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Abstract. The aim of this work is to investigate how the spa-

tial variability of soil properties and soil erodibility (K fac-

tor) were affected by the changes in land use allowed by irri-

gation with water from a reservoir in a semiarid area. To this

end, three areas representative of different land uses (agro-

forestry grassland, lucerne crop and olive orchard) were stud-

ied within a 900 ha farm. The interrelationships between vari-

ables were analyzed by multivariate techniques and extrapo-

lated using geostatistics. The results confirmed differences

between land uses for all properties analyzed, which was ex-

plained mainly by the existence of diverse management prac-

tices (tillage, fertilization and irrigation), vegetation cover

and local soil characteristics. Soil organic matter, clay and

nitrogen content decreased significantly, while the K factor

increased with intensive cultivation. The HJ-Biplot method-

ology was used to represent the variation of soil erodibil-

ity properties grouped in land uses. Native grassland was

the least correlated with the other land uses. The K factor

demonstrated high correlation mainly with very fine sand and

silt. The maps produced with geostatistics were crucial to un-

derstand the current spatial variability in the Alqueva region.

Facing the intensification of land-use conversion, a sustain-

able management is needed to introduce protective measures

to control soil erosion.

1 Introduction

Soil erosion is a significant economic and environmental

problem worldwide as a driving force affecting landscapes

(Zhao et al., 2013). It is a very dynamic and complex pro-

cess, characterized by the decline of soil quality and produc-

tivity, as it causes the loss of topsoil and increases runoff

(Lal, 2001; Yang et al., 2003). Furthermore, soil erosion of-

ten causes negative downstream impacts, such as sedimenta-

tion in rivers and reservoirs, decreasing their storage volume

as well as lifespan (Pandey et al., 2007; Haregeweyn et al.,

2013).

One of the main causes of soil loss intensification around

the world is associated with land-use change (Leh et al.,

2013). The relationship between different land use and soil

susceptibility to erosion has attracted the interest of a va-

riety of researchers (Yang et al., 2003; Cerdà and Doerr,

2007; Blavet et al., 2009; Biro et al., 2013; Wang and Shao,

2013), who have shown the impact of changes in vegetation

cover and agricultural practices on soil properties and there-

fore on overland flow. Generally, cultivated lands experience

the highest erosion yield (Cerdà et al., 2009; Mandal and

Sharda, 2013). In the Mediterranean regions, in combination

with these anthropogenic factors, climate change has ampli-

fied the concerns about soil erosion since it is expected that

there will be an increase of dry periods followed by heavy

storms with concentrated rainfall (Nunes et al., 2009).

Some models have been developed to predict soil loss and

sediment delivery. The Revised Universal Soil Loss Equa-

tion (RUSLE) is the most used empirical equation for mod-

eling annual soil loss from agricultural watersheds (Renard

et al., 1997). The susceptibility of soil erosion and land

degradation depends largely on various inherent soil proper-

ties, namely chemical, physical, biological and mineralogical

properties (Cambardella et al., 1994; Pérez-Rodríguez et al.,

2007). However, according to the RUSLE model only some
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of the soil’s properties define soil erodibility (K factor), such

as particle-size composition, the content of organic matter,

soil structure and permeability. Therefore, theK factor is the

most used and is an important index to measure soil suscep-

tibility to erosion (Panagopoulos and Antunes, 2008).

Spatial variability in soils occurs naturally as a result

of complex interactions between geology, topography and

climate. Moreover the spatial variability of soil properties,

which influence soil susceptibility to erosion, is highly re-

lated to anthropogenic factors particularly in cultivated lands

(Paz-González et al., 2000; Wang and Shao, 2013). Thus,

information on the spatial variability and the interactions

between soil properties is essential for understanding the

ecosystem processes and planning sustainable soil manage-

ment alternatives for specific land uses (Pérez-Rodríguez et

al. 2007; Ziadat and Tamimeh, 2013).

Classical statistics and geostatistics methods have been

widely applied in studies about spatial distribution of soil

properties (Pérez-Rodríguez et al., 2007, Tesfahunegn et al.,

2011). Geostatistical techniques based on predictions and

simulations have been used to describe areas where predicted

information is established by a limited number of samples

(Goovaerts, 1997). Geostatistics provides tools for analyzing

spatial variability structure and distribution of soil properties

and evaluating their dependence (Panagopoulos et al., 2014).

