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Abstract. Well water level changes associated with mag-

matic unrest can be interpreted as a result of pore pressure

changes in the aquifer due to crustal deformation, and so

could provide constraints on the subsurface processes caus-

ing this strain. We use finite element analysis to demonstrate

the response of aquifers to volumetric strain induced by pres-

surized magma reservoirs. Two different aquifers are invoked

– an unconsolidated pyroclastic deposit and a vesicular lava

flow – and embedded in an impermeable crust, overlying a

magma chamber. The time-dependent, fully coupled models

simulate crustal deformation accompanying chamber pres-

surization and the resulting hydraulic head changes as well

as flow through the porous aquifer, i.e. porous flow. The

simulated strain leads to centimetres (pyroclastic aquifer) to

metres (lava flow aquifer) of hydraulic head changes; both

strain and hydraulic head change with time due to substan-

tial porous flow in the hydrological system.

Well level changes are particularly sensitive to cham-

ber volume, shape and pressurization strength, followed by

aquifer permeability and the phase of the pore fluid. The

depths of chamber and aquifer, as well as the aquifer’s

Young’s modulus also have significant influence on the hy-

draulic head signal. While source characteristics, the distance

between chamber and aquifer and the elastic stratigraphy de-

termine the strain field and its partitioning, flow and coupling

parameters define how the aquifer responds to this strain and

how signals change with time.

We find that generic analytical models can fail to capture

the complex pre-eruptive subsurface mechanics leading to

strain-induced well level changes, due to aquifer pressure

changes being sensitive to chamber shape and lithological

heterogeneities. In addition, the presence of a pore fluid and

its flow have a significant influence on the strain signal in the

aquifer and are commonly neglected in analytical models.

These findings highlight the need for numerical models for

the interpretation of observed well level signals. However,

simulated water table changes do indeed mirror volumetric

strain, and wells are therefore a valuable addition to monitor-

ing systems that could provide important insights into pre-

eruptive dynamics.

1 Introduction

Pre-, syn- and post-eruptive changes in water levels have

been reported for several volcanoes (Newhall et al., 2001).

Many processes can lead to water level changes, including

meteorological influences (e.g. rainfall or barometric pres-

sure), the injection of magmatic fluids (e.g. suggested for

Campi Flegrei by Chiodini et al., 2012), the opening and

closing of fractures (e.g. proposed for Kilauea by Hurwitz

and Johnston, 2003) or heating of the aquifer (suggested for

Campi Flegrei by Gaeta et al., 1998).

Here, we focus on the very commonly suggested mech-

anism of strain-induced water level changes. Examples in-

clude well level changes of more than 9 m preceding the 2000

eruption of Usu volcano, Japan (Matsumoto et al., 2002) and

the water level rise of more than 85 m in a geothermal well at

Krafla volcano, Iceland, associated with a dyke intrusion in

1977 (Stefansson, 1981). The observations can be explained

by poroelasticity (Wang, 2000). Compression or dilatation of

an elastic porous medium leads to a decrease or an increase

in pore space, respectively, which in turn influences the pore

pressure and thereby the water level. Hence, measured well

level changes can be interpreted as strain-induced changes in

pore pressure in the aquifer due to crustal deformation. This
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is in line with observations of water level changes accom-

panying seismic events (e.g. Roeloffs, 1996; Jonsson et al.,

2003; Shibata et al., 2010) or crustal spreading, as observed

at the Juan de Fuca Ridge (Davis et al., 2001).

In volcanic environments, many processes can lead to sub-

stantial strain, including pressure changes in magma reser-

voirs and intruding dykes. Information about the local strain

field is therefore highly valuable for volcano monitoring and

eruption forecasting, as it could allow derivation of these sub-

surface magmatic processes (e.g. Voight et al., 2006; Linde

et al., 2010; Bonaccorso et al., 2012). However, strain data

are difficult to interpret and strainmeters are complex and

expensive installations. The described poroelastic relations

raise the question whether wells in aquifers can provide ad-

ditional information on the subsurface strain field and if we

could even use them as cheaper and somewhat simpler strain-

meters.

Previous studies have indeed utilized the poroelastic be-

haviour of aquifers to infer magmatic processes from ob-

served water level changes at volcanoes (e.g. Shibata and

Akita, 2001; Takahashi et al., 2012). A method of assess-

ing the strain sensitivity of an aquifer is to track water level

changes as a result of predictable excitations such as Earth

tides or measured barometric variations. The known strain

sensitivity is then used to derive volumetric strain from ob-

served water level changes during unrest, and combining this

with analytical deformation models such as the Mogi model

(Mogi, 1958), inferences can be made on magmatic drivers

behind the level changes.

However, oversimplification of the coupling between solid

and fluid mechanics may make these models inadequate.

An example is the 2000 Usu eruption (Matsumoto et al.,

2002), where pre-eruptive water table changes of several me-

tres were observed in two wells at different locations simul-

taneously with a radial ground deformation of about 2 cm

recorded about 8 km from the summit over the course of 2

weeks prior to the eruption. The water level changes were

interpreted as a result of this crustal deformation. However,

the two different wells apparently give inconsistent informa-

tion about the source of strain: only one of the two well level

changes agrees with the model proposed by Matsumoto et al.

(2002). In order to make reasonable monitoring interpreta-

tions based on well level data, we therefore need to improve

our understanding of how these hydrological signals are gen-

erated and identify the relative importance of the parameters

that affect them. Changes in the hydrological conditions in

volcanic areas are usually interpreted as a result of changes

in the magmatic system, but the effects of non-magmatic pa-

rameters on the pressure-response in the aquifer should also

be considered.

Analytical solutions exist for only a few comparatively

simple poroelastic problems (e.g. Rice and Cleary, 1976).

Numerical modelling of pressure changes in hydrological

systems has focused on pressure and temperature transients

in hydrothermal systems and resulting ground deformation

due to the injection of hot magmatic fluids, using one-way

coupling of solid deformation and porous flow (e.g. Tode-

sco et al., 2004; Hurwitz et al., 2007; Hutnak et al., 2009;

Rinaldi et al., 2010; Fournier and Chardot, 2012). Rutqvist

et al. (2002) have developed a two-way coupled code and

applied it to problems related to carbon dioxide injection in

aquifers and the disposal of nuclear waste in porous media.

Whether and how the pure deformational strain caused by

magma bodies would induce water level changes has not yet

been explored numerically. The full, two-way coupling of

fluid and solid mechanics required has so far been avoided in

volcanological applications, and so the effect of solid defor-

mation on pore pressure and porous flow has been neglected.

We investigate the phenomenon of poroelastic responses

to magmatic strain to better understand the hydrological sig-

nals one might observe in wells on a volcano before and dur-

ing eruptions. We assess to what extent confined aquifers can

serve as indicators of stress/strain partitioning in the shallow

crust due to reservoir pressure changes and therefore if they

could provide a tool to scrutinise pre-eruption processes.

2 Methods

Table 1 gives a list of all symbols used in this study.

2.1 Theory

We present a set of generic models using finite element anal-

ysis to perform parametric studies on several volcanic set-

tings with an inflating magma chamber affecting overlying

rock layers and hydrology. The models solve a series of con-

stitutive equations that result from the full coupling of contin-

uum mechanics equations for stress–strain relations of a lin-

ear elastic material with Darcy’s law and mass conservation

within the porous flow theory (for details see Biot, 1962;

Wang, 2000; COMSOL, 2013). The calculations are based

on the Navier equation for a solid:

−∇ · σ = F V , (1)

with σ being the stress tensor and F V a body force. Iner-

tia terms in the Navier equation are neglected as the solid

deformation is treated as quasi-static. The solid mechanics

equations assume linear elasticity and do not allow for ma-

terial failure, hence only work for sufficiently small strains.

The stress tensor σ is related to the strain tensor ε and the

pore pressure pf by a generalized Hooke’s law:

σ − σ0 = C : (ε− ε0)−αpfI. (2)

Here, C is the drained elasticity tensor and α is the Biot–

Willis coefficient. Strain is given through the displacement

vector (u):

ε =
1

2
[(∇u)T+∇u+ (∇u)T∇u]. (3)
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Table 1. Symbols.

b Vertical semi-axis of ellipsoidal chamber (m) εvol Volumetric strain (1)

C Drained elasticity tensor (Pa) κ Permeability of the aquifer (m2)

daq Aquifer thickness (m) µ Viscosity of pore fluid (Pas)

dc Cap rock thickness (m) νaq Drained Poisson’s ratio of the aquifer (1)

dist Distance aquifer – magma chamber (m) νc Poisson’s ratio of the cap rock (1)

distcflip dist-value that changes sign of strain in the aquifer (m) νh Poisson’s ratio of the host rock (1)

D Elevation (m) ρaq Drained density of the aquifer (kgm−3)

Eaq Drained Young’s modulus of the aquifer (Pa) ρc Density of the cap rock (kgm−3)

Ec Young’s modulus of the cap rock (Pa) ρf Density of pore fluid (kgm−3)

Eh Young’s modulus of the host rock (Pa) ρh Density of the host rock (kgm−3)

ERc Ratio of cap rock to aquifer stiffness (1) σ Stress tensor (Pa)

ERcflip ERc-value that changes sign of strain in the aquifer (1) 8 Porosity of the aquifer (1)

ERh Ratio of host rock to aquifer stiffness (1) χf Compressibility of pore fluid (Pa−1)

FV Body force (N)

g Acceleration of gravity (ms−2)

h Hydraulic head (m)

