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Abstract. Stochastic Quantization (SQ) is a method for the
approximation of a continuous probability distribution with
a discrete one. The proposal made in this paper is to ap-
ply this technique to reduce the number of numerical simula-
tions for systems with uncertain inputs, when estimates of the
output distribution are needed. This question is relevant in
volcanology, where realistic simulations are very expensive
and uncertainty is always present. We show the results of a
benchmark test based on a one-dimensional steady model of
magma flow in a volcanic conduit.

1 Introduction

Since the demand for eruption scenario forecast in the world
is pressing, there is a strong need for using complex physical
models and numerical codes in order to get information about
the possible eruptive conditions at many hazardous volca-
noes (e.g.,Sparks, 2003; Neri et al., 2007). Such models can
describe volcanic processes thoroughly, but this ability often
results in high computational costs: a single simulation can
require a time of the order of days to weeks to be completed.
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On the other hand, since volcanic systems are largely in-
accessible to direct observation, the models which describe
them often involve intrinsically uncertain quantities. As a
consequence, some of the input data required by the numer-
ical codes should be considered as random variables rather
than as fixed parameters. Therefore, the most direct way of
obtaining information about the probability of possible erup-
tive scenarios would be to implement a Monte Carlo (MC)
method. As a drawback, this would require a large number
of numerical simulations (e.g. 104), while often a number of
the order of 10 simulations cannot be exceeded.

It is thus fundamental to be able to choose the input data
values in such a way that the simulations provide the maxi-
mum amount of information possible about the output quan-
tities. Furthermore, the selection of the “best” sets of values
of input data should be guided by fairly general principles,
which could be applied to a large class of models and nu-
merical codes and are not devised for a particular situation.
The strategy presented in this paper is indeed general, since
the choice of the optimal sets of input data does not involve
the numerical code at all. In this respect, a different (and
somewhat complementary) approach to the problem would
be that of using the simulations to construct a function which
is a reasonably good approximation to the complex code and,
at the same time, can be evaluated with a low computational
effort (Sacks et al., 1989; Currin et al., 1991). The simplified
function produced could then be used in a Monte Carlo sim-
ulation. In this case, the choice of the sets of input data used
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to find the approximating function is less critical, while the
focus is on the approximation of the numerical code. A pos-
sibility that has been explored in the mathematical literature
is that of employing Bayesian inference to select a function
with the required properties (Kennedy and O’Hagan, 2001).
Our approach, on the other hand, aims at defining an optimal
set of input data, that sufficiently describes the output distri-
bution. Future developments may involve a mixed approach,
whereby some gross properties of the numerical code are ex-
ploited to guide the choice of the optimal sets of input data
and corresponding output distribution.

In the first section of this paper we present our approach to
the problem, showing that the stochastic quantization (SQ)
method provides a possible solution. In Sects. 2 and 3 we
briefly sketch the basic principles of one-dimensional and
multi-dimensional quantization. In Sect. 4 we show the ap-
plication of our strategy to an ideal case, while in Sect. 5
we turn to a more realistic situation, involving the one-
dimensional steady model of magma flow in a volcanic con-
duit described in (Papale, 2001). We show that, given a max-
imum numberN of simulations, the results obtained using
the SQ method to chooseN sets of values of input data are
better than those produced byN MC simulations.

The origins of the theory of quantization of probability dis-
tributions date back to the three fundamental articles (Oliver
et al., 1948; Bennett, 1948; Panter and Dite, 1951); the
field of application was that of signal processing, in partic-
ular modulation and analog-to-digital conversion. See (Gray
and Neuhoff, 1998) for a survey of the method and of its
engineering applications, besides a huge list of references
(mainly in the field of engineering); the book (Graf and
Luschgy, 2000) gives a mathematically rigorous treatment
of the subject.

2 Outline of the strategy

In order to illustrate our strategy, consider a practical situ-
ation: suppose that a numerical code for the simulation of
some volcanic processes has the random variableX among
its input data. Likewise,X can be a collection of input ran-
dom variables(X1,...,Xd), i.e. ad-dimensional random vec-
tor. Let Y be one relevant output quantity of the numerical
code. We denote byf (x1,...,xd) andg(y) the probability
density functions ofX andY , respectively;f is assumed to
be known, while nothing is known aboutg. We also suppose
that the numerical code has such a high degree of complex-
ity that the maximum numberN of affordable simulations is
very small, of the order of 10. It is thus not possible to collect
information aboutg using a MC method.