The biplot methodology provides an added value for an-

alyzing spatial variability of soil properties. This multivari-

ate statistical technique allows the graphical representation

of a large data matrix (Gabriel, 1971), whereby it is possible

to interpret the relations between individuals (samples) and

between variables, as well as between both. Biplot can also

indicate clustering of units with close characteristics, show-

ing inter-unit distances as well as displaying variances and

correlations of the variables (Gallego-Álvarez et al., 2013).

The HJ-Biplot permits not only the analysis of the behav-

ior by sample but also the determination of which variable is

responsible for such behavior (Garcia-Talegon et al., 1999),

allowing a visual appraisal to establish relations between soil

properties and land uses.

The construction of the Alqueva dam in a semiarid area

of southern Portugal created one of the largest artificial lakes

in Europe. Taking advantage of water availability from the

reservoir, this Mediterranean region has been subjected to

land-use conversion from the native montado grassland to in-

tensive agricultural uses. Land-use conversion from the na-

tive ecosystem to agriculture may alter physical, chemical

and biological soil properties, which consequently may in-

crease soil erosion and siltation in the reservoir. Soil erosion

in the area has to be carefully evaluated in order to under-

take sustainable soil management measures. Therefore, the

aim of this study was to evaluate the effects of cultivation

practices on some chemical and physical soil properties and

on soil erodibility (K factor on RUSLE), and to character-

ize their spatial variability using geostatistics and HJ-Biplot

methodology.

2 Material and methods

2.1 Study area

Located in the semiarid Alentejo region of Portugal, at the

Guadiana River, the Alqueva reservoir (8◦30′W, 38◦30′ N)

covers an area of 250 km2, and the capacity of the reservoir

is 4.15 km3. The main arguments for the implementation of

what is considered the largest artificial lake in Europe were

based on the need to combat the growing effects of deserti-

fication and to prevent the annual and monthly fluctuations

in precipitation. One of the main goals of the Alqueva Mul-

tipurpose Project was the implementation of 120 000 ha of

newly irrigated land in the Alentejo. The Alentejo region,

covering an area of 27 000 km2, is considered one of the most

depressed regions of the European Union and characterized

by a Mediterranean climate with very hot and dry summers

and mild winters. The average temperature ranges from 24

to 28 ◦C in hot months (July/August) and from 8 to 11 ◦C in

cold months (December/January). The average annual pre-

cipitation at the nearest meteorological station, for the last

30 years, is 517.2 mm. The region is affected by intense dry

periods followed by heavy, erosive rains concentrated in the

autumn season.

The study experimental site (farm “Herdade dos Gregos”),

located in the surrounding area of the reservoir (Fig. 1), is a

private property with 900 ha. The landscape is characterized

by its hilly topography with significant altitude variations

(mainly between 100 and 250 m). The bedrock of the study

area is rocky, and, according to the World Reference Base

for Soil Resources (FAO, 2006), the two types of soil in this

area are Haplic Luvisols (LVha) and Lithic Leptosols (LPli).

This farm was selected to include a diversity of land uses,

including native montado grassland and more intensive land

uses, with irrigation, namely olive tree orchard and lucerne

cultivation. Direct pumping from Alqueva reservoir is done

on this private property since it is near the reservoir.

The typical landscape in the Alentejo region is the mon-

tado native grassland, an agrosilvopastoral system charac-

terized by savannah-like, low-density woodlands with ever-

green holm oaks (Quercus ilex). For that reason, an area of

the montado grassland (20.7 ha), used as a permanent pas-

ture for the cattle, was selected for this study. This small

area is located in the high altitudes of the “Herdade dos Gre-

gos” (from 200 to 240 m) with a slope that varies from 1.4 to

20.9 %. Tillage (at about 15 cm depths) was done only once

every 10 years to decrease shrub competition (the most re-

cent one was 4 years before the study implementation), and

the soil is not subjected to any fertilizer. Four years before the

study implementation, there was a fire on this agrosilvopas-

toral area of the farm.

Taking advantage of the water availability, another land

use (with 33.5 ha) is an irrigation area (pivot sprinkler irri-

gation system) on which lucerne (Medicago sativa) is sown

four times a year. Lucerne, once dried, is nutritional for cat-
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Figure 1. Location of the study area at the Alqueva dam watershed

in Portugal.

tle, and it incorporates nitrogen in the soil. In this area, con-

ventional tillage is used, involving multiple aspects: plough

(about 20 cm depth) in fall, fallowing cultivator (about 15 cm

depths) and disc harrow (about 10 cm depths) subsequent to

soil tillage. Inorganic fertilizers were applied to the cultivated

field at a rate of 100 kg NPK ha−1. This land use is placed in

the midland (194–220 m), and the slope varies from 0 to 9 %.