1h Hydraulic head change (m)

1href Hydraulic head change in reference simulation (m)

I Unity matrix (1)

K Drained bulk modulus of the aquifer (Pa)

L Radial distance domain centre – aquifer (m)

1P Magma chamber pressurization (Pa)

pf Fluid pore pressure (Pa)

Q Source/sink (kgm−3 s−1)

r Radius of the spherical magma chamber (m)

S Specific storage (Pa−1)

Tf Temperature of pore fluid (◦C)

t Time (s)

u Displacement (m)

V Magma chamber volume (m3)

v Fluid flow velocity (ms−1)

z z-coordinate (m)

zaq Depth of aquifer top (m)

zCH Depth of magma chamber top (m)

α Biot–Willis coefficient (1)

β Magma compressibility (Pa−1)

ε Strain (1)

Fluid flow is described by mass conservation

ρfS
∂pf

∂t
+∇ · (ρfv)=Q− ρfα

∂εvol

∂t
(4)

and Darcy’s law:

v =−
κ

µ
(∇pf+ ρfg∇D). (5)

Here, ρf is the fluid density, S is the specific storage, v is fluid

flow velocity, Q is a source/sink term, εvol is the volumetric

strain, κ is aquifer permeability, µ is water viscosity, ρf is

water density, g is acceleration of gravity, and D is eleva-

tion. The equations for fluid flow only consider single-phase,

single-component flow. The aquifer is considered to be fully

saturated and perfectly confined at all times.

In both Eqs. (2) and (4), the terms including the Biot–

Willis coefficient describe the coupling between solid de-

formation and fluid flow, which manifests in stress absorp-

tion by the fluid and pore pressure changes due to the

increase/decrease of pore space resulting from volumetric

changes of the porous medium. The coupling parameter α

is a measure of the strength of this coupling (with values

between the porosity of the medium and 1), and is defined

by the volume of fluid expelled from/sucked into a porous

medium when subject to volumetric change. Fluid mechani-

cal properties remain unchanged, including permeability and

porosity. The coupling is achieved solely by the pore pres-

sure and stress effects, as well as the expression for the spe-

cific storage, which includes elastic properties of both pore
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fluid and solid matrix:

S = φχf+
(α−φ)(1−α)

K
, (6)

with φ being the porosity of the medium, χf the fluid com-

pressibility, andK the drained bulk modulus of the solid ma-

trix.

This set of equations is solved for solid deformation (u)

and fluid pressure (pf) using the structural mechanics and

Darcy’s law modules of the finite element analysis soft-

ware package COMSOL Multiphysics, version 5.0. These

modules provide the equations for solid deformation and

fluid flow, respectively, and have been coupled by manu-

ally including the coupling terms in Eqs. (2) and (4) as de-

scribed above and appropriately defining the specific storage.

It should be noted that the readily provided poroelasticity

module (which applies the same equations) has been avoided,

as this causes problems when gravity is not neglected. In

the provided coupling, COMSOL treats solid and fluid as

one unit, meaning they compute the average density of the

porous domain and gravity then acts on this. This causes

downward displacement of the solid matrix and the gravity

part of Darcy’s law causes downward porous flow. While it

is possible to equilibrate this flow by initializing hydrostatic

pressure (using fluid density), this does not prevent the solid

displacement, as this needs to be balanced using initial litho-

static pressure (using average density). As one needs to use

different densities it is not possible to equilibrate flow and

displacement at the same time in this module when gravity is

turned on. In our solution, we switch on gravity only in the

Darcy’s law module, hence the solid matrix is not affected by

the gravitational stresses, and the fluid pressure is initialized

as hydrostatic. This way we can take flow following topo-

graphic gradients into account.

2.2 Model set-up

As a starting point to investigate hydrological responses

to magma chamber inflation, we build a 2-D-axisymmetric

model geometry in COMSOL Multiphysics following

Hickey and Gottsmann (2014), who provide guidelines for

volcano deformation modelling using finite element analy-

sis. The initial model consists of a linear elastic solid block

with an embedded spherical cavity, representing a magma

chamber at depth. This cavity is pressurized by applying

a boundary load, which is stepped up over 10−8 s. We as-

sume almost instantaneous pressurization for simplicity and

to more easily recognise the different influences of parame-

ters. Magma chamber pressurization can be generated by the

injection of fresh magma, vesiculation, thermal expansion of

the magma, melting of country rocks or volume changes dur-

ing crystallization (Fagents et al., 2013). Using the relation

for temperature-independent volume changes

1P =
1

β

1V

V
(7)

and assuming a magma compressibility of β = 10−11 Pa−1,

a pressurization of 10 MPa could correspond to a volume

change of 1V = 100 000m3. 1V is not simulated in the

presented models, as the magma chamber is represented by

a pressurized cavity. The volume change calculated with

Eq. (7) serves as a first order estimation and a guide to

corresponding magmatic processes. Note however, that this

equation does not account for several additional processes

and does not deliver a perfectly accurate volume change

of the source. The resulting deformation of the surround-

ing material is calculated by discretizing the model domain

to solve the constitutive equations for continuum mechanics

for stress–strain relations of a linear elastic material. Bound-

ary conditions are also taken from Hickey and Gottsmann

(2014): the Earth’s surface is treated as a free surface, the

bottom boundary is fixed and the lateral boundary has a roller

condition (free lateral, but no vertical displacement). We then

adapt this model set-up for our purposes by adding a shallow,

rectangular, poroelastic aquifer, which is saturated with wa-

ter. The internal boundary conditions bordering the aquifer

domain are (a) no flow and (b) continuous stress and dis-

placement. Note that changing the lateral aquifer boundary

condition to a fixed pressure instead of ”no flow”, hence al-

lowing water to leave or enter the domain, does not change

the results of this study. The initial pore pressure is set as hy-

drostatic: pf = ρfgz, with z being the depth coordinate. The

duration of the time-dependent simulation is 1000 days. We

solve the full set of coupled equations, giving solid displace-

ment u and fluid pore pressure pf. To demonstrate its mean-

ing for water table changes that could be observed during

volcanic unrest, we present all results as hydraulic head h,

which is proportional to pore pressure:

h=
pf

ρf ∗ g
− z. (8)

It represents the maximum water level change in a small

diameter well (ideally a piezometer) in a confined aquifer;

its initial value is 0 m. As a well moves with the ground,

we subtract the vertical ground displacement from this hy-

draulic head change prior to using the data in order to obtain

the relative water level change that would be measured in a

well. Note here that, when “initial” responses are shown, the

time referred to is 10−6 s. The final model set-up is shown

in Fig. 1; reference values of geometric parameters can be

found in Table 2.

The linear elastic material surrounding the magma cham-

ber, from here on called “host rock”, has elastic properties of

a general granitic crust. Depth- and temperature-dependent

changes of Young’s modulus of the crust are ignored for sim-

plicity. We chose a Young’s modulus of 30 GPa, representing

an average value for crustal rocks in arcs for depths up to

8 km as derived from seismic velocity data (Gottsmann and

Odbert, 2014). We test for two typical aquifer types found in

volcanic regions: unconsolidated pyroclastic deposits, com-

monly composed of coarse ash to fine lapilli sized clasts, and

Solid Earth, 6, 1207–1229, 2015 www.solid-earth.net/6/1207/2015/
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Table 2. Input parameters: reference values and ranges for parametric studies (where performed).

Parameter Reference value Range

Aquifer depth zaq 200 m 100–2200 m

Aquifer thickness daq 200 m 50–450 m

Chamber top depth zCH 3 km 2–5 km

Chamber radius (spherical) r 1 km 0.5–1.5 km

Distance chamber – aquifer dist 2.6 km 1.6–4.6 km

Vertical semi-axis b 1 km 0.25–2 km

Aquifer lateral onset L 0 km 0–8 km

Cap rock Young’s modulus Ec 70 MPa 0.01–10 GPa

Host rock Young’s modulus Eh 30 GPa 0.1–100 GPa

Aquifer Young’s modulus – pyroclastic Eaq 10 MPa 0.5–100 MPa

Aquifer Young’s modulus – lava flow Eaq 50 GPa 0.5–100 GPa

Cap rock Poisson’s ratio νc 0.45

Host rock Poisson’s ratio νh 0.25

Aquifer Poisson’s ratio – pyroclastic νaq 0.275 0.15–0.4

Aquifer Poisson’s ratio – lava flow νaq 0.225 0.1–0.35

Cap rock densityρc 1800 kgm−3

Host rock densityρh 2600 kgm−3

Aquifer density – pyroclastic ρaq 2000 kgm−3

Aquifer density – lava flow ρaq 2800 kgm−3

Aquifer permeability – pyroclastic κ 5× 10−11 m2 10−14 – 10−7 m2

Aquifer permeability – lava flow κ 5× 10−12 m2 10−14 – 10−9 m2

Aquifer porosity – pyroclastic φ 0.35

Aquifer porosity – lava flow φ 0.1

Biot–Willis coefficient – pyroclastic α 0.7 0.45–1

Biot–Willis coefficient – lava flow α 0.2 0.1–1

Water density ρf 1000 kgm−3 changed acc. to temperature

changes, see Table 3

Water viscosity µ 10−3 Pas changed acc. to temperature

changes, see Table 3

Water compressibility χf 4× 10−10 Pa−1 changed acc. to temperature

changes, see Table 3

Pressurization value 1P 10 MPa 1–100 MPa

vesicular basaltic lava flows. Vesicular here means a suffi-

ciently connected porosity of the lava to serve as an aquifer;

note that while the petrological porosity might be higher,

only the connected pores matter for the fluid flow. These two

types differ substantially in their elastic and fluid flow prop-

erties, which have significant influence on the observed sig-

nals. The layer above the aquifer, from here on called “cap

rock”, has elastic properties of a soft, impermeable clay. In-

put material properties for the reference simulation are given

in Table 2; we used medians of parameter ranges found in

the literature (Freeze and Cherry, 1979; Fetter, 1994; Wang,

2000; Gercek, 2007; Gudmundsson, 2011; Adam and Oth-

eim, 2013; Geotechdata.info, 2013). Note that elastic prop-

erties of poroelastic layers are always required to be the

drained parameters (i.e. measured under constant pore pres-

sure). However, very few data exist on poroelastic parameters

so we used the dry Young’s moduli and Poisson’s ratios in-

stead and increased respective ranges in parametric sweeps to

account for this unknown error. Some experimental data on

the elastic properties of porous volcanic rocks are provided

by Heap et al. (2014) for permeable tuff in the Neapolitan

area; they fall within the here explored range of parameters.

