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Abstract. Hydrocarbons released into the deep ocean are
an inevitable consequence of natural seep, seafloor drilling,
and leaking wellhead-to-collection-point pipelines. The Ma-
condo 252 (Deepwater Horizon) well blowout of 2010 was
even larger than the Ixtoc event in the Gulf of Campeche in
1979. History suggests it will not be the last accidental re-
lease, as deepwater drilling expands to meet an ever-growing
demand. For those who must respond to this kind of disaster,
the first line of action should be to know what is going on.
This includes knowing where an oil plume is at any given
time, where and how fast it is moving, and how it is evolv-
ing or degrading. We have experimented in the laboratory
with induced polarization as a method to track hydrocarbons
in the seawater column and find that finely dispersed oil in
seawater gives rise to a large distributed capacitance. From
previous sea trials, we infer this could potentially be used to
both map and characterize oil plumes, down to a ratio of less
than 0.001 oil-to-seawater, drifting and evolving in the deep
ocean. A side benefit demonstrated in some earlier sea trials
is that this same approach in modified form can also map cer-
tain heavy placer minerals, as well as communication cables,
pipelines, and wrecks buried beneath the seafloor.

1 Introduction

The Macondo disaster is the largest offshore oil spill in
history, releasing 4.9 million barrels (780 million liters) into
the Gulf of Mexico (Unified Command, 2010; Hsieh, 2010;
Crone and Tolstoy, 2010; Ramseur, 2010). This is the lat-
est in a long series of hydrocarbon spills, both deliberate
(e.g., the Gulf War spill of 1991) and accidental, released into

the world’s oceans (Yapa and Chen, 2004). Where the com-
plex hydrocarbons end up after such an event is important to
scientists, policy planners, and litigants. After direct recov-
ery, evaporation, skimming and burning, and “naturally dis-
persed” components are counted, the whereabouts of at least
38 % of the Macondo hydrocarbons remains unknown (Ram-
seur, 2010). Dissolved oxygen concentrations suggest that
microbial consumption rates are very low in the cold abyssal
sea, on the order of 1 micromolar oxygen per day (Camilli
et al., 2010). As a result, a deep plume is thought to have
advected away in the Gulf Loop Current at least several hun-
dred kilometers from the Macondo well during 2010 (Kessler
et al., 2011). A towed seawater capacitance-measuring geo-
electrical array could be used to map and characterize such
evolving plumes in the future.

Before mitigation can be planned or liability assessed, a
hydrocarbon release must be mapped in 3-D, to see how it
evolves and degrades in space and time. One way to do this
is by cable-lowered rosette sampling (Breier, et al., 2010)
deployed from a stationary ship. However, this is slow and
expensive, requires downstream mass spectrometry or sub-
sequent chemical analysis, and provides only a narrow verti-
cal profile sample while a plume is moving past it. Another
approach utilizes a membrane inlet mass spectrometer de-
ployed on an autonomous underwater vehicle (Camilli et al.,
2010). This latter approach can detect methane concentra-
tions down to 0.1 ppm, but like rosette profiling it is linear
point-sampling, and it remains difficult to gather complete
three-dimensional information. Acoustic echo soundings of
the Macondo plume showed anomalously high-volume scat-
tering at 200 khz in one test, but this is impossible to convert
into a three-dimensional quantitative image, in part because
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the method is more sensitive to the gas than the liquid oil
component of the plume by several orders of magnitude (We-
ber et al., 2011).

2 The induced polarization effect

We have experimented with a galvanic geoelectrical ap-
proach based on the principle of induced polarization (IP).
IP has been routinely used on land since the 1940s (Sumner,
1976) and has been used in seafloor applications since 1986
(Wynn, 1988). IP measures a distributed capacitance-like be-
havior observed in certain polarizing materials such as sul-
fides or clays beneath the Earth’s surface; results are usually
given as phase shift (in milliradians) between transmit and
receive signals. Complex resistivity (broadband or “spectral
IP”) is generally measured as real and quadrature frequency
components of the IP response in both lab and field settings
(Zonge and Wynn, 1975).