Another irrigated land use consists of an olive tree plan-

tation (57.5 ha), which is done in strips. This cultivation has

a drip irrigation system, is fertilized once every 2 years and

is ploughed once a year to decrease weed competition. The

olive orchard is located in the low elevations of the farm

(150–186 m), and it is on the side of the reservoir (Fig. 1).

The slope varies from 0 to 14.2 %.

2.2 Soil sampling and laboratory analysis

Since the objective was to study the relation between soil

properties and the K factor from RUSLE, the soil samples

were collected from 0 to 20 cm depth, according to Renard

et al. (1997). In order to predict variations in short distances,

25, 27 and 52 soil samples were randomly collected respec-

tively in montado, lucerne and the olive orchard (see Fig. 1).

Samples were air-dried and then dried for about 6 h at 40 ◦C

on a ventilated oven, and they were passed through a 2 mm

sieve to remove rocks and gravel. The particle-size distribu-

tion was determined by the Bouyoucos hydrometer method

(Bouyoucos, 1936). Soil organic matter content was deter-

mined using the Walkley and Black (1934) method, a wet

oxidation procedure. The soil’s total nitrogen content was

determined according to Kjeldhal digestion, distillation and

the titration method (Bremmer and Mulvaney, 1982). Soil pH

and electrical conductivity were measured with a glass elec-

trode in a 1 : 2.5 soil–water suspension (Watson and Brown,

2011).

2.3 Soil erodibility factor

Soil erodibility factor (K) (Mg ha h ha−1 MJ−1 mm−1) was

estimated using soil property values – such as particle-size

composition, content of organic matter, soil structure and

permeability – in the 104 sample points described above.

This factor represents the soil-loss rate per erosion index unit

for a specified soil as measured on a standard plot (Renard

et al., 1997). An algebraic approximation of the nomograph

(Eq. 1) was used to estimate the K factor (Renard et al.,

1997):

K = [2.1× 10−4(12−OM)×M1.14 (1)

+ 3.25(s− 2)+ 2.5(p− 3)]/759,

where OM is the percentage of organic matter, s is soil struc-

ture class, p is permeability class and M is the product of

the percentage of modified silt (silt particles and very fine

sand) or the 0.002–0.1 mm size fraction and the sum of the

percentage of silt and percentage of sand. K is expressed in

SI units of Mg ha h ha−1 MJ−1 mm−1. To estimate the perme-

ability, the field-saturated hydraulic conductivity was mea-

sured in the field using a double-ring infiltrometer (six site

measurements per land use, each one with five repetitions).

Permeability class and soil structure class were defined in ac-

cordance with Renard et al. (1997).

2.4 Statistical and geostatistical analysis

Data were subjected to classical analysis using SPSS 17.0

software to obtain descriptive statistics, namely the mean,

minimum and maximum; standard deviation (SD); coeffi-

cient of variation (CV); and skewness of each parameter.

Soil data were introduced in the ArcGIS environment, and

geostatistical analyses were performed using Geostatistical

Analyst tool, in other to examine spatial distribution of soil

properties. Prior to using geostatistics to obtain prediction

maps, a preliminary analysis of data was done to check data

normality and global directional trends. Skewness is the most

common statistical parameter to identify a normal distribu-

tion that is confirmed with skewness values varying form−1

to +1. Data transformation to normal distribution was nec-

essary for some soil properties, and geostatistical analysis
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tools were used (log or Box–Cox method). Trend analysis

was performed to examine the presence of any global direc-

tional trend in our data, an overriding process that affects

all measurements in a deterministic way (nonrandom). So,

when necessary, the trend removal was done using geosta-

tistical analysis tools to more accurately model the variation

(Panagopoulos et al., 2006).

The geostatistical methodology is based on the creation of

a semivariogram (SV), a graphical representation (Eq. 2) that

describes how samples are related to each other in space, and

it is based on

γ (h)= 1/2N(h)×
∑
[Zi −Z(i+h)]

2, (2)

where γ (h) is the variance (the most related samples have

lower values of variance),N(h) is the number of samples that

can be grouped using vector h, Zi represents the value of the

sample and Zi+h is the value of another sample located at a

distance ‖h‖ from the initial sample Zi (Chiles and Delfiner,

1999).

Ordinary Kriging (OK) was selected as a geostatistical

method. OK is considered one of the most accurate interpo-

lation techniques which assumes that variables close in space

tend to be more similar than those further away (Goovaerts,

1999).

