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Abstract. The vertical redistribution of the geostrophic mo-
mentum by the residual effects of pressure perturbations
(called the layer-thickness form drag) is investigated using
thickness-weighted temporal-averaged mean primitive equa-
tions for a continuously stratified fluid in an adiabatic formu-
lation. A four-box energy diagram, in which the mean and
eddy kinetic energies are defined by the thickness-weighted
mean velocity and the deviation from it, respectively, shows
that the layer-thickness form drag reduces the mean kinetic
energy and endows the eddy field with an energy cascade.
The energy equations are derived using an identity (called
the “pile-up rule”) between cumulative sums of the Eule-
rian mean quantity and the thickness-weighted mean quan-
tity in each vertical column. The pile-up rule shows that the
thickness-weighted mean velocity satisfies a no-normal-flow
boundary condition at the top and bottom of the ocean, which
enables the volume budget of pressure flux divergence in the
energy diagram to be determined. With the pile-up rule,
the total kinetic energy based on the Eulerian mean can be
rewritten in a thickness-weighted form. The four-box energy
diagram in the present study should be consistent with en-
ergy diagrams of layer models, the temporal-residual-mean
theory, and Iwasaki’s atmospheric theory. Under certain as-
sumptions, the work of the layer-thickness form drag in the
global ocean circulation is suggested to be comparable to the
work done by the wind forcing.

1 Introduction

The vertical mixing of momentum in a stratified fluid can
be induced by the residual effects of pressure perturbations
(called the layer-thickness form drag in this paper, as detailed
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in Sect. 2.1), which has received considerable attentions in
various research areas of atmosphere and ocean dynamics
(cf. Andrews, 1983; Johnson and Bryden, 1989; Cushman-
Roisin et al., 1990; Lee and Leach, 1996). In contrast to the
momentum transfer, energetics of the layer-thickness form
drag have received little attention in previous oceanic stud-
ies. The present study shows that an adiabatic formulation
of an inviscid hydrostatic fluid yields a four-box energy di-
agram that elucidates the role of layer-thickness form drag
in the connection between the mean and perturbation fields.
This result can be regarded as fundament to introducing the
parameterization of layer-thickness form drag in numerical
ocean circulation models.

The four-box energy diagram of ocean and atmosphere dy-
namics consists of the potential and kinetic energies asso-
ciated with the mean and perturbation fields. The classical
Lorenz (1955) diagram has often been used in the theoreti-
cal development of subgrid-scale parameterization in numer-
ical simulations and in the analysis of various types of data
(Böning and Budich, 1992; Holton, 1992). However, the en-
ergy diagram and associated energy cycle may vary with the
definitions of the mean and perturbation fields. An energy
diagram for the transformed Eulerian mean (TEM) theory
(Andrews and McIntyre, 1976) is given by Plumb (1983) and
Kanzawa (1984), whereas an energy diagram for the gener-
alized Lagrangian mean (GLM) theory (Andrews and McIn-
tyre, 1978) has received little attention in past oceanic stud-
ies. Focusing on the adiabatic aspects of waves and eddies
in a stratified fluid, Iwasaki (2001) derived a new energy di-
agram from a one-dimensional (vertical direction) analog of
the GLM. He showed that the layer-thickness form drag al-
lows direct transfer between the mean kinetic and eddy po-
tential energies, which replaces the route involving the eddy
kinetic energy in the TEM theory. Moreover, Iwasaki’s for-
mulation does not use the geostrophic balance in closing the
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Fig. 1. Views of (a) the raw densityρ(z, t), showing the vertical
fluctuation of a density surface in a two-density fluid;(b) the Eule-
rian mean densityρ(z, t), which is given by the fixed-height tem-
poral average; and(c) the mean height densitỹρ(z, t), which is a
z-coordinate expression of the adiabatically low-pass filtered layer
interface. A darker shade indicates higher density.

energy diagram, which is in sharp contrast to the situation
with the TEM theory. This allows Iwasaki’s energy diagram
to be applied various types of (rotational and nonrotational)
stratified fluids. The result of Iwasaki (2001) follows that of
Bleck (1985), who showed that the mean and eddy kinetic
energies can be positive-definite quantities in isentropic co-
ordinates.