The inducing voltage is provided by two electrodes com-
prising a current transmitter dipole, and receiver electrode
dipole pairs are used to measure a secondary signal. In
both laboratory sample cells and in the field, IP measure-
ments are carried out using any of several different four-
electrode arrays. Results are normalized geometrically to
provide two volume-independent parameters (usually resis-
tivity and phase shift) for a polarizing material. The polar-
ization effect is a surface-sensitive phenomenon due to any
of several different electro-chemical/electro-physical mech-
anisms, each of which behaves like a frequency-dependent
distributed capacitance (Sumner, 1976; Zonge and Wynn,
1975; Slater and Lesmes, 2002). Thus, finely disseminated
target materials, in very small percentages in a host matrix
or in seawater, are more easily detected (make better targets)
than the same materials in a concentrated form.

While data are normalized, larger dipole separations on the
surface of a half-space will nevertheless sample deeper into
the underlying rock – the result is a resistivity and phase shift
average for a larger volume (Sumner, 1976). However, as a
four-electrode IP array is towed through the open ocean, the
array will sample a cylindrical volume surrounding it as a
continuous apparent resistivity and continuous phase shift.
As in a land surface application, the actual volume sam-
pled in the oceanic configuration is greater both for larger
dipole length and larger transmit-receiver dipole separation,
but high seawater conductivity imposes a practical upper
limit (Wynn et al., 2011).

Early on, we realized that high-frequency measurements
would severely attenuate our sampling distance in the deep
ocean. We therefore chose to experiment only with the lower
“traditional” IP frequency range (0.1–72 Hz). This frequency
range would give us a reasonable chance of sampling a large
volume of seawater rapidly enough to make this approach
both realistic and achievable. We believe the physical mecha-
nism is not dielectric in character (we see the strongest effect

at very low frequencies), but instead is ion adsorption and
relaxation in a double-layer effect onto the oil surface – in
other words, something closely akin to Warburg impedance.

Now consider a classical capacitor with metal plates sep-
arated by an oil-based dielectric vs. droplets of oil dispersed
in conductive seawater (Fig. 1). The topological equivalence
suggested to us that diffuse oil in seawater should contribute
a net distributed capacitance. Measurement of in-situ seawa-
ter capacitance might then serve as a proxy for hydrocarbons
present as a dispersed plume in the deep ocean. Seawater
by itself has an average resistivity of about 0.30 ohmmeters
(3.27 S m−1), and no phase shift response (i.e., zero capaci-
tance). A two-dimensional geoelectrical array (Fig. 2), using
a modified form of the IP method, can sample resistivity and
phase shift over a vertical cross-section or 2-D plane in the
sea. Towing the array in open, unpolluted water provides a
system calibration, which can then be deconvolved with sur-
vey data in the frequency domain after a simple fast Fourier
transform (Wynn et al., 2011). If oil is present in the sea-
water column – or if sulfides, ilmenite (FeTiO3), or metallic
debris lie on or beneath the seafloor – then a non-zero ca-
pacitance manifested as a net phase shift will be observed. If
the array is towed through the ocean in a lawn-mower fash-
ion, a 3-D map of resistivity and seawater capacitance may
be assembled as fast as the array can be towed through the
medium. Repeat surveys would provide a 4-D mapping prod-
uct; in other words, we should be able to map the evolution
of the plume with time.

From sea trials in Puget Sound and off the coast of South
Africa (Wynn et al., 2011), we know that such a plane-slice
could sample a volume up to 40 m wide, and the vertical
range sampled would be limited only by the number of par-
asitic streamers extended off the master cable of Fig. 2. A
further consideration of Fig. 1 and laboratory data (discussed
below) suggests that the size distribution of oil droplets in
seawater also has a distinctive and characteristic frequency
response. In sea trials we have also observed a phase shift
along with a subtle resistivity drop over buried metallic de-
bris (wrecks) and sub-seafloor cables.

