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Strasbourg/EOST), 5 rue René Descartes, 67084 Strasbourg cedex, France
3Earth and Environment, LMU – University of Munich, Theresienstr. 41/III, 80333 Munich, Germany
4Rock and Ice Physics Laboratory, University College London, Gower Street WC1E 6BT London, UK

Correspondence to:S. Kolzenburg (skolzenburg@eos.ubc.ca)

Received: 3 March 2012 – Published in Solid Earth Discuss.: 7 March 2012
Revised: 13 June 2012 – Accepted: 15 June 2012 – Published: 12 July 2012

Abstract. Tuffisites, the products of subsurface fragmen-
tation, transport and deposition, are common in explosive
volcanic environments. Their study provides direct insight
to the mechanical processes operating within volcanic con-
duits. Here we document the influence of the presence of co-
herent tuffisite veins on the physical properties of andesitic
rocks. We find that (1) compressive strength is unaffected by
the presence and/or orientation of tuffisites, (2) permeability
doubles when tuffisites are oriented favorably (at 45◦ to the
fluid flow direction), and (3) ultrasonic wave velocities show
a continuous increase with depth, independent of vein pres-
ence and orientation. Although the influence of tuffisites on
andesitic rock properties determined here is modest, we em-
phasize that the material tested represents the post-eruptive
state of tuffisite. Thus, these results likely delineate the up-
per and lower boundaries of strength vs. permeability and
porosity, respectively. Our evidence suggests that, via com-
paction and lithification, tuffisites may restore the strength of
the volcanic host-rocks to that of their pre-tuffisite values.

1 Introduction

Tuffisites are common in exhumed volcanic environments
and may provide a direct record of the subsurface processes
operating in a conduit during explosive eruptions (Lavallée et
al., 2012a). Tuffisites have been reported for a wide range of
chemical compositions and diverse volcanic environments,
including basaltic diatremes (Cloos, 1941), andesitic fos-
sil conduits (Noguchi et al., 2008), and rhyolitic conduits

(Tuffen et al., 2003). They were first defined by Cloos (1941)
who described them as follows:

“The host rock seems tuffisized, i.e. infiltrated by the tuff
along its finest cracks and crevices and intimately mixed with
it.”...“Appearance and color of such mixed rock types “tuff-
isites” is governed by the nature of the host rock”... “All ob-
servations point towards this tuffisitation taking place during
the main phase of volcanism through penetration of gases
into the surrounding rock.”

This makes them inherently different from rocks occur-
ring within cataclastic shear zones enveloping lava domes
and spines, such as described at Mt. St. Helens, USA (Cash-
man et al., 2008; Kendrick et al., 2012; Kennedy et al., 2009)
and Mt. Unzen, Japan (Nakada et al., 1999). Key differences
include geometry and internal structures. Tuffisites create or
use pre-existing fracture networks producing an anastomos-
ing pattern of ash-filled veins (Stasiuk et al., 1996; Tuffen et
al., 2003), whereas shear zones tend to form linear, or in the
case of erupting lava spines, annular patterns (Cashman et
al., 2008; Friedlander, 2012). Structurally, tuffisites are mas-
sive or show bedding structures resulting from the transport
in a fluidized state (Tuffen et al., 2003), whilst shear zones
are foliated and/or commonly develop a C-S-shear fabric
(Kendrick et al., 2012). One does not however preclude the
other; tuffisites can potentially be sourced from shear zones
simply by later gas fluidization of the fine-grained cataclastic
material.

The fragmental origin of tuffisites might suggest that their
formation will increase the porosity and permeability (Cas-
tro et al., 2012) and reduce the strength (Paterson and Wong,
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Fig. 1. (A) Cartoon of a dome building eruption showing the occurrence of tuffisite veins in volcanic edifices. (Tuffisite veins have been
reported near the surface (Tuffen et al., 2003) and up to more than 500 meters depth (Heiken et al., 1988))(B) Photograph of a slab cut
from a tuffisite (T) bearing sample of andesite (H) from Colima, Mexico.(C) Scanned thin section prepared from the slab in(B) showing
rounded lithic clasts (X).(D) Scanned thin section of an approx. 1 cm wide tuffisite vein.(E) Zoom on the interface between host rock (H)
and tuffisite (T).