Within the different layers, material properties are consid-

ered isotropic and homogeneous. Standard water parameters

are also given in Table 2.

2.3 Parametric studies and sensitivity analysis

In the parametric studies we investigated the effects of mag-

matic source properties as well as poroelastic and geomet-

ric properties of the aquifer (Table 2). Ranges for material

properties of the aquifer were taken from literature (Freeze

and Cherry, 1979; Fetter, 1994; Wang, 2000; Gercek, 2007;

Gudmundsson, 2011; Adam and Otheim, 2013; Geotech-

data.info, 2013). Ranges for geometric parameters can of

course never cover the whole natural variation, we attempted

to cover a reasonable range to be able to make general

statements about the influence of certain parameters. A

www.solid-earth.net/6/1207/2015/ Solid Earth, 6, 1207–1229, 2015
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Table 3. Temperature dependent water properties for a pressure of 4.5 MPa (calculated using Verma, 2003).

Temperature Density ρf Viscosity µ Compressibility χf

(◦C) (kgm−3) (Pa s) (Pa−1)

10 1001.80 1.30× 10−3 4.73× 10−10

40 994.14 6.53× 10−4 4.37× 10−10

70 979.70 4.05× 10−4 4.46× 10−10

100 960.40 2.83× 10−4 4.83× 10−10

200 866.89 1.35× 10−4 8.64× 10−10

300 19.46 1.98× 10−5 2.60× 10−7

400 15.44 2.44× 10−5 2.38× 10−7

500 13.07 2.87× 10−5 2.31× 10−7

20
km

r

z C
H

20km

d aq

z aq

Host rock: Eh,νh,ρh

Aquifer: Eaq,νaq,ρaq,κ,φ,α,μf,χf,ρf,Tf

Cap rock: Ec,νc,ρc

ΔP

R
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le
r

free surface

fixed boundary
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f S
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m

et
ry

 L

b

Figure 1. 2-D axisymmetric model set-up: a boundary load 1P

is applied on a cavity at depth, with the radius r for the spherical

case or vertical semi-axis b for the ellipsoidal case, respectively.

This strains the surrounding linear elastic host rock (granitic crust),

the poroelastic aquifer and the overlying linear elastic cap rock

(clay). The water-saturated aquifer is modelled as either a vesicular

lava flow or unconsolidated pyroclasts. An aquifer not covering the

chamber but starting at some lateral distance L is realized by setting

the darker grey region impermeable. The bottom boundary is fixed,

the upper boundary is treated as a free surface, the lateral bound-

aries have a roller condition. There is no flow outside the aquifer;

stress and displacement at the internal boundaries are continuous.

An extract of the finite element mesh is shown only for illustration.

The mesh density is finer around the cavity, at aquifer boundaries

and the free surface.

non-geometric source property explored is its pressuriza-

tion strength, for which we investigated a range of 3 or-

ders of magnitude in an attempt to cover a sufficient range

to recognise general patterns. As mentioned above, instanta-

neous pressurization is assumed in the simulations for sim-

plicity, however chambers in reality will more likely pres-

surise over longer time periods. We therefore compare hy-

draulic head changes produced by the reference simulation

with the poroelastic response to a chamber that inflates over

100 days.

When sweeping over one parameter, all others are kept

constant. This entails that in all geometric sweeps, the dis-

tance between magma chamber top and aquifer was fixed,

except for the sweep over magma chamber depth because this

distance is such an important parameter it would have other-

wise overwhelmed the pure effects of, for example, aquifer

thickness. When investigating the effects of magma chamber

shape, we changed the vertical semi-axis b of an ellipsoidal

chamber, which then defines the horizontal semi-axis via the

constant chamber volume. Pore fluid (H2O) temperature was

effectively changed by varying its density, viscosity and com-

pressibility. We used the program provided by Verma (2003)

to calculate these parameters for varying temperatures and

a pressure of 4.5 MPa, which represents average lithostatic

pressure in the aquifer that was kept at 200 m depth (Table 3).

In a subset of simulations, the central portion of the aquifer

is replaced with an area of zero permeability out to a radial

distance L but with the same poroelastic properties as the

aquifer, to avoid numerical errors at the inner boundary of

the aquifer. Aquifer density and porosity have a negligible

influence and have not been included in the parametric study

results.

To investigate the importance of parameters on hydraulic

head change, we performed a sensitivity analysis. The in-

fluence of lateral distance L between magma chamber and

aquifer onset has not been included in this analysis due to

the lack of comparable signals (i.e. comparing the central hy-

draulic head change is not possible as the aquifer only starts

at some radial distance) – it will be discussed in detail later.

To assess the sensitivity of head changes to changes in in-

dividual parameter values, we compare the range of relative

hydraulic head change ( 1h
1href

) produced by varying the re-

spective parameter. To account for the change in time and

Solid Earth, 6, 1207–1229, 2015 www.solid-earth.net/6/1207/2015/
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Figure 2. Results of the reference simulation, shown as the initial (i.e. 10−6 s) hydraulic head change (blue, solid line) and volumetric strain

(red, dashed line) along profiles through the two aquifer types due to a magma chamber pressurization of 10 MPa. (a) pyroclastic aquifer, (b)

lava flow aquifer. Both aquifers show a fall in hydraulic head mirroring the dilatational strain curves.

space, this has been done for different locations in the model

domain and at different times during the simulation.

3 Results

3.1 Reference simulation

The described model was run for each aquifer type, using ref-

erence values of parameters given in Table 2, with a magma

chamber pressurization of 10 MPa. In both aquifer types, the

pressurization of the magma chamber induces a fall in hy-

draulic head, which is strongest directly above the magma

chamber and decreases with radial distance from the chamber

(Fig. 2). At distances larger than 5 km from the axis of sym-

metry – hereafter termed “centre” – the initial head change

is of opposite sign compared to the central areas, but the am-

plitude of the head rise here is small in comparison with the

central signal. There is also a comparatively small vertical

gradient in the hydraulic head values. Whilst the pattern of

the head change is the same in both aquifers, the absolute

value of the signal differs substantially. In the pyroclastic

aquifer, the maximum head fall is about 1.4 cm, while the

hydraulic head in the lava flow aquifer falls by a maximum

of 6 m. The initial hydraulic head change profile perfectly

mirrors the strain curves (Fig. 2), illustrating that strain is the

driver for the head changes. The aquifer is subject to dila-

tion (positive strain), with a maximum value centrally above

the chamber, which changes to compression (negative strain)

with radial distance. Like for the hydraulic head, the two

aquifers show similar patterns in strain, but different absolute

values. Maximum volumetric strain in the pyroclastic aquifer

is about 3 microstrain, while it is 13 microstrain in the lava

flow aquifer.

Figure 3 illustrates the fluid flow pattern in the simula-

tions, which are very different for the two different aquifer

types. In the pyroclastic aquifer, fluid flow is away from the

centre, while flow in the lava flow aquifer is towards the cen-

Table 4. Parameter groups definition for the ranking resulting from

sensitivity analysis.

Parameter h∗ = 1h
1href

Group

A h∗ ≥ 2.5

or h∗ ≤ −0.5

B 1.9< h∗< 2.5

or −0.5< h∗< 0.1

C 0.1≤ h∗ ≤ 1.9

tre. Despite its lower permeability, flow speeds are higher

by more than a factor of two in the lava flow aquifer - as

a result of the larger pressure gradient. Fluid flow is impor-

tant because it equilibrates pressure in the aquifer and is re-

sponsible for the changes of strain and hydraulic head sig-

nals with time. Figure 3 shows the change with time of hy-

draulic head and volumetric strain, respectively, in a point in

the aquifer centrally above the chamber. As water flows away

from the centre, hydraulic head continues to fall in the pyro-

clastic aquifer until it reaches an equilibrium value of about

−4 cm. Volumetric strain decreases and changes sign to com-

pression after about 10 days; this compression increases and

reaches an equilibrium value of about 10 microstrain. In the

lava flow aquifer, hydraulic head increases, also tending to-

wards an equilibrium value of about −4 cm with time; vol-

umetric strain increases and also evolves to an equilibrium

value. Whilst time-dependent changes take place almost until

the end of simulation duration (1000 days) in the pyroclastic

aquifer, the values in the lava flow aquifer reach equilibrium

after less than 10 days.