Our strategy (see Fig.1) consists in three main steps and
an optional fourth step.

1. FindN values of the random vectorX,(
x
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1 ,...,x

(1)
d

)
,...,

(
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(N)
d

)
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w(1),...,w(N)

)
,

with
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i=1w(i)
=1, such that the discrete probability

distributionf̂ which assigns the weightw(i) to the point(
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(i)
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(i)
d

)
(for i=1,...,N) is the optimal approxi-

mation off , among all the discrete probability distri-
butions concentrated inN points. The meaning of opti-
mality is to be precised later.

2. PerformN numerical simulations to compute theN cor-
responding valuesy(1),...,y(N) of the random variable
Y . We represent the action of the numerical code on the
input data through a functionϕ, so that

y(i)
=ϕ

(
x

(i)
1 ,...,x

(i)
d

)
for i=1,...,N.

3. Build a discrete approximation̂g of g by assigning the
weightw(i) to the pointy(i) for i = 1,...,N .

4. Useĝ to build a continuous probability distribution.

The core of the problem is thus to find the “best” dis-
cretization of a fixed continuous probability distributionf
(step 1). Stochastic quantization is a mathematical theory
which allows to accomplish this task by giving a definition
of the optimal discretization and providing an algorithm to
find it. Once this is done, a discrete approximation of the un-
known output probability distribution is automatically pro-
duced (steps 2 and 3). Concerning step 3, it is a rigorous fact
that the transformation of a discrete probability distribution
by a functionϕ is the discrete probability distribution hav-
ing the same weigths on the image points. Thus step 3 is the
most natural choice. If we would know the output densityg,
a better choice would be the weigths given by the SQ algo-
rithm applied tog and the given output points. But we do
not knowg. It is an open problem to improve step 3 in this
direction.

Though the discrete probability distributionĝ can be used
to estimate the values of some parameters ofg (e.g. its mean,
its variance, some quantiles), its graphical representation
gives poor insight into the main qualitative features ofg. This
is one of the motivations of step 4, which can be carried out
through a kernel smoothing algorithm (e.g.,Wand and Jones,
1995). Moreover, it may be useful for other purposes, like
random number generation, to have a continuous distribution
in output. The main idea of kernel smoothing algorithms
is to smear out each weightw(i) around the corresponding
point y(i) according to a fixed rule and then to sum up all
the contributions. This leads to the continuous probability
distribution

ĝKS(y) =
1

N
h

N∑
i=1

K

(
y − y(i)

h

)
, (1)
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(c) Input discretization, with N = 10. (c) Output discretization, with N = 10.

(a) Known input distribution. (b) Unknown output distribution.

Fig. 1. Graphical representation of the first three steps of our strategy, withd=1 andN=10. The lower graphs represent the discrete
approximations of the input and output probability distributions produced by the SQ method. The weightw(i) is the area of the rectangle
associated to thei-th point fori = 1,...,N .

whereK is a smooth probability distribution andh is a mea-
sure of the width of the interval over which each weight is
spread. h is chosen according to an optimality criterion,
based on the minimization of some kind of error resulting
from the substitution ofg with ĝKS . K is usually chosen to
be a unimodal probability density symmetric about zero, but
its exact expression does not affect very much the result.

3 Quantization of univariate probability distributions
(d=1)

As a first step, in order to give a precise meaning to the ex-
pression “best approximation”, we introduce a distance be-
tween probability distributions. Consequently, the optimal
discretization off can be defined as the discrete probability
distributionf̂ which has the minimum distance fromf .