2005) of otherwise competent host rock. Ultimately, the
strength of the conduit-filling material and the permeability
of the volcanic edifice are likely to be key properties gov-
erning both eruption style (effusive or explosive (Collinson
and Neuberg, 2012; Kennedy et al., 2010)) and dynamics
(catastrophic or continuous; Taisne and Jaupart (2008)). Here
we present the first experimental study on the permeability,
porosity, uniaxial compressive strength (UCS), and P-and S-
wave velocities (Vp andVs) of andesite containing tuffisite
veins.

2 Experimental materials and methodology

2.1 Experimental materials

The 2005 eruption of Volćan de Colima in Mexico disrupted
parts of the lava domes sitting in the upper conduit (Lavallée
et al., 2012b) and provided a unique opportunity to collect
tuffisite-bearing andesite from an active volcano. The rocks
described here were collected as loose blocks selected from
the pyroclastic flows of the 2005 explosive activity. Thus
their exact origin in the rapidly ascending magma column
remains a subject of uncertainty.

Thin sections of these rocks were prepared perpendicular
to the long axis of the veins and orthogonal to each other.
The host rock is a coherent porphyritic andesite. The phe-
nocryst assemblage (Fig. 1) comprises 30 vol.% plagioclase
(0.2 to 2.5 mm length), 10 vol.% pyroxene (0.1- to 2-mm di-
ameter), and less (∼5 vol.%) (average 0.1 mm) opaque ox-
ides. The groundmass comprises needle shaped, microcrys-
talline plagioclase (average 25 vol.%), pyroxene (average 15

Table 1.Physical properties of the sample collection.

Sample Skeletal Density Porosity UCS at 940◦C
Name (g cm−3) (%) (MPa)

COL-TUF-CR 2.786 7.76 114.5
COL-TUF-P2 2.782 9.07 119.1
COL-TUF-P3 2.812 9.83 123.9
COL-TUF-A1 2.798 8.81 127.0
COL-TUF-A2 2.864 10.97 138.4

vol.%), opaque oxides (average 10 vol.%) and minor (aver-
age 5 vol.%) interstitial glass. The bulk porosities for all sam-
ples of andesite with and without veins range from 7.8 % to
11 % (Table 1), which is at the low-porosity end of the poros-
ity distribution of the erupted dome material (Lavallée et al.,
2012b).

The thicknesses of the tuffisite veins vary from approx-
imately 3 to ca. 50 mm. The tuffisites tested in this study
are holocrystalline and consist of coherent fragmental ma-
terial. The crystal size within the veins generally differs from
the host rock. Large plagioclase and pyroxene phenocrysts
generally appear broken several folds within the veins. Iron
oxides are sometimes larger in the veins than in the host
rocks, suggesting that they have been transported from an-
other area (with a different petrographic equilibrium). The
contact between the host rock and the veins is generally ir-
regular. Petrographic analysis suggests the tuffisite being de-
void of glass, dominated by∼80 vol.% fragments of crystals
(plagioclase, pyroxene and opaque oxides) between 0.25 mm
and 1 mm, and 20 vol.% of larger (3 to 20 mm), comminuted
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and rounded lithic clasts of varying composition. No fabrics
indicative of shear (i.e., C-S fabric like described in fault
gouges by Cashman et al. (2008) and Kendrick et al. (2012))
or preferred orientation of clasts is observed in these rocks.
Devitrification textures or shapes suggestive of glass shards
were not identified. The absence of volcanic glass was con-
firmed by dilatometric measurements of tuffisite vein mate-
rial; during heating to 1000◦C at a rate of 10◦C min−1, the
expansion of samples was linear suggestive of a fully crys-
talline material with no softening characteristic of glass. The
diversity of lithic clasts suggests that the vein material is a
mixture of autochthonous and allochthonous material (see
Fig. 1).

From these blocks, cylindrical (25-mm diameter and 50-
mm length) core samples were drilled perpendicular and at
an angle∼45◦ to the tuffisite veins. Orientating the tuffisite
vein at 45 degrees allows for preferred stress concentration
along the tuffisite veins during compression. The orientations
of the tuffisite veins are somewhat irregular and the actual an-
gles may vary from the reported values by±5◦. The sample
core ends were ground flat and parallel to each other in order
to reduce edge effects during deformation.