3.2 Sensitivity analysis

Figure 4 shows the range of relative hydraulic head change

( 1h
1href

) produced by varying individual parameters, demon-

strating the significant differences in the sensitivity of hy-
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Figure 3. Upper graphs: porous flow pattern shown for the reference simulation at t = 0.1 days. (a) pyroclastic aquifer, (b) lava flow aquifer.

Arrows indicate flow direction at the point where the arrow is attached, their length is proportional to flow velocity (note: different scales for

a and b), colours show velocity magnitude. Lower graphs show hydraulic head and strain development with time in the centre of the aquifers.

Note the different time scale – flow processes are faster in the lava flow aquifer.
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Figure 4. Exemplary plots used for the sensitivity analysis, show-

ing the influence of changing a parameter (whilst keeping all others

constant) on the central, initial hydraulic head change. (a) Pyroclas-

tic aquifer, (b) lava flow aquifer. Dashed lines/grey areas indicate

the priority bounds and groups that were used to rank parameters

according to their importance (Table 4). For specification of sym-

bols please refer to Table 1.

draulic head change to the different parameters. For both

aquifers, plots as shown in Fig. 4 were produced for four

different locations in the aquifer, respectively. As the influ-

ence of many parameters varies in time and space, the rank-

ing of parameters according to their significance is a two-step

procedure. First, three parameter groups A, B, and C are de-

fined based on the influence of a parameter on hydraulic head

change in one location at one of the three tested simulation

times (Table 4 and Fig. 4). Group A has the strongest influ-

ence on hydraulic head change, C the least. Parameters are

then ranked into four priority groups based on the number

of tested occasions (locations and simulation times) in which

they belong to a certain parameter group:

– priority 1 – parameters that belong to group A in≥ 85%

of tests;

– priority 2 – parameters that belong to group A in> 50%

of tests;

– priority 3 – parameters that belong to groups B or C

in ≥ 50% of tests, but belong to group C in < 85% of

tests;

– priority 4 – parameters that belong to group C in≥ 85%

of tests.

Following the definitions of the priority groups we can rank

the investigated parameters as follows:

– priority 1 – pressurization value, volume and aspect ra-

tio of the chamber;

– priority 2 – temperature of the pore fluid, permeability

and Biot–Willis coefficient of the aquifer;
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Figure 5. Influence of Young’s modulus and permeability of the aquifer on the central hydraulic head change and its evolution with time. (a)

Pyroclastic aquifer, (b) lava flow aquifer.

– priority 3 – chamber depth, aquifer depth and Young’s

modulus of the aquifer;

– priority 4 – Poisson’s ratio and thickness of the aquifer.

This ranking is, however, only a relative one – even those

parameters of the last priority group have a non-negligible in-

fluence on the resulting hydraulic head change. Furthermore,

the ranking of a parameter depends partly on the range of

values tested for that parameter. This is particularly impor-

tant in interpreting the sensitivity to the Biot–Willis coeffi-

cient (α). Due to the scarcity of experimental data for this

parameter, the sweeps in both aquifer cases were performed

almost over the whole mathematical range of α between the

porosity and 1. However, the true value of α for natural soft

rocks should be close to 1, while it is close to the porosity

for hard rocks. Therefore, although ranked here as priority 2,

in reality the Biot–Willis coefficient might belong in a lower

priority group. More information on the individual influence

of α can be found in Appendix A.

3.3 Results of parametric studies

The parametric sweeps provided a number of interesting in-

sights; we are focusing here on describing the most important

ones.

3.3.1 Influence of material properties

Of the aquifer’s elastic properties, namely the Poisson’s ratio

ν and the Young’s modulus Eaq, only the latter is signifi-

cant for the poroelastic response to applied strain. The most

important hydraulic property is the permeability κ . Figure 5

shows the influence of these two important material proper-

ties on the hydraulic head response and its change with time.

The initial hydraulic head change in an aquifer is identical

for different permeabilities, but can be changed by orders

of magnitude by changing the aquifer stiffness. For values

between 1 and 10 000 MPa, a higher Young’s modulus, i.e.

a stiffer aquifer, leads to a larger hydraulic head response.

However, this relationship is not monotonous as the head

response decreases again when increasing Eaq from 10 to

100 GPa (Fig. 5b). Note that, in the pyroclastic aquifer, a

change in flow behaviour can be seen when increasing the

stiffness: as long as Eaq is smaller or equal to 10 MPa, hy-

draulic head falls with time as it does in the reference sim-

ulation. When the stiffness is increased to 100 MPa, the hy-

draulic head behaviour with time is comparable to that in

the lava flow aquifer, where flow is towards the centre of the

domain; hence hydraulic head increases with time (Fig. 5a).

The permeability determines porous flow velocity and hence

how fast the hydraulic head signal changes with time. A

larger κ leads to a quicker change in head, visible for exam-

ple in Fig. 5a for Eaq = 100MPa: while the hydraulic head

signal after 1 day is still at the initial value for a permeabil-

ity of 10−14 m2, it is decreased by half for a permeability of

10−10 m2.

The non-monotonous influence of the Young’s modulus

stems from the fact that not only its absolute, but also its

value relative to the surrounding lithology is important. We

therefore also performed parametric sweeps over the Young’s

Moduli of the host and cap rock, Eh and Ec, respectively,

while Eaq is kept constant. The ratios of elastic properties of

the three rock layers are defined as

ERh =
Eh

Eaq

(9)

and

ERc =
Ec

Eaq

. (10)

Figure 6a and b show the hydraulic head change depending

on ERc for different ERh values. A larger ERh for a fixed Eaq

indicates a stiffer host rock and results in a smaller strain in

the aquifer and hence smaller hydraulic head change. The rel-

ative cap rock stiffness ERc has negligible influence when it

is small (generally: ERc < 0.1; for small ERh: ERc < 0.01).

However, it becomes increasingly important when the cap

rock stiffness is close to or larger than that of the aquifer

(ERc > 1): a stiff cap rock can decrease the hydraulic head
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Figure 6. Influence of the elastic stratigraphy on the central, initial hydraulic head change, shown using the ratios of Young’s Moduli

ERc =
Ec
Eaq

, and ERh =
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. (a) Pyroclastic aquifer, (b) lava flow aquifer. Also shown is the behaviour of central initial head change in the

pyroclastic aquifer with ERc for different distances between chamber and aquifer (c) and the behaviour of central initial head change in the

pyroclastic aquifer with ERc for different cap rock thicknesses (d).

change and even change its sign to a head rise. This “sign-

flipped” signal increases with larger ERc, as can be seen

for the pyroclastic aquifer for ERc values larger than 100

(Fig. 6a). For small ERh values, this effect of ERc already

takes place at ERc values larger than 0.1, visible for the

lava flow aquifer (Fig. 6b). When sweeping over the Young’s

modulus of the aquifer, these elastic ratios are changed as

well and contribute to the resulting head change which leads

to the non-monotonous influence of Eaq.

By sweeping ERc of the pyroclastic aquifer together with

sweeping other parameters, we found that the ERc value at

which the strain sign is flipped (“ERc flip”) is determined by

the geometry of the system, in particular by the distance be-

tween aquifer and magma chamber and the thickness of the

cap rock (Fig. 6c and d). The shorter the chamber-aquifer

distance and the thicker the cap rock layer, the smaller is

ERc flip.

The elastic stratigraphy determines the strain distribution

in the domain, visible in Fig. 7a that shows vertical strain

profiles from 2 km depth to the surface for different settings.

Strain in the host rock is larger in the pyroclastic reference

case – despite the fact that the same host rock is used in the

reference simulations, the Young’s modulus of the aquifer

hence also influences the strain in the underlying rock. The

graph also illustrates how strain changes at the boundary be-

tween different elastic mediums: strain increases when hit-

ting a stiffer medium and vice versa. ERh determines this

change at the host rock–aquifer boundary. In the reference

settings, ERh is larger for the pyroclastic aquifer, leading to

a smaller strain compared to the lava flow aquifer. The rela-

tive cap rock stiffness ERc then determines the strain change

at the aquifer–cap rock boundary, but it also influences the

strain change at the aquifer–host rock boundary. Figure 7a

shows the strain profile for a simulation with a sufficiently

large ERc to flip the sign of the signal. This change in sign

is due to the strain jump at the host rock–aquifer boundary,

where the dilatational strain in the host rock is turned into

compression in the aquifer in the sign-flipped case.

Figure 7b shows the hydraulic head change along a hori-

zontal profile in an aquifer with a sign-flipped signal. In con-

trast to the reference case, the central head change here is

positive and changes sign twice: at about 3 km radial distance

to a fall, and again at about 6 km to a head rise – mirroring

sign-flipped volumetric strain.

It is common that aquifers are heated in volcanic settings.

Figure 8 shows the substantial influence of changing the pore

fluid temperature on the initial hydraulic head change and its

evolution with time, especially when temperatures are above

the pressure-dependent boiling point and the aquifer pores

are no longer filled with liquid water, but steam. With in-

creasing temperature of liquid water, the initial hydraulic

head change is reduced in the lava flow aquifer, whereas it

is very slightly increased in the pyroclastic aquifer (Fig. 8).