Since we have to compare discrete and continuous proba-
bility distributions, it is easier to rely on the cumulative distri-
bution functions, especially in the cased=1, in which there
is only one input random variableX. Let F be the cumula-
tive distribution function associated with the densityf and
F̂ the one associated witĥf : namely (see Fig.2),

F(x) =

∫ x

xmin

f (t)dt,

F̂ (x)=
∑

x(i) ≤ x

f̂
(
x(i)

)
=

∑
x(i) ≤ x

w(i),

for xmin ≤ x ≤ xmax,

wherexmin andxmax are the minimum and maximum values
of X, x(i) are the points in whichf̂ is concentrated andw(i)

are the corresponding weights.
For instance, we can define a distance betweenf andf̂ as

d(f,f̂ ) =

∫ xmax

xmin

∣∣F(x) − F̂ (x)
∣∣dx (2)

(see Fig.3). Therefore, the procedure consists in searching
for the discrete probability distribution̂f which minimizes
the quantityd(f,f̂ ), among all the discrete distributions con-
centrated inN points.

4 Quantization of multivariate probability distributions
(d>1)

A more complicated situation arises when there are several
random variablesX1,...,Xd in input, or equivalently a sin-
gle random vectorX=(X1,...,Xd). If X1,...,Xd are inde-
pendent andf1(x1),...,fd(xd) are their probability density
functions, thenf (x1,...,xd) = f1(x1) × ... × fd(xd) is the
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Fig. 2. Continuous and discrete cumulative distribution functions.
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Fig. 3. The distance betweenf andf̂ is defined as the shaded region area in the graphs. Optimal discrete distributions look like the one in
graph(a), while graph(b) represents a sub-optimal discrete distribution.

probability density function ofX. If X1,...,Xd are not inde-
pendent, the probability density functionf (x1,...,xd) of X

is not related tof1(x1),...,fd(xd) in an obvious way. How-
ever, the independency hypothesis is not necessary for the
SQ algorithm.

A definition of distance similar to the one in Eq.2 could
be given, but it is easier and more appropriate to use another
definition of distance, based on the random variables rather
than on their cumulative distribution functions.

Let X̂ be a discrete random vector with probability distri-
bution f̂ , approximating the continuous random vectorX; it
seems quite natural to choose, as a measure of the distance
betweenf andf̂ , the mean value of the error

∣∣X−X̂
∣∣ result-

ing from the substitution ofX with X̂:

d(f,f̂ ) = E
[∣∣X − X̂

∣∣]. (3)

The distance defined by Eq. (3) could be computed numer-
ically, but the calculation is easier and faster (especially in
high dimension) via a MC method; Appendix A shows in de-
tail how it can be performed. The MC simulations involved
in the algorithm use only samples ofX and X̂, which can
be generated easily, and not samples ofY , whose generation

is out of reach. The randomness on the value ofd(f,f̂ )

(and, as a consequence, on the values of the “optimal” points
x(1),...,x(N)) due to the choice of a stochastic algorithm can
be made negligible, provided that the numberM of MC sim-
ulations is large enough. Moreover, the stochastic algorithm
easily provides the weightsw(1),...,w(N) (see Appendix A).

In appendix A we also show that, for univariate distribu-
tions, the distances in Eqs. (2) and (3) lead to the same opti-
mal discretization: therefore the definition given by Eq. (3),
besides having an intuitive motivation, is a natural general-
ization of that given by Eq. (2).

5 Testing SQ in a simple case

In order to assess the quality of the approximation of the out-
put probability distribution given by the SQ, we first consider
a simple test case.

– There is a 2-dimensional random vectorX=(X1,X2) in
input; X1 andX2 are independent and their probabil-
ity distributions are both gaussians, truncated at 0 and
at 1; the distribution ofX1 has mean 0.5 and standard
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deviation 0.2, that ofX2 has mean 0.6 and standard de-
viation 0.1.

– The relation betweenX and the output random variable
Y is known and has a simple analytical expression:

Y = ϕ(X1,X2)

=
1

8
(X2

1 + X1)(X
2
2 + X2) +

1

4
(X1 + X2). (4)

In such a simple case it is possible to implement a MC
method with very high numerosity (e.g. 105), producing an
estimate ofg which can be considered exact for practical pur-
poses. This version ofg can be directly compared to the re-
sults produced by the SQ method and by MC methods with
variable numerosity, in order to establish which one gives the
best approximation ofg: for instance, the SQ method can be
compared to a MC with the same numerosity, or to other low
numerosity MC simulations. For each numerosity, the MC
can be repeated several times, thanks to the simplicity of the

functionϕ; consequently, it is possible to estimate the prob-
ability that the performances of the SQ are better than those
of the MC (see Fig.5).