The present study investigated the characteristics of
Iwasaki’s energy diagram in order to clarify the role of layer-
thickness form drag in the connection between the mean and
perturbation fields, with the aim of understanding the effects
of introducing layer-thickness form drag in coarse-resolution
ocean models (cf. Greatbatch, 1998), as part of parameteri-
zation of unresolved geostrophic eddies in baroclinic insta-
bility (Charney, 1947; Eady, 1949). In order to elucidate the
components required in the new energy diagram, this paper
does not use the semi-Lagrangian coordinates of Andrews
and McIntyre (1978), Iwasaki (2001), and Jacobson and Aiki
(2006). The present derivation begins with the inviscid in-
compressible hydrostatic Boussinesq equations, which are
adiabatically low-pass filtered so as to avoid unphysical mix-
ing across density surfaces. These equations are essentially
the thickness-weighted-mean equations (for tracers, density,
and momentum) in density-coordinates (de Szoeke and Ben-
nett, 1993), as explained in Sect. 2. We focus on an inte-
gral identity to explain the boundary condition (Sect.2.2). In
Sect.3, we present an energy diagram for the above adiabat-
ically low-pass filtered equations which is largely consistent
with the work of Iwasaki (2001). Under certain assumptions
on form-drag parameterization, the work associated with the
eddy form drag in the global ocean circulation is estimated in
Sect.4. The paper concludes with a summary in Sect.5. The
present study excluded diabatic processes (density mixing) in
the surface mixed layer and the bottom boundary layer of the
ocean (cf. Kuo et al., 2005; Plumb and Ferrari, 2005), since
we are concerned with the adiabatic process (mesoscale ed-

dies) and the boundary condition of the present formulation
is clear, in contrast to the TEM theory (see Sects.2.2 and
3.5).

2 Adiabatic mean formulation

Section2.1 summarizes the thickness-weighted temporal-
mean momentum and density equations that have been in-
vestigated by de Szoeke and Bennett (1993), McDougall and
McIntosh (2001), and Jacobson and Aiki (2006). Readers
not familiar with expressions in Sect.2.1are first referred to
Bleck (1985) for the primitive equations (and energy equa-
tions) in isentropic and density coordinates. In Sect.2.2, we
introduce an integral identity to explain the boundary condi-
tion.

2.1 Primitive equations

The parameterization of mesoscale eddy transports with an
additional advection represented a major advance in ocean
modeling, that allowed coarse-resolution models to main-
tain deep water formation in the polar regions and over-
turning circulation in the world’s oceans (Danabasoglu and
McWilliams, 1994; Gent et al., 1995; Treguier et al., 1997;
Killworth, 1997). These theories are based on the thickness-
weighted-mean formulation of a passive tracer equation in
density-coordinates (note that “averaging” refers to a tem-
poral low-pass filter in this paper). De Szoeke and Ben-
nett (1993) pointed out in their Appendix A that the mean
quantities in density-coordinates can be mapped back onto z-
coordinates (i.e., Cartesian coordinates). That is, a thickness-
weighted-mean((∂z/∂ρ)S)

ρ
/(∂z/∂ρ)

ρ
is taken in density-

coordinates (whereS is an arbitrary quantity andρ is den-
sity), which is then mapped back into z-coordinates that
now refer to the mean vertical position of each isopycnal
surface. This backmapped quantity, now a function ofz,
is here given the symbol̂S (Table 1 describes the sym-
bols used in this paper). A passive tracer equation such as
∂S/∂t+U ·∇S=0 in z-coordinates becomes, after one ap-
plication of this process,∂Ŝ/∂t+Û ·∇Ŝ=M[S], whereÛ is
the thickness-weighted three-dimensional velocity in mean
z-coordinates andM[] is the isopycnal mixing (cf. Griffies,
2004). The weighted three-dimensional velocity is nondiver-
gent (∇·Û=0) if the unweighted three-dimensional velocity
is nondivergent (∇·U=0).

In the special case where the density equation
is, M[ρ]=0, diffusion is not present. In density-
coordinates, the thickness-weighted mean density is
((∂z/∂ρ)ρ)

ρ
/(∂z/∂ρ)

ρ
=ρρ

=ρ. As a result, it is useful
to introduceS̃ for an isopycnal mean (but not thickness-
weighted) quantityS

ρ
that is backmapped onto z-coordinates

at the mean vertical position of each density surface (Ta-
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Table 1. List of symbols, whereS(x, y, ρ, t) is an arbitrary quantity.

