S5 of
subsurface heat flux (G, multiplied by 10 for clarity), pen-
etrating shortwave radiation (Q) and temperature (T ) with
and without shortwave radiation penetration. These profiles
are for 29 July 2006, 12:30 GMT, at which time no snow
was present and SWnet was 245 W m−2. If radiation penetra-
tion is not allowed in the model (open symbols in Fig. 8), all
shortwave radiation is absorbed at the surface and invested in
melting there. In the absence of heat sources in the ice, only
the surface is at the melting point, below which the temper-
ature relaxes towards the deep ice temperature. With this
temperature profile,Gs extracts about 4 W m−2 of heat from
the surface at the expense of melting.

When radiation penetration is allowed (solid symbols in
Fig. 8), part of SWnet is absorbed below the surface and its
divergence acts as a local heat source. As a result, the ice
is melting down to a depth of 0.45 m, in good agreement
with measurements at ETH camp in 1990 and 1991, some
260 km to the north (Greuell and Konzelmann, 1994). Be-
low that depth, no melting occurs butQ is still nonzero: this
heat is used to warm the deeper ice layers. This heat loss
is partly compensated by the increasedGs that equals zero
in the isothermal melting layer. As a result, the total melt
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Fig. 9. (a)Average magnitude of surface energy balance components under melting conditions at S5 (blue bars), S6 (red bars) and S9 (green
bars);(b) total melted ice mass over four years, expressed in kg m−2, due to the various components of the surface energy balance at S5
(blue bars), S6 (red bars) and S9 (green bars).

energy is only slightly smaller than the case without radia-
tion penetration. Note that subsurface melting decreases the
ice density, but because the amount of SWnet absorbed at the
surface decreases accordingly, surface lowering does not ac-
celerate and a direct comparison of modelled ice melt with
observations from the sonic height ranger remains meaning-
ful.

4.4 Energy flux partitioning during melt

In this section, model output is used to partition the energy
fluxes in Eq. (1) during melting conditions (Fig. 9). Melt-
ing of snow or ice occurs during 30%, 20% and 12% of the
time at S5, S6 and S9, respectively. 1%, 6% and 12% of the
time this constitutes snow melt, i.e. almost none at S5 and
nearly all of the time at S9. At all three sites, the largest
energy source during melting is absorbed shortwave radia-
tion (SWnet), ranging between 90–110 W m−2 (Fig. 9a). The
lower value of SWnet at S5 indicates that melt is less bi-
ased towards daytime, i.e. melt also regularly continues at
low sun angles, as was visible in Fig. 7. With values of−25
to −35 W m−2, net longwave radiation (LWnet) is a signif-
icant heat sink during melting conditions, especially in the
higher ablation zone. Because LW↑ is fixed during melting,
the differences in LWnet represent the effect of decreasing
LW↓ towards higher elevations.

The sensible heat flux (SHF) represents a significant
source of melt energy at S5,∼65 W m−2, owing to persis-
tent katabatic winds in combination with a rough ice surface
and large surface to air temperature gradients under melting
conditions. The latent heat flux (LHF) contributes to melt at
S5 but acts as energy sink in the higher ablation zone, but the
absolute values are small,<10 W m−2. The subsurface heat
flux (Gs) is negligible during melting conditions, because ra-
diation penetration causes the upper ice layers to be isother-
mal at 0◦C. On average,M is largest at S5, 138 W m−2,

mainly a result of the large SHF and limited LW heat loss.
At S6 and S9, the contribution of SHF to the energy balance
becomes small compared to SWnet, in agreement with obser-
vations made by Henneken et al. (1994).

If melt duration is taken into account, we obtain the total
melt amount for the four-year period (August 2003–August
2007), expressed in kg m−2 (Fig. 8b). Note that total melt
doubles going from S9 to S6, and again doubles from S6
to S5. This exponential increase can be ascribed to the
rapidly increasing contribution of SHF towards the lower ab-
lation zone in response to higher air temperatures and larger
surface roughness in summer. At S5, where the melt sea-
son is longest, SWnet is responsible for total ice melt of
10 500 kg m−2 and SHF of 7500 kg m−2, the latter represent-
ing ∼50% of the total.