Using the Geostatistical Analyst tool (ArcGIS) and select-

ing the OK methods, a semivariogram was created for each

measured property. In the Kriging method different semivar-

iogram models can be used (e.g., spherical, exponential) and

the selection is usually performed by employing the cross-

validation technique, which permits the evaluation of the pre-

diction accuracy. Cross validation was executed to investi-

gate the prediction performances through the statistical val-

ues, as the mean error (ME) or root-mean-square standard-

ized error (RMSSE), which results from comparing the es-

timated semivariogram values and real observed values. Ad-

ditional semivariogram parameters were analyzed to better

understand the spatial structure and dependence of each vari-

able. Nugget is the variance at distance zero and reflects the

sampling error. Sill is the semivariance value at which the

semivariogram reaches the upper bound and flattens out after

its initial increase; it is the variance in which the samples are

no longer spatially related to the study area.

Once the cross-validation process was completed, inter-

polation maps of spatial distribution, for each soil variable,

were produced according to the semivariogram model se-

lected, in the ArcGIS software.

2.5 HJ-Biplot

HJ-Biplot represents a matrix, without assumptions related to

its probabilistic distribution, permitting a graphic representa-

tion of the geometric data structure, representing the data set

(samples and variables) variability. The prefix “bi” is due to a

simultaneous representation of the matrix rows and columns,

searching for the maximum representation quality possible,

at the same scale (Martín-Rodríguez et al., 2002; González-

Cabrera et al., 2006; Gallego-Álvarez et al., 2013).

A data matrix X suffers a factorization to reduce its dimen-

sionality through single-value decomposition, the algebraic

base of biplot representation (Gabriel, 1971):

X(n×p) = U(n×r)3(r×r)V
′
(r×p), (3)

where 3(r×r) is a diagonal (λ1,λ2, . . .,λr ) corresponding to

the r eigenvalues of XX’ or XX′,U(n×r) is an orthogonal ma-

trix whose columns are the eigenvectors of XX′ or X′X and

U(n×r) is an orthogonal matrix whose columns are the eigen-

vectors of XX′.

With the MultBiplot software, developed by the University

of Salamanca (Vicente Villardón, 2014), an HJ-Biplot was

used to determine the relation between soil properties and

land uses, and the correlations between both (soil properties

and land uses), thereby defining patterns and clustering the

samples in groups.

On the HJ-Biplot graphic representation, the points repre-

sent individuals (samples) and the vectors represent variables

(in this case, chemical and physical soil properties). To inter-

pret and discuss the graphs obtained with this methodology,

it is essential to be aware of the following (Gallego-Álvarez

et al., 2013):

– The distance between points represents the variability

and can be interpreted as similarity or dissimilarity;

i.e., the close samples have similar behaviors.

– The angle formed by variable vectors is interpreted as

correlation; i.e., small angles between variables repre-

sent similar behaviors with high positive correlations,

and the obtuse angles that are almost a straight angle

are associated with variables with high negative corre-

lations; i.e., the cosine value of the angles represents the

correlation between variables.

– The proximity of individual points and variable vectors

means high preponderance; in other words the closer

a point is to a variable vector, the more important this

sample is to explain this variable.

– The length of the vector represents the variable’s vari-

ability; the longer the vector, the higher this variability.

3 Results and discussion

3.1 Descriptive statistics

The descriptive statistics of soil properties are given in the

first part of Table 1. All measured parameters varied consid-

erably within the areas (different land uses) as indicated by

the coefficient of variation (varies from 4.2 to 70.2 %). Ni-

trogen (N) and organic matter (OM) show the highest vari-

ation values, especially for cultivated fields (lucerne cultiva-

tion and olive orchard), which can be explained with the lack
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Table 1. Descriptive statistics of soil properties and parameters of the fitted variogram models and the cross-validation results.

Classic statistics Geostatistics

Mean CV (%) Min Max Skewness Variogram Nugget Sill Nugget /sill ME RMSSE

Montado grassland (n= 25) Montado grassland (n= 25)

Clay (%) 17.29 37.7 5.68 29.62 0.07 Exponential 0 38.30 0.00 0.0055 1.01

Silt (%) 29.55 17.2 12.99 39.72 −0.99 Exponential 0 36.00 0.00 0.0238 1.04

Sand (%) 53.16 13.5 39.68 70.34 0.33 Pentaspherical 0 57.60 0.00 0.0223 0.99

VFS (%) 11.13 25.6 4.49 19.04 0.16 Stable 0 12.00 0.00 −0.0188 0.99

OM (%) 5.22 32.1 2.25 10.35 1.19 Exponential* 0.031 0.07 0.44 −0.0003 1.04

N (%) 0.19 43.2 0.07 0.42 1.13 Exponential* 0.056 0.17 0.32 0.0001 1.04

EC (dS m−1) 0.100 38.1 55.5 217.5 1.28 Exponential* 0.012 0.13 0.09 0.5640 0.95

pH 5.90 4.2 5.38 6.30 0.01 Exponential 0 0.06 0.00 0.0022 0.99

HCsat (cm h−1) 4.56 42.9 1.20 7.20 −0.57 − − − − − −

K (Mg ha h ha−1 MJ−1 mm−1) 0.021 31.4 0.006 0.039 0.43 Stable 0 0.001 0.00 0.0001 1.00