2.2 Hydrostatic experiments

Sample porosity, permeability, and ultrasonic wave velocity
measurements were made under increasing confining pres-
sures in a 300 MPa hydrostatic pressure vessel equipped with
two 70 MPa servo-controlled pore fluid intensifiers or volu-
mometers located in the Rock & Ice Physics Laboratory
(RIPL) at University College London (Fig. 2b). We selected
one tuffisite-free core sample (from the same tuffisite-bearing
block) to serve as a baseline for comparison (COL-TUF-CR).
Four andesite samples containing similar connected porosi-
ties (see Table 1) were carefully selected for experimenta-
tion: two cores containing tuffisites oriented perpendicular to
the flow direction (COL-TUF-P2 and -P3) and two that have
veins oriented at 45 degrees to the flow direction (COL-TUF-
A1 and -A2). On that basis, we suggest that any differences
in their measured physical properties should therefore be re-
lated solely to the orientation of the tuffisites. The effects of
sample heterogeneity are therefore considered to be of sec-
ond order.

The two volumometers were used in an “upstream” and
“downstream” configuration, with a 1 MPa pressure differ-
ence across the jacketed sample to provide the flow required
to calculate permeability using Darcy’s law, once steady-
state flow had been established. For the experiments in this
study, the pore pressure (Pp) was kept at 9.5 and 10.5 MPa
in the two pore pressure intensifiers, respectively. Confining
pressure (Pc) was applied by pumping silicon oil into the
pressure vessel at 15 MPa, 20 MPa and then every 10 MPa
increment up to 60 MPa, yielding effective confining pres-
sures (Peff) between 5 and 50 MPa. For the purpose of this
study we apply the simple effective pressure law ofPeff =
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pore fluid intensifiers or volumometers located in the Rock & Ice
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Pc – αPp, assuming thatα = 1 (Gúeguen and Palciauskas,
1994). The permeability was measured for each pressure in-
crement, together with ultrasonic wave velocities and sample
porosity. Ultrasonic wave velocity measurements were made
via piezoelectric P- and S-wave transducer crystals housed
within the sample end caps using an Agilent Technologies
1.5 GHz “Infiniium” digital storage oscilloscope and a JSR
DPR300 35MHz ultrasonic pulser/receiver.

The sample porosity was calculated by (1) isolating one
of the pore pressure intensifiers from the sample, (2) setting
the open pore pressure intensifier to 10 MPa and allowing the
sample time to equilibrate, and (3) increasing the confining
pressure whilst monitoring the displacement of the open pore
pressure intensifier. The porosity was then recalculated using
the volume of water expelled from the rock (e.g., Benson et
al., 2005). Finally, we converted our values ofPeff into depths
(h) using the simple relationshipPeff = ρgh, whereρ is the
density (reported in Table 1) andg is the acceleration due to
gravity. Using this relationship between pressure and depth
is a strong simplification, as the pressure gradients within a
volcano can vary, but allows for a general approximation of
the depths over which the measured properties evolve.

2.3 Strength experiments

The uniaxial compressive strength (UCS) was tested, in-
dependent of the porosity and permeability measurements
described above, in the high-temperature uniaxial press
(Fig. 2a) at Ludwig-Maximilians University in Munich (see
Hess et al., 2007 for details of the apparatus). This investiga-
tion of bulk rock strength and associated mechanisms of de-
formation of tuffisite-bearing and tuffisite-free samples was
carried out at 940◦C, as pre-eruptive temperatures were es-
timated at 960–1020◦C (Reubi and Blundy, 2008 and Savov
et al., 2008). A heating rate of 1◦C min−1 was applied until
the sample reached the target temperature. The sample tem-
perature was monitored via a thermocouple that was inserted
into the sample. Once the dwell temperature was reached the
upper piston was brought into contact with the sample and
the sample was allowed to thermally equilibrate over one
hour. The experiments started by applying a low compres-
sive stress of 3 MPa after which the samples were loaded at a
constant rate of 2 MPa min−1 until failure (note: such loading
procedure was employed to inhibit time-dependent deforma-
tion, such as viscous flow, and thus obtain a time-independent
short-term compressive strength). Simultaneously, the out-
put of AE energy was monitored via two piezoelectric trans-
ducers with a high response band over the range 100 kHz–
1 MHz. AE signals were recorded by a PC1-2 based MIS-
TRAS fast data-acquisition system at a sampling rate of
10 MHz.
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At depths shallower than 1 km the permeability for samples with
tuffisite veins oriented at 45 degrees to flow doubles relative to
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showing similar evolution of porosity with increasing depth for all
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Fig. 4. Plots of stress vs. strain and cumulative AE energy (6AE)
against strain for constant loading experiments on andesite free of
tuffisite (COL-TUF-CR), with tuffisite at 45◦ (COL-TUF-A1 and
-A2) and perpendicular (COL-TUF-P2 and -P3) to sigma 1. The
UCS for all samples are constant within 17 % of the maximum UCS.
Inserts show examples of core samples with tuffisites at 45 degrees
and perpendicular to compression. Arrows indicate the top and bot-
tom boundaries of tuffisite veins.