S Eulerian mean at fixed height

zρS
ρ
/zρ

ρ thickness weighted mean in density-coordinates (zρ≡
∂z
∂ρ

is the thickness)

Ŝ
same as the above except for being mapped back onto z-coordinates
with the mean vertical height of each isopycnal surface as the reference

S
ρ

isopycnal mean in density-coordinates

S̃
same as the above except for being mapped back onto z-coordinates
with the mean vertical height of each isopycnal surface as the reference

S′
deviation from the Eulerian mean:S′

≡S−S

(compared in z-coordinates at fixed height,S′≡0)

S′′
deviation from the thickness-weighted mean:S′′

≡S−zρS
ρ
/zρ

ρ

(compared in density-coordinates at fixed density,zρS′′
ρ
≡0)

S′′′
deviation from the isopycnal mean:S′′′

≡S−S
ρ

(compared in density-coordinates at fixed density,S′′′
ρ
≡0)

∇ three-dimensional gradient in z-coordinates

∇H horizontal gradient in z-coordinates

U three-dimensional velocity

V horizontal component ofU (two dimensional)

Ṽ bc baroclinic component of the isopycnal mean velocityṼ

ρ potential density

ρ̃ mean height (MH) density

G horizontal down-gradient of the hydrostatic pressure:−∇H

∫
z gρdz

G̃ same as above except for being composed of the MH density:−∇H

∫
z gρ̃dz

GB layer-thickness form drag:̂G−G̃ (originally GB
≡zρG′′′

ρ
/zρ

ρ )

U+ eddy-induced extra transport velocity:̂U−U (called the quasi-Stokes velocity)

V + horizontal component ofU+

UB eddy-induced extra transport velocity:̂U−Ũ (called the bolus velocity)

V B horizontal component ofUB (originally V B
≡zρV ′′′

ρ
/zρ

ρ )

M[] isopycnal mixing (the special case ofM[V ] is the Reynolds stress)

ble 1). The modified density equation (de Szoeke and
Bennett, 1993) in z-coordinates becomes

∂

∂t
ρ̃ + Û · ∇ρ̃ = 0. (1)

Here we callρ̃ the mean height (MH) density: this is the
same as the temporal-residual-mean (TRM) density in Mc-
Dougall and McIntosh (2001) and Jacobson and Aiki (2006),
and is given by the density of the surface whose mean vertical
position isz. Stratification of the MH densitỹρ is inherently
sharper than that of the Eulerian mean densityρ (see Fig. 1;
a related discussion appears in Killworth, 2001). In most
ocean general circulation models (OGCMs), the thickness-

weighted velocitŷU to advect tracers is calculated by sum-
ming the prognostic velocity in the model and a parameter-
ized extra transport velocity (detailed in Sect.3.3), because in
the prevailing mean formulations the momentum equations
are simply averaged either by the isopycnal mean (Gent et
al., 1995) or the Eulerian mean (McDougall and McIntosh,
1996) to avoid modifying the form of the pressure term.

However, an interesting feature appears when the momen-
tum equations are also thickness weighted: the hydrostatic
pressure gradients−∇H

∫
z
gρ dz(≡G) yield a secondary

termGB (i.e., the layer-thickness form drag, eddy form drag,
or inviscid pressure drag) in addition to the term available to
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the model−∇H

∫
z
gρ̃ dz(≡G̃), where∇H = (∂/∂x, ∂/∂y).

Table 1 provides a detailed expression ofGB(≡Ĝ−G̃). The
thickness-weighted mean momentum equation is

∂

∂t
V̂ + Û · ∇V̂ + f z × V̂ = G̃/ρ0 + GB/ρ0 + M[V ], (2)

whereV̂ =(̂u, v̂) andf is the Coriolis parameter of the earth.
The Reynolds stressM[V ] is less focused on in the present
paper, and the total transport velocitŷU has no component
normal to solid boundaries (McDougall and McIntosh, 2001;
see Sect.2.2for details).