Lucerne cultivation (n= 27) Lucerne cultivation (n= 27)

Clay (%) 13.29 28.8 5.65 22.28 0.32 Stable 0 15.30 0.00 0.0017 1.02

Silt (%) 33.79 26.6 8.35 47.29 −1.48 Stable* 0 44.20 0.00 0.0073 0.97

Sand (%) 52.93 17.7 39.32 79.99 1.00 Exponential 0 92.00 0.00 0.0297 0.98

VFS (%) 15.28 37.0 2.59 25.17 −0.39 Exponential 15.60 25.0 0.62 0.0347 1.04

OM (%) 2.08 52.8 0.45 5.44 1.21 Exponential* 15.90 119 0.13 0.0036 0.94

N (%) 0.11 70.2 0.02 0.35 1.43 Circular* 0.10 0.52 0.20 0.0017 1.01

EC (dS m−1) 0.107 45.9 40.5 205.0 0.64 Exponential 1.15 1.79 0.64 0.2240 0.96

pH 7.14 4.3 6.53 7.85 0.02 Exponential 0.04 0.07 0.57 0.0052 1.07

HCsat (cm h−1) 5.95 26.7 0.65 1.30 −0.29 − − − − − −

K (Mg ha h ha−1 MJ−1 mm−1) 0.039 21.9 0.013 0.052 −0.88 Stable 0 0.01 0.00 0.0001 1.03

Olive tree orchard (n= 52) Olive tree orchard (n= 52)

Clay (%) 9.83 28.8 5.40 16.66 0.52 Stable 0 8.04 0.00 0.0001 0.99

Silt (%) 24.37 46.8 3.82 43.36 −0.41 Pentaspherical 50.00 89.80 0.55 0.0001 0.90

Sand (%) 65.81 18.2 40.6 89.66 0.21 Exponential 0 16.10 0.00 0.0002 0.91

VFS (%) 18.14 32.5 4.49 19.04 0.16 Exponential 0.01 33.70 0.00 0.0037 1.05

OM (%) 2.10 52.8 0.62 8.35 3.54 Exponential* 0.07 0.16 0.44 −0.0006 1.02

N (%) 0.10 45.3 0.04 0.29 2.02 Exponential* 0.02 0.15 0.12 0.0028 1.10

EC (dS m−1) 0.182 61.3 53.50 583.50 1.80 Exponential 0 1.4 0.00 0.6820 1.02

pH 5.48 7.6 4.30 6.21 −0.43 Exponential 0 0.21 0.00 −0.0002 0.95

HCsat (cm h−1) 2.60 64.9 0.00 0.67 −0.45 − − − − − −

K (Mg ha h ha−1 MJ−1 mm−1) 0.038 33.6 0.012 0.061 −0.36 Exponential 0.00 0.001 0.51 −0.0001 0.92

*Transformation for normal distribution.

CV – coefficient variation; Min – minimum; Max – maximum; VFS – very fine sand; N – nitrogen; OM – organic matter; EC – electrical conductivity; HCsat – saturated hydraulic conductivity; K – soil

erodibility; ME – mean error; RMSSE – root-mean-square standardized error.

of homogeneous fertilization or tillage practices applied to

soil in these areas.

The skewness results, which vary from −1.48 to 3.54 in

this study, indicated that some soil properties of the differ-

ent uses were not normally distributed, especially OM and

N. The principal reason for some soil properties having non-

normally distributions may be related to soil management

practices (Tesfahunegn et al., 2011). As already mentioned,

data were transformed to normal distribution when necessary

(see Table 1).