3 Results

3.1 Hydrostatic experiments

Our experimental results are summarized in Fig. 3 by plot-
ting the measured values of permeability, P- and S-wave ve-
locity, and porosity against the model depth and the effective
confining pressure. The data include measurements on sam-
ples with tuffisites at 45 degrees or perpendicular to the flow
direction and on andesite without tuffisite veins. The plot
shows that, as depth (i.e.,Pc) increases, both P- and S-wave
velocities increase (Fig. 3b) whilst the permeability (Fig. 3a)
and porosity (Fig. 3c) both decrease. Over a pressure range
of 50 MPa (i.e.,∼200–1800 m depth) the samples show a
∼20 % increase in ultrasonic wave velocities and a∼5 % de-
crease in porosity. Permeability values show a different pat-
tern. The samples containing tuffisite veins perpendicular to
flow have permeability values within the same range as the
host-rock, tuffisite-free andesite. However, the permeability
of samples containing tuffisite veins oriented at 45 degrees to
fluid flow (the two dashed lines on the right of the plot) show
a twofold decrease in permeability at depths>220 m. Specif-
ically, as depth increases, the permeability of these samples
decreases markedly and converges with permeability values
of all other samples at depths of∼1 km.

3.2 Strength tests

The results of our high-temperature UCS tests are sum-
marized by plotting both stress and cumulative AE energy
(6AE) against cumulative strain (Fig. 4). The data show that

as the samples deform under increasing stress there is little
deviation from linear elastic behavior and very little AE until
immediately prior to the peak stress. While approaching peak
stress, all samples reach a yield point within the last 0.2 %
strain. Ultimately the samples fail catastrophically which is
accompanied by a large and sudden stress drop, and a dra-
matic increase in AE rate, characteristic of brittle behavior.
During failure the samples were essentially pulverized; it was
therefore impossible to perform any post experiment analysis
on the textures within these rocks. The UCS for each sample
is reported in Table 1. This experimental dataset for andesite
hosting tuffisite veins (Fig. 4) establishes that at high temper-
atures: (1) the deformation behavior remains brittle, and (2)
the UCS of the andesites is unaffected by the presence and
orientation of the tuffisite veins. The UCS was found to be
constant within 24 MPa (17 % of the peak stress).

4 Discussion

We provide experimental data on the influence of coherent
tuffisite veins on the physical properties of andesite. Our ex-
periments have demonstrated that, for the tuffisites inves-
tigated, porosity and permeability decrease, and ultrasonic
wave velocities increase with pressure down to about 2 km,
the depth at which the presence of tuffisite no longer influ-
ences the physical properties of the host andesite. Perhaps
remarkably, the physical properties are largely unaffected by
the presence and orientation of the coherent tuffisite veins,
although those with veins oriented at 45 degrees to the flow
direction are about twice as permeable at shallow depths. The
reduction in porosity and permeability, and the increase in
ultrasonic wave velocities with increasing pressure can be
explained by the closure of pre-existing microcracks (Vin-
ciguerra et al., 2005). Indeed, andesites from Volcán de Col-
ima have been previously shown to contain a pervasive net-
work of microcracks, affecting the physical response of the
material (Petrakova et al., 2012). Despite the textural diver-
sity of the andesite-tuffisite sample cores, our experiments
document a profound homogeneity in UCS (about 125 MPa)
– a characteristic that may not be expected if the tuffisites had
not undergone such a high degree of compaction and lithifi-
cation.