3 Laboratory measurements

We have conducted laboratory experiments to measure the
normalized distributed capacitance of low-concentration oil-
seawater emulsions, measured as a phase shift response to
an inducing, time-varying voltage. This is similar to using
spectral IP to detect and characterize disseminated sulfide
minerals on land (Sumner, 1976; Zonge and Wynn, 1975;
Sheriff, 2002), in that both processes induce a temporary dis-
tributed charge accumulation. A measurement cell was filled
with seawater (Fig. 3), and multi-viscosity oil was titrated
into it and stirred to force dissemination. Experiments with
conductive fluids in sandstones indicate that any phase shift
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Fig. 1. The topological equivalence of a classical capacitor with an
oil-based dielectric, and oil dispersed in conductive seawater, sug-
gests that oil should display capacitive behavior under an inducing
voltage from a towed geoelectrical array.

is independent of the fluid conductivity (Revil and Skold,
2011).

Laboratory results show an unusually strong phase shift
for low levels of dispersed hydrocarbons in seawater (up to
460 milliradians for 3 % oil/saltwater; see Fig. 4). By way
of comparison, a land survey over a disseminated sulfide
deposit, or a similar laboratory cell measuring a core sam-
ple from the same deposit, may give a phase shift as high
as 20 milliradians. The apparent noise in frequencies below
8 Hz in Fig. 4 is due to the difficulty in mixing oil and sea-
water into a uniform and stable emulsion. We used a martini
stirrer to generate the emulsion, waited for visible turbulence
to end, and then made our broadband (0.125–72 Hz) phase
shift measurements. The peaks in this figure below 8 Hz are
caused by different macroscopic oil droplet sizes; these are
transient and difficult to assess, but from photographs range
from less than 1 mm up to about 4 mm. The curves show a de-
crease in phase shift with increasing frequency; this behavior
appears due to finer droplets that have a greater latency in
the emulsion. As droplets slowly biodegrade in the seawater
over time (Camilli et al., 2010; Kessler et al., 2011), we ex-
pect a weaker overall phase shift response, as well as a shift
to higher frequencies correlating with decreased droplet size.
Most of the methane in the Macondo effusion was biode-
graded within 120 days (Kessler et al., 2011), and about 40 %
of the hydrocarbon mix released was liquid oil (Crone and
Tolstoy, 2010). With the relatively slow biodegradation of the
oil, 25–38 % of it apparently remained in the seawater col-
umn for an extended period of time (Mariano, 2011; Camilli
et al., 2010). The dispersed nature of the oil makes it an ex-
cellent target for a planar geoelectrical array optimized to
measure the distributed capacitance of the seawater.

We had some concern with the inherent difficulty of
achieving a stable emulsion in a small laboratory cell. Ex-
perience suggests that without the addition of emulsifiers
it would be difficult to prepare a stable mixture that would
be more than approximately quantifiable in terms of droplet
size. This is due to steady recombination of oil droplets in

Fig. 2. One of several possible seawater capacitance-measuring
configurations. A single-cable version has been used to map il-
menite (FeTiO3) beneath the seafloor in the Gulf of Mexico, off
the coast of Georgia (USA), and offshore of South Africa. This
ship-towed streamer array would continuously sample a plane up
to 40 m wide through the deep ocean, and towing the array in lawn-
mower fashion would quickly provide a 3-D image of the hydrocar-
bon plume elements. Repeat surveys would then provide informa-
tion on plume movement, and by tracking frequency distribution of
the transmitter-receiver phase shift, its biodegradation and evolution
over time.

a bounded sample container. We are aware of optical ap-
proaches to assess sediment load in river water, but this
would require some confidence that the emulsion would
be at least metastable. There are other considerations, in-
cluding refraction and partial transparency. From Camilli et
al. (2010), we believe that in the open sea the oil–water mix-
ture is metastable, with droplet size changing slowly as a
function of biodegradation over time, after the more volatile
components reach the surface.