These mean results show significant differences between

land uses for all the properties analyzed. From the particle

size distribution reported in Table 1, the soils are mostly

sandy loam, formed mainly of sand, followed by silt and low

quantities of clay. However, there are some differences be-

tween land use areas that can be explained by soil type. The

LPli soils are characterized by a thin layer (about 10 cm), in

that case upon a schist rock, justifying the higher clay content

at the montado grassland. The LVha soils in the lucerne cul-

tivation and the olive orchard are characterized by a loam or

sandy loam layer (first 20 cm) with good drainage over clay-

enriched subsoil (upon a basic crystalline rock), explaining

the lower values of clay and fine sand, especially in the olive

orchard. Despite the same soil type, soil texture is different

between lucerne and the olive orchard, which can be justi-

fied by land use. The lucerne is a more intensive cultivation

(intensive irrigation, tillage and continuous cultivation; fer-

tilizers and lime application), involving conditions that pro-

mote changes in the soil weathering and moisture and, con-

sequently, in soil texture (Yimer et al., 2008). On the other

hand the soil between olive trees is kept without vegetation

for most of the year and can explain the clay drainage to a

sub-layer.
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Montado shows the highest content of OM (5.22 %),

whereas lucerne and olive fields show the lowest values (2.08

and 2.10 %, respectively). Other studies suggest that OM

is higher in no-tillage soils compared to minimum tillage

that increases aeration (Celik, 2005). Tillage mixes the sub-

soil with topsoil; after soil erosion, the nutrients are easily

leached and the surface becomes poor in nutrients (Al-Kaisi

and Licht, 2005). As for OM, the highest value of N nutri-

ent occurs in the montado (0.19 %) and the lowest values in

lucerne (0.11 %) and the olive orchard (0.10 %), which is re-

lated to the tillage practice that is frequently employed in

these last two land uses, while in the montado grassland the

cattle enriches the soil.

Soil EC values (Table 1) were similar when comparing

the montado grassland (0.100 dScm−1) and the lucerne field

(0.107 dScm−1); they were slightly higher in the olive or-

chard (0.182 dScm−1) but not enough to raise salinity prob-

lems. Usually, the addition of fertilizers (that happens on

lucerne and the olive orchard) can cause high EC due to the

percentage of the salts which are leached by water irrigation

(higher in the lucerne field).

The soil pH was significantly higher in the lucerne culti-

vation land (7.1) compared to the montado grassland (5.9) or

in the olive tree orchard (5.5) (Table 1). The soil pH in the

lucerne was greater due to lime application to increment the

soil pH in that area. Lucerne’s optimum pH for production is

between 6.5 and 7.2, and lime application has been found to

produce a significant improvement in nodulation of lucerne

(both number and dry weight of nodules per plant) (Grewal

and Williams, 2001).

Saturated hydraulic conductivity (HC) values were greater

in the lucerne area (5.95 cmh−1), slightly lower in the mon-

tado grassland (4.56 cmh−1) and lowest in the olive orchard

(2.60 cmh−1). The lower permeability in the olive orchard

can be explained by the clay-enriched subsoil or soil crust

problems, and it may explain the higher values of EC, i.e.,

the greater concentration of salts. Also it can be explained by

the frequency of tillage in the different land uses because ag-

gregate stability and water infiltration rate are higher in soils

subjected to limited tillage systems (Alvarez and Steinbach,

2009).

As a result, the K factor was different for the typical land

use, montado grassland, compared to the lucerne cultivation

and the olive orchard. The values increased with the inten-

sification of the cultivation field, with the lowest values for

montado grassland (0.021 Mg ha h ha−1 MJ−1 mm−1) and

the highest for the lucerne cultivation (0.039 Mg ha h ha−1

MJ−1 mm−1) and the olive orchard (0.038 Mg ha h ha−1

MJ−1 mm−1). Other studies had similar results, showing that

the removal of permanent vegetation, the loss of OM and

the reduction of aggregation, caused by intensive cultivation,

contribute to decrease the K factor (Celik, 2005).

Figure 2. Three-dimensional perspective of the trends in the input

data sets.

3.2 Spatial dependence of soil properties

Model selection for each soil property was based on the

nugget, sill, ME and the RMSSE presented in the second part

of Table 1 (Geostatistics).

Nugget is low in most soil properties studied, implying

strong spatial dependence. The nugget-to-sill ratio is used

to define spatial dependence of soil properties: if the ratio

is < 0.25, there is strong spatial dependence; if it is 0.25 to

0.75, there is moderate spatial dependence; and if the ratio

is > 0.75, spatial dependence is weak (Cambardella et al.,

1994). As shown in Table 1 the ratio values indicate the pres-

ence of high to moderate spatial dependence for all soil pa-

rameters (values between 0 and 0.64). In general, there is

stronger spatial dependence in montado (low nugget-to-sill

ratio), which can be explained with the non-existence of ex-

trinsic factors, such as management cultivation practices, that

influence soil properties, and soil is left as it is for permanent

pasture.