Figure4 compares some quantiles ofg, whose values are
very well known thanks to the high numerosity MC, to their
estimates produced by the SQ method. These estimates are
obtained via a linear interpolation of the cumulative distribu-
tion associated tôg. Figure4 shows that, as the numerosity
N of the SQ grows, the estimates of the percentiles ofg glob-
ally improve. N=15 is a first good compromise; then the
improvement is not so strong, untilN=40 or 50, where the
result is almost perfect. On the other hand, the central quan-
tiles do not become better and better but fluctuate around the
true values in an unpredictable manner. This is the reason
why the estimate of a parameter sometimes gets worse even
if N increases, as is shown in Fig.5: for instance, the esti-
mate of the median ofg (red curve) gets worse asN passes
from 5 to 10. This makes it possible for MC simulations to
rapidly achieve better estimates of the median than 10 points
SQ as their numerosity increases.
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However, Fig.5 also shows that there is a general tendency
to improvement asN grows. The whole bundle of curves, in
fact, moves gradually towards the upper right corner of the
graph: this means that the probability of the estimates given
by the SQ being better than those given by the MC is gener-
ally increasing asN grows. Furthermore, it is evident that,
if N is sufficiently high (N>10 in this case), the SQ method
gives better results than MC simulations with the same nu-
merosity with probability greater than 0.5.

6 Application of SQ to volcanic conduit dynamics

As a test application of the SQ approach to a volcanologically
relevant case, we consider a one dimensional steady model of
magma flow in a cilindrical conduit with fixed diameter and
uniform temperature (Papale, 2001). This model is ideal for

testing SQ, since it provides a set of volcanologically rele-
vant, strongly non-linear equations relating input and output
distributions in a complex, unpredictable way, despite keep-
ing the computational time small enough (order of minutes
for each simulation) to allow a MC simulation withN=103.
The output distribution given by this MC is reasonably close
to the exact one and can be used for comparison with SQ.
Hence, this first application of SQ to a volcanologically rele-
vant case is also a further test of the method.

Among the several input quantities that are intrinsically
uncertain we choose two of them, namely, the diameterD of
the conduit and the total mass fraction of waterwH20. These
two quantities are known to largely control the conduit flow
dynamics and the associated mass flow-rate (e.g.,Wilson et
al., 1980; Papale et al., 1998). D and wH20 are therefore
considered as random variables. We assign to each of them a
probability distribution (truncated gaussian) and we study the
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Fig. 6. Graph(a) represents the probability distribution of the input random vector
(
D,wH2O

)
, while in graph(b) there is its discretization

produced by the SQ withN=20. Graph(c) shows a comparison between the approximation ofg resulting from 103 MC simulations and̂gKS,
which is obtained through the application of a kernel smoothing algorithm to the discrete distributionĝ given by the SQ withN=10,15,20.
Graph(d) represents a comparison between the cumulative distribution function resulting from 103 MC simulations and those resulting from
the SQ withN=10,15,20, without application of kernel smoothing.

corresponding probability distribution of the logarithm of the
mass-flow rateṁ. The latter is a volcanologically relevant
quantity, as it defines the intensity of an eruption and as it
largely affects the impact on the surroundings (Valentine and
Wohletz, 1989; Todesco et al., 2002).

Figure 6a shows the assumed continuous distribution of
the two random variableswH20 andD, while Fig. 6b illus-
trates the result of the application of the SQ method to dis-
cretize the distribution in 20wH20-D pairs. In order to test
the SQ method, the discretization has been done also with

15 and 10wH20-D pairs. The results have been compared, in
terms of output probability density (Fig.6c) and cumulative
probability distribution (Fig.6d).

The three SQ cases withN=10, 15 and 20 reproduce well
the mode of the distribution at a mass flow-rate of about
108 kg/s, but fail in predicting correctly the shape of the dis-
tribution, resulting in a larger and less skewed curve with
respect to the MC case. The larger values of density pre-
dicted by SQ at the high mass flow-rate tail largely explain
the lower values of the mode with respect to the MC case.
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On the contrary, the left tail of the distribution, correspond-
ing to the minimum mass flow-rates, is predicted accurately
by the SQ. The improvement due to increased numerosity of
SQ from 10 to 20 is clearly visible from the cumulative plots
in Fig. 6d.