Equations (1) and (2) first appeared in de Szoeke and Ben-
nett (1993) in an adiabatic and macroscopic context, and
were further investigated in later studies. McDougall and
McIntosh (2001) introduced a Taylor expansion for the verti-
cal displacement of density surfaces relative to z-coordinates.
To present exact equations for the mean and perturbation
fields, Jacobson and Aiki (2006) used a height-density semi-
Lagrangian coordinate that is analogous to the pressure-
isentrope semi-Lagrangian coordinate of Iwasaki (2001).
Equations (1) and (2) are now well justified, being free
from expansion parameters and the explicit use of density-
coordinates, which are improvements over McDougall and
McIntosh (2001) and de Szoeke and Bennett (1993), respec-
tively. Most importantly, velocitŷU is a prognostic quantity
in a model stepping forward Eqs. (1) and (2), and this sug-
gests the applicability of a momentum approach in which the
pressure dragGB rather than the eddy-induced advection is
parameterized (Greatbatch, 1998; Ferreira et al., 2005).

2.2 Boundary condition

We consider an oceanic domain bounded by a rigid sea sur-
face and a bottom with arbitrary topography. To show that
the total transport velocitŷU has no component normal to
the boundaries, we here introduce an identity for the verti-
cal integrals of Eulerian mean and thickness-weighted mean
quantities:∫ 0

−h

S dz =

∫ 0

−h

S dz =

∫ ρtop

ρbtm

(
S

∂z

∂ρ

)
dρ =

∫ ρ̃top

ρ̃btm

(
S

∂z

∂ρ

)ρ

dρ̃ =

∫ 0

−h

(
S ∂z

∂ρ

)ρ

∂z/∂ρ̃
dz =

∫ 0

−h

Ŝ dz, (3)

whereh(>0) is the bottom depth. This identity, which ap-
plies to any quantityS, is a generalization of the results
of McDougall and McIntosh (2001) and Killworth (2001),
and is here called the “pile-up rule” since it explains the re-
lations between the cumulative sums of weighted differen-
tials in the vertical direction. An obvious interpretation of
the pile-up rule is that, withT denoting the range of time
averaging, bothT

∫ 0
−h

S dz and T
∫ 0
−h

Ŝ dz refer to a net

amount
∫ t+T/2
t−T/2

∫ 0
−h

S dzdt in (z, t) space, measured with z-
coordinates and density-coordinates, respectively.

Because the no-normal-flow condition of the Eulerian
mean velocityU is obvious, it is essential to show how the
remaining part̂U−U (=U+, called the quasi-Stokes veloc-
ity in McDougall and McIntosh, 2001) satisfies the bound-
ary condition (Table 1). The pile-up rule, Eq. (3), makes
the horizontal component of the quasi-Stokes velocity purely
baroclinic:

∫ 0
−h

V +dz (=
∫ 0
−h

V̂ −V dz)=0. This allows the

overturning stream function
∫ z

−h
V +dz (=

∫ z

−h
V̂ −V dz) to

vanish at the top and bottom boundaries, which confirms the
no-normal-flow boundary condition ofU+. As a result, the
total transport velocitŷU has no component normal to the top
and bottom boundaries, in sharp contrast to the total transport
velocity used in Plumb (1983) and Kanzawa (1984).

Explaining the boundary condition becomes less straight-
forward when the pile-up rule is not used (Bleck, 1985; Ja-
cobson and Aiki, 2006). The pile-up rule turns out to be
useful also for the derivation of energy equations (Sect.3).

3 Energy equations

Both the potential and kinetic energies are subject to tempo-
ral low-pass filtering, resulting in the so-called total potential
and total kinetic energies, respectively, whose equations for
inviscid hydrostatic Boussinesq fluids are

∂

∂t
ρgz + ∇ · (Uρgz) = gwρ, (4)

∂

∂t

(ρ0

2
|V |2

)
+ ∇ ·

(
U

ρ0

2
|V |2

)
= V · G, (5)

where the overbar denotes the Eulerian temporal mean at a
constant height. The energy interaction is determined by the
pressure-flux divergence:

− ∇ ·

(
U

∫
z

ρgdz

)
= V · G + gwρ, (6)

which includes the incompressibility condition∇·U=0. To
simplify the problem, we consider a volume integral in a
closed domain� with solid boundaries (i.e., rigid sea sur-
face). Because the raw velocityU has no component cross-
ing the boundaries of the domain, the volume integral of
Eqs. (4–6) becomes

d

dt

∫
�

ρgz d3x = g

∫
�

wρ d3x, (7)