Cross validation facilitated the selection of the best-fit

semivariogram for an interpolation map, which could pro-

vide the most accurate predictions. Closer values of the ME

to 0, and closer values of the RMSS to 1, suggested that the

prediction values were close to measured values (Wackker-

nagel, 1995). Most of the soil properties were best fitted with

an exponential model, particularly in the montado area and

olive orchard, whereas in lucerne the Gaussian, circular and

stable semivariogram models were used.

3.3 Spatial distribution

The interpolation maps obtained with geostatistics are useful

to better understand spatial variability and its influences. The

variability of spatial soil properties can be influenced by nat-

ural factors (such as particle-size composition and topogra-

phy) and anthropogenic factors (such as land cover or man-

agement practices) (Tesfahunegn et al., 2011). Sometimes,

the effect of some factors is at least 1 order of magnitude
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Figure 3. Prediction map of very fine sand (VFS), total nitrogen (N), organic matter (OM) and soil erodibility (K factor).

greater (as topography or soil type) than the land use. So, as

mentioned trend analysis was performed to study the exis-

tence of directional trends caused by these factors with large

scale of variation, and it is shown in Fig. 2. Global trend ex-

ists if a curve that is not flat (i.e., a polynomial equation)

can be fitted to the data (for example for total N in montado

or very fine sand (VFS) in the olive orchard). These trends

were identified for part of the soil properties and for differ-

ent land uses (Fig. 2). The strongest influence of a directional

trend was identified from southeast to the northwest, which

could be associated with the topography (Fig. 1) since the al-

titudes increase in accordance with these direction. So, trend

removal is crucial to create more accurate prediction maps in

order to justify an assumption of normality.

The interpolation maps for some studied soil properties

are shown in Fig. 3. Through looking at the VFS distribu-

tion, it was noticed that the higher fractions of these particles

(Fig. 3) were measured at low altitudes or on flat slopes such

as the valley (see elevation in Fig. 1). This can be explained

by erosion–deposition processes because these particles are

easily detached and transported by water.

The highest percentages of N and OM were found on mon-

tado, as discussed previously. These two properties present

similar distributions for all land uses. The nitrogen existing

in the soil is mostly organic, and the inorganic forms (ammo-

nium and nitrate) are easily leached or assimilated by plants.

So, when OM breaks down due to mineralization, the N frac-

tion decreases (Varennes, 2003). There were higher values in

montado because the soil is not frequently tilled as it is in the

other land uses. In the lucerne cultivation and the olive or-

chard, the variation of OM and N can be explained by inad-

equate management practices (e.g., inadequate fertilization

rates, tillage, irrigation rates, seed rates).

Figure 3 illustrates the interpolation map for the K fac-

tor which was estimated through the Wischmeier nomograph

(Eq. 1). The values vary from 0.006 to 0.061 Mg ha h ha−1

MJ−1 mm−1, and the prediction map shows the highest val-

ues for lucerne and the olive orchard, especially where the

soils have more silt and VFS, along with less OM and N (see

HJ-Biplot). In the surrounding area of the reservoir, the types

of soil differ with the topography and land use; therefore,

knowledge of soil properties is fundamental when facing the

intensification of cultivation that could increase theK factor.

These intensive practices decrease OM in soils, making them

poor and vulnerable to the soil erosion process.
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Figure 4. The HJ-Biplot representation matrix of soil samples and

studied variables.

When looking for natural vs. anthropogenic impact on the

K factor, for each land use, it is evident that in the montado

the spatial variability is mainly associated with natural (in-

trinsic) factors (as texture), with soil properties and erodibil-

ity distribution being more homogenous. In the lucerne and

olive orchard the spatial variability is more dependent on in-

homogeneous anthropogenic causes such as fertilization and

irrigation rates and tillage/plough processes.

3.4 HJ-Biplot

The HJ-Biplot representation matrix of soil properties is

showed in Fig. 4. It was observed that the dominant axis

(axis 1) takes 35.83 % of the total inertia (information) of

the system. With both dimensions, an accumulative inertia

of 61.04 % was achieved. Regarding this graphic representa-

tion, it was observed that samples were grouped according to

the land use. The montado samples were close to OM, N and

clay vectors, showing their preponderance to be a character-

ization of these variables. The lucerne samples were impor-

tant to describe the pH and silt content. On the other hand the

olive samples were more disperse but related to EC, perme-

ability class, sand, VFS and K.

The variables demonstrating a more positive correlation

were OM and N, as previously noticed. Clay and silt were

also positively correlated, but they were negatively correlated

with sand, as expected, because soils with more sand have

less clay and/or silt.