Figure7 compares the estimates of the quantiles of the out-
put distribution of mass flow-rates given by MC and SQ with
N=10, 15 and 20. The quantiles are obtained by means of a
linear interpolation of the cumulative distributions in Fig.6d.
As for the analogous Fig.4 (referring to the polynomial map
at Eq.4), the bulk of the distribution is predicted well by the
SQ method, but the tails of the distribution are not. While
a significant improvement clearly emerges fromN=10 to
N=15, there is no significant gain in accuracy when moving

Table 1. Comparison between the estimates of some parameters of
the output distribution given by the SQ withN=10,15,20 points
and by a MC with 103 simulations. The considered parameters are
the mean, the standard deviation and the 5%, 25%, 50%, 75%, 95%
quantiles.

mean st. dev. q5 q25 q50 q75 q95

MC 7.74 0.50 6.71 7.45 7.86 8.12 8.38
SQ,N=10 7.75 0.41 7.09 7.32 7.86 8.07 8.32
SQ,N=15 7.74 0.44 6.94 7.46 7.82 8.10 8.33
SQ,N=20 7.73 0.46 6.85 7.49 7.79 8.09 8.35

from N=15 to N=20. Table1 shows the same results nu-
merically for a few selected quantiles.

As for the ideal case discussed above, it is possible to com-
pare the performances of the SQ with those of some low nu-
merosity MC simulations (Fig.8). This time, the discrete
distributions generated by the SQ and by the low numeros-
ity MC simulations are both compared to the one obtained
from the MC simulation withN=103. In all cases, and for
any quantity investigated, the SQ provides a better approxi-
mation of the output distribution than the MC with equal nu-
merosity. For many quantities a MC with at least hundreds of
simulations is required in order to exceed the accuracy given
by SQ simulations with numerosity up to 20.

7 Conclusions

The performance of the SQ method has been analyzed both
for an artificial polynomial map with random input and for
a more complex set of non-linear equations. The latter case
also represents an application of the SQ method to the vol-
canologically relevant case of steady multiphase magma flow
along a volcanic conduit. Our analysis includes both a com-
parison between SQ and pure MC (Monte Carlo) method,
and the accuracy of SQ in itself. In both cases the SQ method
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provides substantially better estimates of output distributions
than the MC method with the same number of simulations.
This property is already clear with values ofN around 15–
20, and it becomes stronger with the increase ofN . The re-
sults are less definite for very smallN , like N=5 and some-
times 10, where further ideas and research are needed. In
general, MC gives results comparable to SQ only when the
number of MC simulations is much higher, sometimes by
one or more orders of magnitude, than that of SQ. Therefore,
the SQ method results in a considerable computational sav-
ing for the same degree of accuracy of the estimates. With
values ofN of 15 or 20, in general the estimates obtained by
SQ are very close to the true ones (or to our better estimates
of the true ones).

In conclusion, the SQ method allows the introduction of
uncertainties in the deterministic approach without requiring
exceeding CPU time. This result is promising for the capa-
bility of estimating future volcanic scenarios and volcanic
hazards by means of a merged deterministic-probabilistic
approach, whereby complex deterministic models are em-
ployed by taking into account the intrinsic uncertainties in-
volved in the definition of the conditions characterizing the
volcanic systems.

Appendix A

The numerical algorithm

This appendix describes in detail how the distanced(f,f̂ ),
defined in Eq. (3), is approximately computed via a
stochastic algorithm. Morevorer, it shows that the op-
timal discretization off is found by moving the points
x(1),...,x(N) in such a way thatd(f,f̂ ) is minimized, i.e. by
minimizing a function ofN d-dimensional vectors (function
h in Eq.A3 below).

The starting point is represented by a fundamental result of
the SQ theory (Graf and Luschgy, 2000, Lemma 3.1), which
states that, if theN possible values(
x

(1)
1 ,...,x

(1)
d

)
,...,

(
x

(N)
1 ,...,x

(N)
d

)
of the random vector̂X, i.e. theN points in whichf̂ is con-
centrated, are fixed, then the corresponding optimal weights
w(1),...,w(N) are uniquely determined.