For steam-filled pores (above 300 ◦C), the initial central hy-

draulic head change in the pyroclastic aquifer is 1 order of

magnitude larger than for liquid water – in the lava flow
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Figure 8. Central hydraulic head change and its evolution with time for different pore fluid temperatures. (a) pyroclastic aquifer, (b) lava

flow aquifer.

aquifer the opposite relation is true. Interestingly, the order

of magnitude of hydraulic head change is the same in the two

different aquifer types when steam saturated, while there is

a 2 order of magnitude difference in the signals for the water

saturated aquifers. In both aquifers, hydraulic head change

increases with increasing temperature of the steam. Flow ve-

locities are up to 1 order of magnitude faster in steam satu-

rated pyroclastic aquifers when compared to water aquifers

– lava flow aquifers show 1 order of magnitude higher flow

velocities when saturated with water. Additionally, a change

in flow behaviour is visible when conditions in the pyroclas-

tic aquifer are changed: in a steam aquifer, hydraulic head

increases with time, while it falls in the water-aquifer.

3.3.2 Influence of the geometry

To demonstrate combined geometric effects we plot the cen-

tral initial hydraulic head change vs. the distance between

magma chamber and aquifer for different chamber radii and

absolute chamber depths in Fig. 9. The larger the chamber

radius the larger is the resulting hydraulic head change in

the aquifers. For the lava flow aquifer, the absolute magma

chamber depth has no influence on hydraulic head change as

long as the distance between aquifer and magma chamber is

constant. The smaller this distance, the larger is the corre-

sponding hydraulic head fall.

This relation is somewhat more complicated for the py-

roclastic aquifers, where hydraulic head depends on the dis-

tance between chamber and aquifer but also on the chamber

depth. The central hydraulic head in the pyroclastic aquifers

(Fig. 9a) is positive (hence sign-flipped) for a sufficiently

small distance between aquifer and chamber, then switches

sign to a head fall at a value distflip, which increases with fur-

ther increasing distance. The value distflip is larger, the deeper

the chamber. For a constant distance, hydraulic head change

is larger for deeper chambers, if hydraulic head change is

positive. Extrapolating the curves shows that if the hydraulic

head change is negative, it is larger for shallower chambers.

Normally, the maximum hydraulic head fall is directly

above the chamber. However, when considering a hydraulic

head profile through the pyroclastic aquifer for a shallow

magma chamber without a sign-flipped strain (e.g. zCH =

www.solid-earth.net/6/1207/2015/ Solid Earth, 6, 1207–1229, 2015
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Figure 10. Influence of changing the aspect ratio of a spheroidal chamber (with constant zCH and V ) on the initial hydraulic head change

profile through the aquifer. Oblate shapes have b < 1000 m, prolate chambers correspond to b > 1000 m. (a) pyroclastic aquifer, (b) lava flow

aquifer.

1km and zaq = 200 m, see Appendix B), the maximum head

change is no longer central but laterally offset by up to 1 km.

We also evaluated the influence of the shape of the magma

chamber by incorporating tests for a prolate and oblate

spheroid. Although chamber volumes are constant, the shape

can change the hydraulic head signal by 1 order of magni-

tude. Figure 10 shows that the amplitude is highest for oblate

chambers, intermediate for a sphere and smallest for prolate

chambers.

Instead of having an “infinite” aquifer covering the whole

volcano, we also varied the lateral distance L between the

centre of the model and the onset of the aquifer, realized

by a zero permeability zone in the centre of the domain

(compare Fig. 1). The initial hydraulic head in these shorter

aquifers equals the respective value at the same location in

the reference aquifer. After some time, however, the head

signal in the shorter aquifer differs from the reference case.

Figure 11 shows the head changes after 10 days of simula-

tion in the pyroclastic aquifer and after 1 day in the lava flow

aquifer, respectively (the different timescales were used to

account for the faster processes in the latter case). Compared

to the profile of hydraulic head in the reference simulation,

the maximum hydraulic head fall after this time (at the re-

spective locations) in aquifers starting at 2 km radial distance

is about 50 % larger in the pyroclastic aquifer and about 50 %

smaller in the lava flow aquifer. This difference is strongest

close to the lateral aquifer boundary facing the domain cen-

tre, where head falls are largest – with radial distance, the

head change profile of the shorter aquifer approximates the

reference profile. In the pyroclastic aquifer the difference be-

tween reference and shorter aquifer is negligible after the first

kilometre, while in the lava flow aquifers head values differ

considerably from each other over longer distances.

For larger values of L, the pyroclastic aquifers also differ

in a comparable manner from the reference case, but become

indistinguishable on the centimetre scale at distances larger

than 6 km. Lava flow aquifers starting at 4 km or further ra-

dial distance are all significantly different from the reference

case as they show positive head changes (up to 10 cm), while

the reference aquifer at this time shows negative values ev-

erywhere less than about 10 km radial distance from the cen-

tre.

Figure 12 shows the different flow patterns in the first

8 km of three different aquifers after 0.1 days of simulation.
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Figure 12. Influence of lateral distance L between chamber and aquifer on the flow pattern in the aquifers, here shown for t = 0.1 d for

the first 8 km of each aquifer. (a) pyroclastic aquifer, (b) lava flow aquifer. Arrows indicate flow direction at the point where the arrow is

attached, their length is proportional to flow velocity (different scales for a and b), colours show velocity magnitudes. Note that arrows are

upscaled for better visibility; therefore, they cross the upper aquifer boundary. However, this is only a plotting effect, there is no flow leaving

the aquifer.

For L= 2km, the aquifer shows a flow pattern similar to

the reference simulation, although flow in the pyroclastic

aquifer shows an upward component that is absent in the ref-

erence simulation. This component vanishes at later simula-

tion times: after 1 day, flow is horizontal. For L= 6km and

L= 8km, flow in the pyroclastic aquifer has a downward

component, which is slightly stronger for the larger L and

also vanishes at later simulation times. Two flow directions

can be observed in the lava flow aquifer for L= 6km – one

towards and one away from the volcano. At later simulation

times, the flow towards the volcano diminishes and then all

flow is away from the centre of the domain. For L= 8km,

flow in the lava flow is completely reversed compared to the

reference case: instead of flowing towards the centre, water

flows away from it. Flow velocities are generally slower in

the shorter aquifers (i.e. for larger values of L).

3.3.3 Influence of source pressurization

The initial hydraulic head response linearly depends on pres-

surization strength of the source. We assumed instantaneous

pressurization for simplicity; however, real magma chambers

will more likely inflate over longer time periods. In Fig. 13

we compare central hydraulic head evolution due to instan-

taneous pressurization with hydraulic head evolution due to

a pressurization that is stepped up over 100 days (reaching

the same maximum pressurization value). In this simulation,

hydraulic head in the pyroclastic aquifer decreases more or

less in parallel to the increase of chamber pressurization, un-

til it reaches its maximum fall after 100 days. The maximum

fall and its further development with time is not distinguish-

able from the hydraulic head evolution in the reference sim-

ulation at the respective time. Hydraulic head change in the

lava flow aquifer at first also falls more or less in parallel
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Figure 13. Comparison of the development of central hydraulic change with time due to an instantaneous chamber pressurization and a

pressurization over 100 d (with the same maximum pressurization value). (a) Pyroclastic aquifer, (b) lava flow aquifer. Inlet in (a) shows how

the pressurization is stepped up over time.

with the increase of chamber pressurization, but reaches its

maximum earlier at about 50 days, when pressurization slows

down (due to the definition of the step function; compare in-

let in Fig. 13a). This maximum fall of about 8 cm is signifi-

cantly smaller than the maximum (initial) fall in the reference

simulation of about 6 m. Note though that the hydraulic head

in the reference simulation is already equilibrated to −4 cm

at 50 days. After reaching its maximum, the hydraulic head

fall decreases and reaches approximately the same equilib-

rium value as the reference simulation when stepping up of

pressurization is complete.

4 Discussion and implications

4.1 Model limitations

In order to investigate poroelastic aquifer responses to

crustal deformation, we made some simplifying assump-

tions. For one, the presented models only consider single-

phase, single-component flow under constant temperature

conditions. However, our parametric studies have shown that

the pore fluid properties significantly influence the resulting

head changes. Hydrothermal systems can contain steam, wa-

ter and a number of solutes, and temperatures can change

substantially. This can also affect the solid matrix, as its

mechanical behaviour may deviate from elastic when it is

sufficiently heated. Additionally, the injection of hydrother-

mal fluids into the aquifer can lead to a pore pressure in-

crease, heating and further deformation (see e.g. Fournier

and Chardot (2012) for a one-way-coupled model). We fo-

cused on the pure poroelastic response, but the poroelastic,

heating and phase change processes superimpose.

Secondly, the aquifer was fully saturated and confined.

To keep this study feasible, we did not investigate uncon-

fined aquifers as this would imply a non-saturated perme-

able zone, and the coupling of linear elastic behaviour with

non-saturated porous flow is associated with a high computa-

tional effort and often the solvers fail to converge due to the

high nonlinearity of the problem. The model also ignores any

hydrological sources and sinks, such as meteoric recharge,

which can significantly influence well level observations in

reality.

The discussed models are most applicable to confined

aquifers that do not undergo extensive heating during the ob-

servation period (e.g. aquifers at some distance of the vol-

canic centre). They present a good opportunity to better un-

derstand poroelastic aquifer responses that have been used

for monitoring. Their advantage over previous models is the

full two-way coupling of flow and linear elastic behaviour

and that we are able to simulate various geometries. The

comparatively short computation time (on the order of 10

to 15 min per simulation depending on geometric complex-

ity and number of necessary time steps) allows the study of

a large number of parameters and their influence on hydraulic

head changes and flow pattern.