ρ0

2

d

dt

∫
�

|V |2 d3x =

∫
�

V · G d3x, (8)

0 =

∫
�

V · G d3x +

∫
�

gwρ d3x. (9)

In the absence of boundary forcing and friction, the sum of
the total potential and total kinetic energies is constant.
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3.1 Mean field

The component of the total energy that is written in terms of
resolved quantities, such as̃ρ and V̂ , is traditionally called
the mean energy (a clearer term is the resolved mean energy).
The mean potential and mean kinetic energies and their inter-
action can be derived from Eqs. (1), (2), and the incompress-
ibility condition ∇·Û=0:

∂

∂t
(ρ̃gz) + ∇ ·

(
Û ρ̃gz

)
= gŵρ̃, (10)

∂

∂t

(ρ0

2
|V̂ |

2
)

+ ∇ ·

(
Û

ρ0

2
|V̂ |

2
)

=

V̂ · (G̃ + GB) + ρ0V̂ · M[V ], (11)

− ∇ ·

(
Û

∫
z

ρ̃gdz

)
= V̂ · G̃ + gŵρ̃. (12)

The mean kinetic energy in Eq. (11) is defined in terms of
the thickness-weighted mean velocity, as in Bleck (1985) and
Jacobson and Aiki (2006). The quantity|V̂ | is the magnitude
of (the horizontal component of) the total advective velocity
including the basic geostrophic current and the eddy-induced
overturning transport (detailed in Sect.3.3). We emphasize
that here the mean kinetic energy is defined with neither the
Eulerian mean velocityV nor the isopycnal mean velocitỹV .
By remembering that the total transport velocitŷU has no
component crossing the boundaries (Sect.2.2), the volume
integral of Eqs. (10–12) becomes

d

dt

∫
�

ρ̃gz d3x = g

∫
�

ŵρ̃ d3x, (13)

ρ0

2

d

dt

∫
�

|V̂ |
2 d3x =∫

�

V̂ · G̃ d3x +

∫
�

(
V̂ · GB

+ ρ0V̂ · M[V ]

)
d3x, (14)

0 =

∫
�

V̂ · G̃ d3x +

∫
�

gŵρ̃ d3x. (15)

The second integral on the right-hand side of Eq. (14) allows
transfer of energy between the mean and eddy fields. Both
the Reynolds stressM[V ] and the layer-thickness form drag
GB are responsible for the connection between the mean and
eddy fields.

3.2 Eddy field

The remaining component of the total energy is traditionally
called the eddy energy (a clearer term is the unresolved per-
turbation energy). Below we derive the eddy energy as the
difference between (the residual of) the total and mean ener-
gies.

An equation for the eddy potential energy is obtained by
subtracting Eq. (10) from Eq. (4), which essentially is the
difference between the MH density and the Eulerian mean
density. The volume budget of the eddy potential energy is
obtained by subtracting Eq. (13) from Eq. (7):

d

dt

∫
�

(ρ − ρ̃)gz d3x = g

∫
�

(ρw − ρ̃ŵ) d3x. (16)

It is expected that the energy level associated withρgz is
higher than that of̃ρgz because the Eulerian mean den-
sity ρ is smoothed in the vertical direction (as suggested by
Fig. 1). McDougall and McIntosh (2001) showed that the
difference between the Eulerian mean density and the MH
density isρ−ρ̃=

(
φ/ρz

)
z
+O(α3), whereφ≡

1
2ρ′2 is half the

density variance measured at a fixed point in space andα is
a scale for density disturbances. Integration by parts yields∫ 0
−h (φ/ρz)z gz dz=−

∫ 0
−h

φg/ρz dz>0, which is the eddy
potential energy referred to in some previous studies. Canuto
and Dubovikov (2006), in reviewing the classical energetics
of Böning and Budich (1992) and thus Lorenz (1955), pre-
sented the same definition of the eddy potential energy. How-
ever, if the eddy potential energy is expressed withφ, it in-
volves small errors associated with the Taylor expansion and
the top and bottom boundary conditions. The present study
uses the exact form of the eddy potential energy, Eq. (16).