4 Sea trials and the noise threshold

To establish the detection threshold of this type of approach,
it is necessary to understand the noise contribution in any
field measurement. Sea trials of a single-streamer IP array
(a single cable version of Fig. 2), using a transmitter dipole
and two receiver dipoles, were made in the Gulf of Mex-
ico (Wynn and Laurent, 1999). The survey showed a phase
shift noise envelope of about 1 milliradian when the streamer
was towed at three knots (about 1.5 m s−1) through unpol-
luted seawater over apparent metallic debris (Fig. 5). This
site is located in a shoal area of the Chandeleur Islands with
numerous documented wrecks, and not far from an 18th cen-
tury ballast pile excavated by archeologists that included six
cannons (Garrison et al., 1989). The phase shift envelope in
Fig. 5 shows a discrete feature with high-frequency oscil-
latory noise added. This noise is caused by the streaming
potential: seawater passing over the electrodes, in addition
to tiny tow-flexures of the array that momentarily shorten
the electrode separation and decrease the apparent resistiv-
ity. These oscillations are below 0.5 milliradians outside of
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Fig. 3. The four-electrode laboratory cell used for measuring the
capacitance of a multi-viscosity oil titrated into seawater. The elec-
trodes are arranged in a modified Wenner array.

Fig. 4.Normalized distributed capacitance as a phase shift between
transmit and receive signals for different multi-viscosity oil percent-
ages dispersed in seawater. Phase shift is given in milliradians. For a
3 % oil–seawater mix, the phase shift reaches about 460 milliradians
at 1 Hz. To put this in perspective, a large IP anomaly over a dissem-
inated sulfide orebody on land, or a core-sample of this material in
the laboratory, might reach 20 milliradians.

the metallic anomaly. In Fig. 4, a 1 % oil content contributes
a phase shift of at least 10 and up to 23 milliradians. As-
suming a conservative noise threshold of 1 milliradian and
a minimum 10 milliradians for 1 % oil in seawater, it appears
that a modified version of the streamer towed in the deep
ocean could detect hydrocarbons in seawater down to below
0.1 %. The real noise threshold could be lower depending
on engineering considerations, such as careful management
of shipboard electrical noise. The conservative 0.1 % oil-to-
seawater detection threshold is orders of magnitude less sen-
sitive than the detection threshold of a membrane inlet mass
spectrometer, approximately 0.1 ppm for methane in seawa-
ter (Camilli et al., 2010; Hemond, et al., 2008). However, this
seawater capacitance approach can map the distribution and
even characterize liquid hydrocarbons by droplet size in 3
dimensions as fast as a 2-D array can be towed through the
sea.

Broadband measurements (a single square-wave signal
that is then Fourier transformed to magnitude and phase val-
ues over a broad frequency range) should be conducted at

Fig. 5.The resistivity and phase shift (IP) signature of buried metal-
lic debris east of Cat Island, south of Biloxi, MS, in the Gulf of
Mexico. The resistivity here is higher than the seawater average due
to the cable being towed directly on the water–seafloor interface.

minimal speed in the sea. This is necessary to permit the ef-
fective transmission of low-frequency waveforms to detect
the largest oil droplets in seawater. We want to know where
the plume is moving and how much oil is involved, as well
as characterize how it biodegrades and disperses, and broad-
band measurements are key to the latter. An important source
of potential noise is electromagnetic coupling, but with a
fixed array in deep water this should be constant. In shallow
water this will not be the case; thus geometric corrections
must be made to minimize its contribution in shallow coastal
waters (Wynn et al., 2011).