4.2 General aspects

Our simulations show that neither injections of fluids nor

flow within a fracture – hereafter termed “fracture flow” –

is needed to induce hydraulic head changes of several me-

tres in an aquifer. Volumetric strain induced by a quasi-

instantaneous magma chamber pressurization causes imme-

diate hydraulic head changes in local aquifers. Dilation above

the chamber, due to ground uplift, leads to a fall in pore

pressure, while the accompanying compression at more than

5 km distance from the centre of the uplift induces a head

rise. Poroelastic processes are therefore a reasonable ap-

proach to interpret rapid and large water level changes ob-

served at volcanoes and they should not be ignored when

studying hydrological systems in volcanic areas. For the

same source and model geometry we could observe large

differences between the two typical aquifer types. These dif-

ferences are mainly due to the different elastic properties of

the aquifers: the pyroclastic aquifer is much softer than the

lava flow aquifer and therefore strain attenuation is stronger,

hence the resulting hydraulic head change is smaller.
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Both the strain-induced pressure gradient in the aquifers

and the topographic gradient due to the ground uplift in-

duce porous flow; groundwater flows from larger to smaller

pressure/hydraulic head and from higher to lower elevation

(Eq. 5). The chamber pressurization in our reference simula-

tion leads to a central ground uplift of about 4 cm, leading to

a topographic gradient that is opposing the pressure gradient

induced by the strain: the topographic gradient points away

from the centre, while the pressure gradient points towards

the centre. As the hydraulic head change in the pyroclastic

aquifer is smaller than this uplift, gravitational flow domi-

nates over strain-induced flow, and hence fluid flow is away

from the centre. In the lava flow aquifer, strain-induced hy-

draulic head changes are two orders of magnitude larger than

the topographic change; therefore flow in this aquifer is to-

wards the centre, following the dominant pressure gradient.

Despite its lower permeability, the lava flow aquifer shows

higher flow velocities, as the strain-induced pressure gradient

in this stiffer aquifer is large enough to overcome not only the

topographic change but also the difference in permeability.

Fluid flow leads to the changes of strain and hydraulic

head signals with time. Hydraulic head continues to fall in

the pyroclastic aquifer as water flows away from the cen-

tre, while the opposite flow direction in the lava flow aquifer

leads to a decrease of the initial hydraulic head fall with time

(i.e. head increases). In both aquifers the equilibrium hy-

draulic head is approximately balancing the change in eleva-

tion (about 4 cm in the centre), as this is the equilibrated wa-

ter level signal that would be recorded in the well that moved

upwards with the ground. When the Young’s modulus of the

pyroclastic aquifer is sufficiently high (Fig. 5), the poroe-

lastic response of this aquifer also becomes large enough

to overcome the topographic gradient; hence the flow pat-

tern changes to flow towards the volcano, causing hydraulic

head in the centre to increase with time. These considerations

show how the entire process is mostly governed by the elastic

properties of the aquifer, not its hydraulic properties.

Strain changes simultaneously with hydraulic head due to

the poroelastic nature of the aquifers. As water flows away,

the pyroclastic aquifer responds to the removal of pore fluid

with compaction – explaining the change of strain from di-

lation to compaction. The volumetric strain increase in the

lava flow aquifer stems from the initial stress absorption by

the pore fluid (final term in Eq. 2), which manifests as the

pore pressure change. With equilibration of the pressure in

the aquifer this stress absorption effect vanishes and strain

approximates an equilibrium value that represents the strain

value in an elastically equivalent, but dry material. Here,

stress absorption of the fluid leads to an initial strain reduc-

tion by about 15 %; this value can be increased by increasing

the Biot–Willis coefficient.

As pointed out by, for example, Rice and Cleary (1976),

the initial elastic response (i.e. instantaneous deformation)

of a porous medium can be calculated with the pure elastic

solution by using undrained elastic parameters in the stress–

strain relations. Indeed, the initial strain results of our poroe-

lastic simulations agree with solutions calculated with just

the structural mechanics module applying undrained param-

eters, which can be derived from the drained parameters with

the Biot–Willis coefficient. However, the equilibrium strain

signal in the aquifers does not correspond to the elastic so-

lution calculated with drained parameters, except when one

ignores gravitational flow, as flow down the slopes of the up-

lifted volcano adds strain changes that are not taken into ac-

count by purely elastic formulations.

The above findings highlight the necessity of a full cou-

pling of fluid and solid mechanics. Both the effect of ground

deformation on the pore fluid, as well as the influence of

a pore fluid on strain in the solid matrix need to be considered

to fully understand well level and/or strain signals.

Parametric studies have shown that poroelastic aquifer re-

sponses are complex processes that are strongly influenced

by source, geometrical and aquifer parameters as well as the

elastic stratigraphy. Chamber radius and pressurization de-

termine the strength of the deformation source and the sub-

surface strain it causes. Strain partitioning in the crust is reg-

ulated by the elastic properties of the different layers; both

the absolute and relative elastic properties of the aquifer and

its surrounding lithology have a complex influence on the

strain and head signals. A special case occurs when the cap

rock is sufficiently stronger than the aquifer. A stiff cap rock

prevents the dilation of the aquifer and turns the strain into

compression, hence causing sign-flipped signals. In the ref-

erence set-up, the cap rock needs to be 2 orders of magnitude

stiffer than the aquifer; this could be fulfilled if an unconsol-

idated, permeable pyroclastic layer is overlain by a lava flow.

But other, perhaps more common, geological settings exist

in which a sign-flipped response can be expected, as the ge-

ometry plays an important role as well: the thicker the cap

rock, the smaller is the necessary ratio of cap rock to aquifer

stiffness to change the sign of strain. For example, a cap rock

that is only 3 times stiffer than the aquifer can already lead to

a sign-flip if the aquifer is about 1 km deep. For our reference

pyroclastic aquifer, this means a cap layer with a stiffness of

more than 30 MPa, such as another pyroclastic layer that is

slightly stiffer (e.g. due to a different lithology, rate of con-

solidation or grain size distribution) – a situation particularly

feasible at stratovolcanoes.

The subsurface stress and strain fields are also substan-

tially dependent on the shape of the chamber. For oblate

chambers, the aquifer area that is exposed to vertical stress

is larger than for prolate chambers and it is therefore sub-

ject to stronger strain. Additionally, the centre of the oblate

chambers is shallower than the centre of the prolate chambers

(as the depth of the chamber top is fixed in the simulations).

The distance between aquifer and magma chamber is another

factor contributing to the strength of the strain field affecting

the aquifer. Generally, the closer the aquifer to the source, the

stronger the strain and hence its pressure response. However,

if elastic properties are close to values causing a sign-flipped
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signal, i.e. if the aquifer is rather soft, a sufficiently close

aquifer-source distance can lead to a sign-flipped strain (be-

cause ERc flip is changed) and hence sign-flipped hydraulic

head change in the aquifer.

The elastic properties of the solid matrix as well as the

pore fluid together with the Biot–Willis coefficient of the

aquifer determine the initial pressure response of the aquifer

to the strain. Permeability then determines the velocity of

pressure equilibration and gravitational flow and therefore

the development of head and strain signals with time. Of

particular interest is the influence of pore fluid tempera-

ture. It can change the hydraulic head response by 1 or-

der of magnitude as well as influence the flow behaviour

in the aquifer. This is especially important in volcanic envi-

ronments, where heat flow is high and therefore temperature

changes are likely. Changing the temperature means chang-

ing compressibility, density and viscosity of the water. We at-

tempted to distinguish their individual influence with simula-

tions in which only one of the three parameters was changed

to a value corresponding to steam, while the others were kept

at values corresponding to water. The viscosity does not in-

fluence the initial head fall, but affects the speed of equili-

bration, which is slower for a liquid water viscosity than for

a lower steam viscosity (compare Eq. 5). Changing the phase

of the pore fluid does not have this straightforward effect

however, as flow velocities are also determined by the ini-

tial pressure gradients. These are influenced by fluid density

and compressibility: decreasing the density of the pore fluid

increases the initial hydraulic head change, while increasing

the compressibility decreases it. At higher temperatures high

enough for a phase change from liquid to steam, fluid density

is reduced, while its compressibility rises. We therefore see a

complex combination of these two effects. In the pyroclastic

aquifer, the density effect dominates (hence hydraulic head

change is larger), while in the lava flow aquifer the com-

pressibility effect is more important (hence hydraulic head

change is smaller). The stronger initial hydraulic head fall in

the steam saturated pyroclastic aquifer is then large enough to

overcome the topographic gradient, such that flow is towards

the volcano. Therefore, as opposed to the reference simula-

tion, the initial fall in hydraulic head diminishes with time

in the soft aquifer just as it does in the stiffer aquifers. Hy-

draulic head falls in the lava flow and pyroclastic aquifers are

of the same order of magnitude when saturated with steam,

suggesting that the elastic properties of the solid matrix are

less important and the processes are now governed by the

fluid properties. While we investigated the temperature ef-

fect, other processes could also change pore fluid properties,

such as dissolved minerals, and thereby play a role in deter-

mining the hydraulic head change.

Porous flow in the lava flow aquifer and therefore evo-

lution of signals with time is also significantly influenced

by the lateral distance between the magma chamber and the

aquifer, even though initial hydraulic head values at respec-

tive locations are the same. For L= 2km, i.e. in an aquifer

that starts at 2 km radial distance from the centre, hydraulic

head is up to 50 % smaller than the reference value (where

L= 0km). This effect is due to locally faster flow in the

shorter aquifer. The positive hydraulic head changes in the

lava flow aquifers starting at distances larger than 4 km are

due to very different flow processes caused by changed ini-

tial pressure gradients. Generally, the initial hydraulic head is

negative in the first 5 km of lateral distance and is positive at

locations further from the centre; this pressure profile causes

flow towards the centre in the lava flow aquifer. However, if

the aquifer onset falls in the “positive head area”, the driving

pressure gradient and hence the flow direction are reversed.