4.5 Mass flux partitioning

In this study we focus on the partitioning of the meltwa-
ter flux. Rain is not detected by the AWS nor modelled,
while sublimation constitutes a small mass loss in the ab-
lation zone, on average 1.3% (S5), 1.0% (S6) and 2.0% (S9)
of the total melt flux over this four-year period. Runoff rep-
resents meltwater that leaves the local hydrological system
of the ice sheet. In our simple model, runoff has four com-
ponents: 1) surface ice melt and subsequent runoff, 2) wa-
ter vapour condensation on the ice surface and subsequent
runoff, 3) internal ice melt and subsequent runoff and 4)
runoff at the bottom of the snow pack. When ice is at the
surface, all meltwater that is produced at or below the ice sur-
face is assumed to run off instantaneously. When the surface
consists of snow with (some of) the subsurface snow layers
having a temperature below freezing, refreezing of meltwa-
ter will occur. This obviously reduces runoff, so that runoff
equals total melt plus condensation minus refreezing.
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Figure 10 shows modelled meltwater fluxes, divided into
snow and ice melt as well as in a refreezing and runoff com-
ponent, cumulated over the four-year period. In the absence
of significant winter accumulation at S5, nearly no refreez-
ing occurs at this site and all melt energy is invested in ice
melting and runoff (Fig. 10a). According to the model, about
23% of ice melt occurs below the surface. Cumulative runoff
slightly exceeds total melt, as a result of water vapour con-
densation on the cold ice sheet in summer (LHF>0, see
Fig. 8). The condensation flux is so small, that it is not in-
cluded in Fig. 10a.

At S6, ∼23% of the total melt energy is invested in snow
melting (Fig. 10b), of which about 40% refreezes in the un-
derlying snowpack. Over the four-year period, this reduces
runoff to about 92% of the total meltwater production. For
S6, the model predicts that about 30% of the ice melts below
the surface, slightly more than S5 where part of the pene-
trated SW radiation is used to warm up the upper ice layers
in the pre-melt season, in the absence of a snow cover.

At S9 (Fig. 10c) we assumed that the ice horizon was at
the surface at the start of the model integration, i.e. at the
end of the warm 2003 summer. Apart from a short period
in September 2003, all summer melt energy in the subse-
quent three years is invested in melting of the previous win-
ter snowpack. Only in 2007 did some ice melt at the end of
summer at S9 (see also Fig. 3). According to the model, re-
freezing consumes about 1/3 of the total melt energy at S9.
Note the exceptional melt in 2007, where melt and runoff are
greater than previous summers by a factor of 2 and 2.5, re-
spectively. Anomalously sunny conditions accelerated snow
melting in July and revealed the dark ice surface at the begin-
ning of August. The difference with previous years is most
pronounced at S9, where SWnet dominates the energy bal-
ance during melt (Fig. 9a).

5 Summary and conclusions

Four years of data (August 2003–August 2007) from auto-
matic weather stations and sonic height rangers were fed into
a melt model to quantify surface energy and meltwater fluxes
in the ablation zone of the west Greenland ice sheet. Data
were collected along the 67◦ latitude circle at distances of
6, 38 and 88 km from the ice sheet margin at elevations of
490, 1020 and 1520 m a.s.l. In the lower ablation zone, about
half of the melt energy is provided by the turbulent sensible
heat flux (SHF), the remainder by net shortwave radiation
and latent heat exchange. The role of SHF decreases rapidly
towards the high ablation zone, where net shortwave radi-
ation becomes the sole term of importance during melting
conditions. The large gradient in SHF accentuates melt gra-
dients in the west Greenland ablation zone, with melt energy
roughly doubling each 40 km when going from the equilib-
rium line towards the ice sheet margin.

Fig. 10.Cumulative modelled melt in kg m−2, at(a) S5,(b) S6 and
(c) S9. A division is made between snow melt, surface ice melt and
internal ice melt as well as between refreezing and runoff (see text).
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In the beginning of the melt season, part of the meltwa-
ter refreezes in the cold winter snowpack. In the absence of
significant winter accumulation, refreezing is insignificant in
the lower ablation zone, which exhibits continuous ice melt-
ing and runoff during June, July and August. In the mid-
dle ablation zone, winter accumulation amounts up to 20–
70 cm of snow, and refreezing reduces runoff to slightly more
than 90% of the total meltwater production. At the highest
site, refreezing consumes one-third of the total melt energy.
Horizontal runoff gradients thus exceed melt gradients in the
west Greenland ablation zone. It is clear that in order to re-
solve these steep and nonlinear horizontal gradients, high-
resolution modelling is required.
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