A seawater capacitance detection system, however, reacts
to the surface area between oil and seawater, so it would be
proportionally more sensitive to the finely dispersed oil re-
ported in the Macondo plume (Camilli et al., 2010). A towed-
array seawater capacitance survey can also be conducted very
efficiently in the deep ocean. Multi-frequency measurements
are typically made 1–4 times per second for each parasitic
streamer, each with a transmitter dipole and multiple receiver
dipole pairs. The sample spacing is proportional to ship speed
and transmitter frequency. Repeat surveys should provide a
4-D map of a moving hydrocarbon plume, as well as char-
acterize the plume (using droplet-size change as a proxy for
biodegradation) as it moves and evolves with time. Marine IP
systems have been shown to detect ferrous and non-ferrous
material, including both wrecks and fiber-optic cables buried
beneath the seafloor (Wynn and Laurent, 1999; Wynn et al.,
2011). The same IP system used to map dispersed oil can
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also be used to locate buried pipelines or other metallic oil
and gas infrastructure buried in the seabed.

Metallic debris and buried cables appear as point or line
features. Unless the streamer is traveling sub-parallel to a
buried cable, these give rise to fairly narrow phase-shift
anomalies. Seawater capacitance from dispersed oil, how-
ever, would likely manifest as a slow rise of phase shift from
zero to a relatively steady non-zero amount, followed by a
decline as the streamer exits the dispersed plume. Ponded oil
on the seafloor would manifest as a broad, non-zero phase
shift with a relatively sharp onset, as long as the streamer
was traversing it. The amplitude of the phase-shift response
would be a function of the oil-to-seawater surface area within
sensing reach of the array. From experimental sea trials, this
phase shift will likely not be detected beyond about 20 m due
to signal attenuation in the conductive seawater medium.

Another issue to consider is the influence of other sub-
stances on the received signal. Up to 3 800 000 L of Corexit
were eventually dropped into the Gulf of Mexico to act as
a dispersant during the Deepwater Horizon blowout episode.
We could find little published on the effect the Corexit had on
the Deepwater Horizon hydrocarbons. While this is an inter-
esting variable in the mapping process, the Corexit used in
the Deepwater Horizon spill was delivered by aircraft and
surface ships against a hydrocarbon release that began at
1260 m water depth. Consequently, it impacted only the more
volatile components of oil that quickly reached the sea sur-
face, but it likely had little or no effect on the larger compo-
nent of the plume drifting south from the wellhead with the
Gulf Loop current. Our proposed streamer system is applica-
ble in areas and depths where we believe the Corexit would
have little if any effect. Any contribution from dispersants
would likely be to increase the peak phase-shift frequency
upwards as the oil droplets were reduced in size.

5 Conclusions and discussion

Finely dispersed oil contributes a strong net capacitance to
seawater when a galvanic current is introduced. In laboratory
measurements this contribution, measured as a transmitter-
receiver phase shift, is more than an order of magnitude
greater than similar measurements made on land over min-
eral deposits and in laboratory cores derived from these de-
posits. The degradation of an oil plume with time will man-
ifest as an upward shift in the broadband frequency distri-
bution of this capacitance, which serves as a proxy for the
oil droplet size. Because electrodes are towed in the seawater
medium – an impossibility on land – this kind of measure-
ment can be made very rapidly in seawater.

In sea trials and laboratory experiments, we have observed
that certain heavy placer minerals (pyrite, ilmenite, etc.),
buried wrecks, pipelines, and communications cables also
manifest a capacitive behavior to an inducing galvanic cur-
rent injected into the seawater.

The Gulf of Mexico hosts nearly 4000 offshore plat-
forms currently operating, and as many as 7000 platforms
have been in place since the early 20th century (N.O.A.A.,
2012; National Geographic, 2010). A massive array of poorly
mapped, sometimes-buried pipelines links all these offshore
sites to coastal gathering points. Most of these pipelines were
laid in a pre-GPS era and could reasonably be expected to
corrode with time. A seawater capacitance or marine IP ar-
ray can easily detect and map these pipelines, ferrous or non-
ferrous, even if they are buried beneath several meters of inert
sediment (Wynn and Laurent, 1999; Wynn and Zonge, 1975).
A multi-cable geoelectrical array can also map hydrocarbon
seeps, both natural and those escaping from these pipelines,
as they disperse from their sources.
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