For lava flow aquifers that onset near the transition zone, two

flow directions can be observed – one towards and one away

from the centre of the volcano. These two directions are due

to the maximum initial head change being not directly at,

but lateral offset from the lateral aquifer boundary. This can

be seen in the profile of the initial hydraulic head change in

the reference simulations: beyond 5 km from the centre, hy-

draulic head change first increases with distance before de-

creasing again. While this comparatively small gradient is

negligible in the reference simulation, as flow is dominated

by the much stronger gradient towards the centre, it matters

for flow in aquifers that start close to the transition zone from

positive to negative strain – at least early in the simulation.

Horizontal flow directions in the softer pyroclastic aquifers

are not affected by the changed initial strain and head gradi-

ent for different L, as flow is dominated by the topographic

gradient, which still points away from the volcano. How-

ever, the vertical component of flow changes. In the reference

simulation, the vertical gradient in hydraulic head change is

overwhelmed by the horizontal gradient; hence lateral flow

is dominant. In the shorter aquifers (i.e. with larger L val-

ues), the vertical gradients become more important and lead

to up- or downward components of flow, respectively. That

hydraulic head changes are up to 50 % larger close to the

lateral boundary of the shorter pyroclastic aquifers than in

the reference aquifer is due to the difference in mechani-

cal properties of the central, impermeable portion and the

outer permeable portion of the aquifer. While initially elas-

tically equivalent, the change of head and strain with time

due to porous flow in the outer aquifer leads to a mechan-

ical boundary at the lateral aquifer onset. Especially in the

pyroclastic aquifer, where strain undergoes significant flow-

induced changes, this discontinuity in strain, head and flow

is hard to simulate (compare Fig. C1a) and hence numeri-

cal signals close to this boundary should be interpreted with

caution. The strain discontinuity is negligible in the lava flow

aquifer, where strain does not change much with flow (com-

pare Fig. C1b).

We only briefly studied the effect of long-term infla-

tion, but results show that the time scale of pressurization

is non-negligible as flow processes act simultaneously with

the response to increased pressurization and can signifi-

cantly change the signals. While hydraulic head responses
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in soft aquifers, where flow mostly follows the topographic

changes, are comparable to instantaneous pressurization, the

hydraulic head signals in stiffer, strain-dominated aquifers

are reduced as the flow quickly equilibrates strain-induced

pressure changes. Flow works against the increased pressur-

ization and the rate of change of inflation determines which

effect dominates, i.e. whether hydraulic head continues to fall

(pressurization dominates) or starts to reach its equilibrium

value (flow dominates).

4.3 Implications for volcano monitoring

4.3.1 General considerations

We have shown that wells can reflect the deformation at

volcanoes, suggesting that their implementation in volcano

monitoring systems could provide insights into subsurface

processes causing the strain. However, prior to the inter-

pretation of well signals, one needs to carefully consider

that water levels can also be changed by several other pro-

cesses, e.g. meteorological influences (rainfall), hydrother-

mal fluid injection, heat transferred conductively through the

crust or changes in flow conditions due to the opening or

closure of fractures. These processes can also act simulta-

neously and overcome hydraulic head changes caused by a

poroelastic response. Under certain circumstances the differ-

ent processes can be distinguished. First, the general hydro-

logical behaviour – i.e. the meteorological responses – and

up-to-date meteorological information should be tracked and

therefore be reasonably well known if wells are to be in-

cluded in a monitoring system. Then, a water level response

to strain will be a transient signal on top of the background

behaviour. Well level monitoring can form an important com-

ponent for volcano monitoring in conjunction with geophys-

ical or geochemical observations to track magma reservoir

evolution. For example, ground deformation data will be use-

ful for identifying hydrothermal injections. When hydrother-

mal fluids from a magma reservoir are injected into sur-

rounding rocks, hydraulic head in the hydrothermal systems

will rise and the ground will be uplifted (e.g. Todesco et al.,

2004; Hurwitz et al., 2007; Rinaldi et al., 2010; Fournier and

Chardot, 2012), while strain due to chamber inflation gen-

erally leads to a water level fall together with ground up-

lift. Temperature sensors in monitoring wells provide addi-

tional valuable information, as hydrothermal fluid injections

should lead to relatively fast temperature effects compared to

heat transferred from an inflating chamber or a dyke intrud-

ing through the crust, which would reach the aquifer much

later – in fact, after the poroelastic response is already equili-

brated. More complicated is the recognition of fracture flow.

A hydraulic head change caused by rapid volumetric strain-

ing may be distinguished from flow-induced changes on the

basis of timescales of the changes: the pore pressure response

to strain is instantaneous, flow processes are slower. How-

ever, a gradual evolution of volumetric strain (see Fig. 13)

will result in a slow hydraulic head response. Again, the

combination with other monitoring data will help constrain

the strain rate to distinguish between reservoir induced level

changes from those by fluid flow.

Our parametric studies show how poroelastic aquifer re-

sponses are influenced by a variety of source, geometrical

and aquifer parameters, which each have the potential to sig-

nificantly alter the signal amplitude and development with

time and space making the poroelastic processes highly com-

plex. Consequently, a change in any of these parameters

could lead to a change in an observed hydraulic head. In ad-

dition, the porous flow alters the initial hydraulic head signal

with time. Therefore, not all observed aquifer pressure tran-

sients are necessarily related to a change in the magmatic

system, which needs to be carefully considered when inter-

preting observed water level changes.

Yet another limitation lies in the fact that chamber inflation

generally is not instantaneous. As the focus of this study was

to identify the different influences of model parameters on

hydraulic head signals, we assumed instantaneous pressur-

ization for simplicity. However, it is clear that the analysis of

signals during long-term inflation is even more complicated

as one needs to decipher flow and inflation effects – again

emphasizing that well data should ideally only be used in

conjunction with surface deformation data.

4.3.2 Strain sensitivity and fluid flow

If the level changes are thought to be caused by strain, our

models suggest that volumetric strain in the aquifer can be

directly inferred from measured water level changes, as the

simulated initial hydraulic head change perfectly mirrors the

strain. This requires a known strain sensitivity, the change of

hydraulic head in the aquifer in metres per unit applied strain,

which can be assessed by tracking water level changes as a

result of predictable excitations. Figure 14 shows the theoret-

ical strain sensitivity of the two aquifers used in the reference

simulation, determined by dividing the simulated hydraulic

head change by the volumetric strain. This has been done

along profiles through the aquifers. The very small strain and

head values close to the transition zone from dilatational to

compressional strain lead to numerical errors in the deter-

mined strain sensitivities in these locations (which can be

reduced by increasing the mesh density), but in general we

calculate a consistent value. Strain sensitivity of the pyro-

clastic aquifer is about −5×103 m; the lava flow aquifer has

a strain sensitivity about 2 orders of magnitude larger.

However, the influence of flow on strain sensitivity is prob-

lematic; Fig. 15 shows how the theoretically calculated strain

sensitivity changes with time: in the pyroclastic aquifer it

quickly increases to about −250× 103 m before it changes

sign to a value of about 100× 103 m, followed by a de-

crease – due to the change of strain from dilation to com-

pression associated with the removal of pore fluid. In the lava

flow aquifer, strain sensitivity shows a decrease (approaching
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Figure 14. Strain sensitivity in the aquifers, determined by dividing simulated hydraulic head change by the volumetric strain, along a pro-

file through the aquifers. (a) Pyroclastic aquifer, (b) lava flow aquifer. Very small strains close to the transition zone from dilatational to

compressional strain lead to numerical errors (can be reduced with increasing mesh density).
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Figure 15. Strain sensitivity in the aquifers, determined at a point centrally above the chamber for different simulation times. (a) pyroclastic

aquifer, (b) lava flow aquifer. The value significantly changes with time, depending on flow processes in the aquifers.

zero), which is comparable to the decrease of the hydraulic

head change. Hence, the strain sensitivity value determined

from aquifer responses to known strains only provides accu-

rate strains when applied to the initial hydraulic head change,

as it does not take flow and resulting poroelastic processes

into account, and dense time series of well data (and ideally

simultaneously recorded ground deformation data) are nec-

essary to catch this response.

The better the local hydrology is known, the more value

lies in well monitoring. Our simulations show how different

soft and stiff aquifers behave in a strain field. Hence, knowl-

edge of the lithology and/or determination of the strain sen-

sitivity is important to discriminate between aquifer types. A

low sensitivity value would indicate an aquifer similar to the

presented pyroclastic example, which entails crucial infor-

mation: the topographic gradient due to ground deformation

can easily dominate over a strain-induced pressure gradient,

and if this is the case, dilatational strain will quickly change

to compression. Additionally, softer aquifers are more prone

to the sign-flip effect.