Through the matrix representation it was detected that

soils with more sand have higher EC (olive orchard), al-

though EC normally increases with the percentage of clay.

This may be explained by the addition of fertilizers, as previ-

ously discussed, that can contribute to an EC increase. These

results for EC show low variability between land uses, reveal-

ing a low cation exchange capacity of these soils. This is fre-

Figure 5. Hierarchical clusters representation of soil samples and

studied variables.

quently caused by intensive soil mobilization (Paz-González

et al., 2000).

Permeability class increases as the HCsat decreases, as de-

fined by Renard et al. (1997). So, contrary to what was ex-

pected, for this study the soils with more sand (occurring

in the olive orchard) have less hydraulic conductivity (high-

permeability class). It can be explained by a clay-enriched

sub-layer under the sandy loam layer or/and by the soil

compaction/degradation processes. The soil compaction and

degradation can be related to repeated plow operations to re-

duce shrubs between olive rows and irrigation (Pagliai et al.,

2004). This permeability decrease in the olive orchard was

correlated with the increase of the K factor.

Nevertheless, the properties more positively correlated

with the K factor were the VFS and silt; this is due to the

susceptibility of these particles to erosion since they can be

easily detached and transported by water (Morgan, 2005).

The OM and N content were negatively correlated with K

and permeability. The higher OM reduces the susceptibility

of the soil to detachment and increases infiltration (Bronick

and Lal, 2005). The N content is not used to estimate K;

however, especially for soils without fertilization, the exis-

tent N is mostly associated with OM. Nevertheless, nutrients

decrease in soils that are more erodible, according to the liter-

ature (Tesfahunegn et al., 2011). The clay content also shows

a negative correlation with K factor, as expected (Renard et

al., 1997).

Figure 5 shows the hierarchical cluster representation. Us-

ing HJ-Biplot methodology and the aggregation tool ward,

three clusters were obtained. The samples were grouped by

land uses (that were already detected by the matrix represen-

tation; see Fig. 4). Cluster 1 is represented by a majority of

samples from lucerne, Cluster 2 by samples from montado

and Cluster 3 by samples from the olive orchard. This was
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explained by the effect of different management practices,

vegetation cover and local soil characteristics, as discussed.

Some samples in each land use had different values (higher

or lower than the majority) and were grouped in a different

cluster. Identifying the location of the sample, the cause of

displacement can be studied and can help to improve land

management practices.

Therefore, the cluster analysis is convenient to identify the

effect of different land use and management on soil prop-

erties and consequently on soil erosion. On the other hand,

the cluster analysis could support the delineation of zones

according to soil properties, and subsequently according to

erosion susceptibility, which could be used for site-specific

soil management recommendations.

4 Conclusions

This study demonstrated that the variability of soil proper-

ties and the K factor is associated with land use, cultural

practices (tillage type, fertilizer rates, conservation measures,

etc.) and local conditions (complex topographic landscape,

soil type, etc.). The K factor showed high correlation espe-

cially with organic matter, nitrogen, silt and very fine sand.

Soils with intensively cultivated land use, and consequently

with more tillage and irrigation, had lower organic matter and

lower nitrogen content. This translates into a lower cation

exchange capacity producing lower aggregate stability and,

consequently, an increase of the K factor.

Therefore, in the surrounding area of the Alqueva reser-

voir, the ongoing change in land use and soil management

practices can have a significant effect on chemical and physi-

cal soil properties. As a result, this affects the soil erodibility

index, intensifying the risk of erosion. The increase of soil

loss in the watershed might have a significant impact on a

reservoir’s ability to store water, reducing its lifespan.

Knowledge of soil spatial variability is fundamental for

environment management and can help in the sustainable use

of the resource soil. The prediction maps produced with geo-

statistics are an important monitoring tool, showing the exact

position in the field of the specific soil properties. The HJ-

Biplot methodology was demonstrated to be useful in gain-

ing a better understanding of how soils properties were cor-

related and allowed not only a determination of the behav-

ior by sample but also a conclusion as to which variable is

responsible for such behavior. The simultaneous use of HJ-

Biplot with geostatistics allows this information to be found

on the map, which has important theoretical and practical

significance for precision agriculture. Facing the intensifica-

tion of cultivation in the surrounding area of the reservoir,

site-specific soil management and careful land use planning

are needed to take into account the spatial variability of soil

properties, delineating management zones, variable fertiliza-

tion management, irrigation scheduling, conservation prac-

tices and other efforts.
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