The average grain-size of the particles in the tuffisites
is 250 microns with the largest particles being as large as
20 mm and the smallest in the micron range. Studies of gran-
ular material having comparable particle size distributions re-
port porosity values between 17 and 27 % (Zou et al., 2011).
Shepherd (1989) describes the permeability of materials with
similar grain sizes and varying degrees of consolidation to
be between 10−10 and 10−13 m2. Direct measurement of the
grain size distribution of tuffisite directly after formation is
inhibited by their position within the edifice. The values re-
ported above represent the span of permissive porosity and
permeability for grain size distributions similar to that of the
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tuffisites tested. We suggest that the values of porosity and
permeability of the tuffisite veins, immediately after their for-
mation, should be within these ranges. The implication is that
the samples tested in this study have undergone a porosity
reduction of at least 9 percentage points and a decrease in
permeability of four orders of magnitude. The timescales for
this recovery process may be in the range of hours or days
(Venkatachari and Raj, 1986), a rate enhanced when the ma-
terial is subjected to confinement (Cocks, 2001). Any major
influence that the presence of tuffisite veins might have on
the eruptive behavior is therefore inferred to be restricted to
the time period between fragmentation and healing.

We take these data as evidence that these rocks have healed
and approached porosities, permeabilities, and strengths
close to the initial values of the host. The holocrystalline
nature of these tuffisites precludes recovery and lithification
by the processes that govern welding of other, glassy, vol-
canic rocks (i.e., healing via structural relaxation of melt
fragments; e.g., Quane and Russell (2005)). Other potential
processes include, for example, hot pressing (Olgaard and
Fitz Gerald, 1993), solid-state diffusion (Venkatachari and
Raj, 1986) and precipitation of minerals from fluids (Taran et
al., 2001) as these fragmented materials are subject to signif-
icant pressures, elevated temperatures and circulating fluids
while residing in the volcanic edifice. Indeed, hot pressing at
magmatic temperatures has been shown to almost annihilate
porosity in ceramics on the timescale of hours (Venkatachari
and Raj, 1986; Wang et al., 2002). As no precipitation min-
erals could be identified through petrographic analysis we
find it unlikely that the precipitation of minerals from fluids
percolating through these veins contributed to the solidifica-
tion of these rocks. Regardless of which process is dominant,
we find that tuffisites can recover their original rock proper-
ties. The proposed recovery mechanisms can act on relatively
short timescales (Ben-David et al., 2010; Olgaard and Fitz
Gerald, 1993; Russell and Quane, 2005; Venkatachari and
Raj, 1986) and we therefore speculate that tuffisites spend
most of the time in the edifice in this recovered state.

Tuffisite production within a volcano might nevertheless
have wider implications for the eruptive behavior and the edi-
fice structural stability. During fragmentation and production
of the tuffisitic material, stress is released through fractur-
ing (instead of allowing for a build up of stress leading to
eruption), which in turn allows gases to escape (Castro et al.,
2012), at least for the time it takes to recover host rock val-
ues of permeability. In this manner, the formation of tuffisites
may actually retard an eruption and perhaps lessen its explo-
sivity. The same implications discussed with respect to the
contribution to degassing of magma (dependence of perme-
ability and rock strength on the state and rate of healing) also
apply to slope stability, only that here they are much more
intimately linked to the distribution and orientation of the
veins within the volcanic edifice. In the “fresh” state, where
tuffisite veins are weaker than the host rock, they would pre-
sumably be destabilizing and might engender slope failure.

If, however, they reach a healed state where they become rel-
atively strong, tuffisites may in fact strengthen the flanks of
volcanoes as they would act as a strong and rigid structure
introduced into an environment that is inherently fractured.

Our findings inherently surmise that tuffisites may recover
their mechanical properties and exceed those of their mate-
rials of origin at the onset of fragmentation. With the expec-
tation that such variability may evolve over relatively short
timescales, we emphasize that numerical simulations are re-
quired to assess the structural stability and pressure changes
that accompany the formation of tuffisites during an eruptive
phase.

5 Conclusions

1. At eruptive temperatures (940◦C), the tested tuffisite-
bearing andesites deform in a strictly brittle manner and
their UCS is independent of presence and/or orientation
of tuffisite veins.

2. The permeability of tuffisite-bearing andesite decreases
with confining pressure and depends on the orientation
of tuffisite veins. For cases in which a rock contained
coherent tuffisite veins perpendicularly to fluid flow, the
permeability remained similar to the host rock; how-
ever, with tuffisite veins at 45 degrees to fluid flow, the
permeability doubled at shallow depth, but decreased
and recovered original values with increasing depth.

3. Our results report the physical properties of tuffisites in
a recovered state and therefore the upper limit of UCS
and the lower limit of permeability. At the point of for-
mation and during the recovery process, these rocks
might be weaker and more permeable and therefore
have a different effect on the eruptive behavior.
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