Information about flow in the aquifer is important and

the acquisition of permeability data, e.g. via pumping tests,

0 50 100 150 200 250 300−5

0

5

 

 

0 50 100 150 200 250 3003.5

4

4.5

Reference Caprock
Youngs modulus Caprock = 10GPa

Time (d)

Hy
dr

au
lic

 h
ea

d 
ch

an
ge

 (m
)

Su
rfa

ce
 D

is
pl

ac
em

en
t (

m
)

Figure 16. Central vertical surface deformation and hydraulic head

change with time for the pyroclastic aquifer overlain by different

cap rocks, showing the effect of a sign-flipped strain in comparison

to the reference case.

should be part of hydrological monitoring efforts as it can
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help decipher flow processes. While these tests usually pro-

vide only a local value, high-resolution time series of head

data can in fact provide information on the effective perme-

ability of the aquifers. If a poroelastic head response has been

identified, one can observe the equilibration of the pressure

change with time – giving information on groundwater flow

velocities. In any case, observing the flow behaviour in local

aquifers, by installing several observation wells, is a valuable

addition to existing monitoring efforts as they can reveal flow

patterns caused by head changes, be they strain-induced or

caused by other (volcanic) processes. Finally, it is important

to know aquifer geometry as the models show that the flow

pattern can strongly depend on the lateral distance from the

aquifer to the source.

4.3.3 Application of analytical volcano deformation

models

Even if strain sensitivity has been accurately used to infer

volumetric strain, we still face the problem of interpretation

of this signal. To invert for the source of volumetric strain,

analytical volcano deformation models can be applied. How-

ever, these models commonly assume a source in a homoge-

neous half space and some only consider spherical or point-

like chambers (e.g. Dzurisin, 2007, and references therein).

Additionally, all previous approaches to model the deforma-

tion due to reservoir inflation treated their data as a result of

dry deformation. Our results underline that any model using

these simplifications will likely be inadequate when used for

interpretation of poroelastic processes. Firstly, the assump-

tion of a spherical chamber is a likely source for substantial

mistakes and several chamber shapes have to be tested, as

chamber shape is one of the two most important parameters

influencing the signal. But even if chamber shape is taken

into account, the assumptions of a homogeneous half space

and dry deformation can lead to further misinterpretation.

The stress absorption of a pore fluid leads to a reduction

of initial strain in the aquifer when compared to an elasti-

cally equivalent dry layer. If the initial strain is used to infer

the magmatic source based on a model for dry deformation,

its strength can therefore be underestimated. “Dry” strain is

reached in the lava flow aquifer after porous flow has equili-

brated the strain-induced pressure gradient. So, this problem

could be solved when sufficiently dense time series of hy-

draulic head data are available: strain sensitivity can be com-

bined with the evolution of signals with time to infer initial

as well as equilibrium “dry” strain. In aquifers that are dom-

inated by the topographic gradient, the presence of the pore

fluid even leads to a reversal of dilatational to compressional

strain and the application of dry deformation models is not

possible.

The third assumption of a homogeneous half space is pre-

carious as volcanoes are strongly heterogeneous – several

previous studies have already shown that mechanical hetero-

geneities in the subsurface affect the ground deformation at

volcanoes (e.g. Folch and Gottsmann, 2006; Manconi et al.,

2007; Geyer and Gottsmann, 2010). Our investigation of the

elastic stratigraphy has shown that hydraulic head change

and consequently derived strain can also significantly deviate

from signals in a homogeneous crust. Especially in settings

with a sign-flipped signal, i.e. where the dilatational strain

in the aquifer is turned into compression by a stiff cap rock,

this influence becomes crucial. The hydraulic head rises and

hence interpretation of the hydraulic head data alone would

suggest a deflating chamber, while it is really inflating. We

simulated ground deformation signals with the aim of inves-

tigating whether they – if available – could aid with this prob-

lem. Figure 16 shows the central hydraulic head and surface

displacement signals with time for the pyroclastic aquifer

with two different cap rocks: a soft one (Ec = 70 MPa) and

a stiff one (Ec = 10 GPa). The latter leads to a change of sign

of the volumetric strain. The surface deformation however

does not change sign and shows inflation of the ground in

both cases and can hence be used to indicate that the strain in

the aquifer is sign-flipped.

The above considerations hint that the apparent inconsis-

tency of observed well data and model predictions in the

2000 Usu case (Matsumoto et al., 2002) probably stems from

the simplifications used in the applied Mogi model, which

assumes a spherical pressure source in a homogeneous, dry

half space.

In summary, while water level data can be a valuable addi-

tion to monitoring systems and give indications on subsur-

face strain, one needs to be careful when interpreting the

head as well as strain data. We need to take into account

that many parameters influence water level changes and that

most of the commonly used analytical dry deformation mod-

els might fail to explain them.

5 Conclusions

In this study we presented fully coupled numerical models to

investigate the interaction between solid mechanics and fluid

flow in porous media. We have shown that strain due to the

inflation of a magma chamber leads to significant hydraulic

head changes and porous flow in the local hydrology. The

flexibility of the finite element analysis method allowed us to

perform extensive parametric studies providing detailed in-

sights in these poroelastic processes. Parameters controlling

aquifer behaviour are in order of importance (i) the shape,

volume and pressurization strength of the magma chamber

(ii) the phase of the pore fluid and the permeability of the

aquifer (iii) chamber and aquifer depths and the aquifer’s

Young’s modulus. Magmatic source properties and the dis-

tance between chamber and aquifer determine the strain field;

strain partitioning is defined by the elastic stratigraphy of the

crust. Elastic and flow parameters of the aquifer define its re-

sponse to this strain and how head and strain signals change

with time due to porous flow.
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One aim of this study was to investigate the accuracy of

the method to combine strain sensitivities with deformation

models to interpret observed hydraulic head changes. Our

models show that volumetric strain in the aquifer can indeed

be inferred from hydraulic head changes using strain sen-

sitivities, under certain conditions. Firstly, other causes for

hydraulic head change have to be excluded, ideally by con-

sulting other monitoring systems. Dense time series of well

level data need to be acquired in order to account for flow

processes and to measure the initial hydraulic head change.

Additionally, we need to ensure that strain sensitivities have

been accurately determined and have not changed with time

due to changes in the hydrology.

However, using common analytical deformation models

for the interpretation of this strain information is problem-

atic, as several assumptions of these models can lead to

substantial misinterpretation. They are only applicable for

a comparatively homogeneous crust (i.e. Eaq ≈ Ec ≈ Eh),

when one either accounts for fluid-induced strain reduction

or considers an aquifer with very little strain reduction. The

shape of the chamber needs to be taken into account as well.

The hydraulic head signal is very sensitive to source vol-

ume, shape and pressurization value. This suggests that if

we have a detailed knowledge on the hydrology, some infor-

mation about the source can be gained from hydraulic head

changes – although solutions will always be non-unique.

Our analysis has shown the necessity of numerical models

to account for the large number of parameters that signifi-

cantly influence the results. Nevertheless, well water levels

and groundwater flow reflect subsurface strain and therefore

are a valuable complement to other monitoring systems.
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Appendix A: Biot–Willis coefficient

The influence of the Biot–Willis coefficient is quite com-

plex, as it defines the coupling terms in the constitutive equa-

tions and is involved in the definition of specific storage of

the aquifer as well. Figure A1 shows the effect of varying

the coupling parameter on the initial central hydraulic head

change for the two different aquifer types. In the pyroclastic

aquifer, the head fall first strongly decreases with increasing

α, then reaches a plateau at α = 0.8 before decreasing mini-

mally when approaching α = 1. In the lava flow aquifer, the

hydraulic head change is larger for larger α.
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Figure A1. Dependence of central, initial hydraulic head change

on the Biot–Willis coefficient. (a) pyroclastic aquifer (b) lava flow

aquifer.

The different dependence of 1h on α for the two aquifers

can be mathematically explained by considering an order of

magnitude analysis of the definition of the specific storage

(Eq. 6):

S = φχf+
(α−φ)(1−α)

K

= φχf+
(α−φ)(1−α)3(1− 2ν)

E

≈ 10−1
× 10−10

+
10−1
× (1−α)× 100

× 10−1

107

(for the pyroclastic aquifer)

= 10−11
+ 10−9

× (1−α).

So, in the pyroclastic aquifer for α ≤ 0.9, φχf is 1 order of

magnitude smaller than the right summand, which therefore

dominates the definition of S. For α approaching 1, both

terms become important. For the lava flow aquifer, E ≈ 1010

and therefore the right summand has the order of magnitude

10−11
× (1−α) and φχf is the dominating term in the def-

inition of S for all α. Therefore, in the pyroclastic aquifer,

changing α changes the coupling terms and the specific stor-

age, while in the lava flow aquifer changing α has almost no

effect on S.

Appendix B: Extra information on the influence of

chamber depth

For a shallow magma chamber, in a situation with no sign-

flipped strain, the maximum head change in the pyroclastic
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Figure B1. Hydraulic head change profile in the pyroclastic aquifer

for zCH = 1km.
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Figure C1. Volumetric strain after 1000 days along profiles through

the aquifers for the reference case in comparison to an aquifer with

a central impermeable portion out to a radial distance of 2 km. (a)

pyroclastic aquifer, (b) lava flow aquifer.

aquifer is no longer central, but laterally offset by up to 1 km

(shown for zCH = 1km and zaq = 200m in Fig. B1).

Appendix C: Strain discontinuity at the lateral aquifer

boundary

When the central portion of the aquifer is replaced with an

area of zero permeability, the change of head and strain with

time due to porous flow in the outer aquifer leads to a me-

chanical boundary at the lateral aquifer onset. Especially in

the pyroclastic aquifer, where strain undergoes significant

flow-induced changes, this leads to a discontinuity in strain

(Fig. C1).
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