More precisely, the weights are defined as follows.

– Fori=1,...,N , letVi be the region of thed-dimensional
space such that

x ∈ Vi⇐⇒

∣∣∣x−x(i)
∣∣∣=mink=1,...,N

∣∣∣x−x(k)
∣∣∣,

where x(k)
=

(
x

(k)
1 ,...,x

(k)
d

)
for k=1,...,N . Vi is

called the Voronoi region ofx(i) with respect to the
set

{
x(1),...,x(N)

}
; it contains the points which are

closer to x(i) than to any other element of the set{
x(1),...,x(N)

}
(see figureA1).

– The optimal approximation̂X of the random vectorX
is defined as follows:̂X=x(i) if and only if the value of
X belongs toVi . Namely,X̂ is obtained by rounding off
X to the nearest vector amongx(1),...,x(N).

– Correspondingly,w(i) (i.e. the probability that̂X=x(i))
is the weight assigned toVi by the probability distribu-
tion f :

w(i)
=

∫
Vi

f (x)dx.

If X̂ is defined as just described, it can be shown (Graf and
Luschgy, 2000, Lemma 3.4) that, in the cased=1,

E
[
|X−X̂|

]
=

∫ xmax

xmin

∣∣F(x)−F̂ (x)
∣∣dx;

moreover, ifX̂′ is another random variable, with the same
possible valuesx(1),...,x(N) but defined in whatever way,
andF̂ ′ is its cumulative distribution function, it can be shown
that

E
[
|X−X̂′

|

]
≥

∫ xmax

xmin

∣∣F(x) − F̂ ′(x)
∣∣dx (A1)

≥

∫ xmax

xmin

∣∣F(x) − F̂ (x)
∣∣dx = E

[
|X − X̂|

]
.

This means that, in the cased=1, minimizing∫ xmax
xmin

∣∣F(x)−F̂ (x)
∣∣dx is the same as minimizing

E
[
|X−X̂|

]
, so that the criterion used when there are

several parameters in input is indeed a generalization of that
used when there is only one parameter.

If the points
(
x(1),...,x(N)

)
are fixed, an approximate cal-

culation of the minimum value of the distance in Eq. (3) and
of the corresponding optimal weights

(
w(1),...,w(N)

)
can be

carried out through the following steps (see Fig.A1):

1. generate a large numberM (e.g. M=105) of d-
dimensional random vectorsz1,...,zM with probability
distributionf ;

2. for each vectorzj , select the indexij such thatzj be-
longs toVij , i.e.∣∣∣zj−x(ij )

∣∣∣=mink=1,...,N

∣∣∣zj−x(k)
∣∣∣;

3. for k = 1,...,N , assign tox(k) the weight

w(k)
=

m(k)

M
,
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wherem(k) is the number of vectorszj into the Voronoi
regionVk, i.e. the number of indexesj such thatij=k;

4. calculate

d(f,f̂ ) = E
[∣∣X − X̂

∣∣] ≈
1

M

M∑
j=1

∣∣zj − x(ij )
∣∣. (A2)

In our situation, in which the points(x(1),...,x(N)) are not
fixed, the function

h
(
x(1),...,x(N)

)
=

1

M

M∑
j=1

∣∣zj − x(ij )
∣∣ (A3)

must be minimized. The minimization is performed using
Powell’s method (Powell, 1964; Press et al., 2001), which
moves the pointsx(1),...,x(N), starting from an initial guess;
for each new choice ofx(1),...,x(N), the algorithm evaluates
h
(
x(1),...,x(N)

)
going through the steps 1–4 above. The set

of points which produces the minimum value ofh is just the
optimal set of points we are searching for. In order to min-
imize the risk of finding local minima, the minimization is
repeated 10 times, varying the initial guesses, and the lowest
minimum is taken as the best estimate of the true minimum.

Note that the error in the estimate (Eq.A2) of d(f,f̂ ) is
proportional to 1

√
M

, so that, for sufficiently high values of

M, it becomes negligible and minimizing

1

M

M∑
j=1

∣∣zj−x(ij )
∣∣

is the same as minimizingd(f,f̂ ).
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