An equation for the eddy kinetic energy is obtained by
subtracting Eq. (11) from Eq. (5), and the volume budget of
the eddy kinetic energy is obtained by subtracting Eq. (14)
from Eq. (8). We use the pile-up rule, Eq. (3), to obtain a
thickness-weighted form of integral equation for the total ki-
netic energy, Eq. (8). Equation (8) becomes

ρ0

2

d

dt

∫
�

(
|V̂ |

2
+

zρ |V ′′|2
ρ

zρ
ρ

)
d3x =

∫
�

(
V̂ · Ĝ +

zρV ′′ · G′′
ρ

zρ
ρ

)
d3x, (17)

whereV ′′
=V −zρV

ρ
/zρ

ρ and G′′
=G−zρG

ρ
/zρ

ρ are the
deviations from the thickness-weighted mean, in density-
coordinates (see Table 1). Subtracting Eq. (14) from Eq. (17)
yields the equation for the eddy kinetic energy:

ρ0

2

d

dt

∫
�

|V ′′|2 d3x =∫
�

V ′′ · G′′ d3x − ρ0

∫
V̂ · M[V ] d3x, (18)

where we used the pile-up rule, Eq. (3), again for the primed
products. The left-hand side of Eq. (18) shows that the eddy
kinetic energy is a positive-definite quantity.

An equation for the pressure-flux divergence in the eddy
field is obtained by subtracting Eq. (12) from Eq. (6), and the
volume budget of the pressure-flux divergence in the eddy
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field is obtained by subtracting Eq. (15) from Eq. (9). We
use the pile-up rule, Eq. (3), to obtain a thickness-weighted
form of integral Eq. (9), for the energy interaction in the total
field. Equation (9) becomes

0 =

∫
�

V · G d3x +

∫
�

gwρ d3x

=

∫
�

(
V̂ · Ĝ + V ′′ · G′′

)
d3x +

∫
�

gwρ d3x, (19)

where we have used the pile-up rule, Eq. (3), to transform
V ·G. Subtracting Eq. (15) from Eq. (19) yields

0 =

∫
�

(
V̂ · GB

+ V ′′ · G′′

)
d3x+

∫
�

g(wρ−ŵρ̃) d3x.(20)

Equations (15) and (20) are used in Sect.3.4 to close the
four-box energy diagram (Fig. 2).

At this point we have a complete set of equations for the
mean and eddy energies.

3.3 Eddy transports

Before examining the energy diagram, we briefly discuss a
separation of the total advective velocity intôU≡Ũ+UB

(Table 1). The isopycnal mean velocitỹU is usually al-
most in geostrophic balance, and the secondary velocity
UB is an eddy-induced overturning circulation that is of-
ten called the bolus velocity (Rhines, 1982). The horizon-
tal component of the bolus velocity was originally defined
asV B

≡((∂z/∂ρ)V ′′′)
ρ
/(∂z/∂ρ)

ρ
in layered models, where

V ′′′
≡V −V

ρ
is the deviation in density-coordinates from the

isopycnal mean (see Table 1). Using the nondivergence ofÛ ,
the vertical component of the bolus velocity in z-coordinates
is given bywB

=−w̃−∇H ·
∫ z

−h
V̂ dz. Note that both the

bolus velocity and the isopycnal mean velocity are three-
dimensionally divergent (McDougall, 1998).

By notingV ′′
≡V ′′′

−V B in density-coordinates, the eddy
kinetic energy in Eq. (18) can be rewritten using∫ 0

−h

|V ′′|2 dz =

∫ 0

−h

zρ |V ′′|2
ρ

zρ
ρ dz

=

∫ 0

−h

zρ(|V ′′′|2 − 2V ′′′ · V B + |V B |2)
ρ

zρ
ρ dz

=

∫ 0

−h

zρ |V ′′′|2
ρ

zρ
ρ − 2

zρV ′′′
ρ

· V B

zρ
ρ + |V B

|
2 dz

=

∫ 0

−h

|V ′′′|2 − 2|V B
|
2
+ |V B

|
2 dz

=

∫ 0

−h

|V ′′′|2 − |V B
|
2 dz, (21)

where the pile-up rule, Eq. (3), has been applied. Interest-
ingly, Eq. (21) shows that the eddy kinetic energy is a con-
ventional disturbance energy(ρ0/2)|V ′′′|2 (based on the de-
viation from the isopycnal mean) minus the eddy transport

component(ρ0/2)|V B
|
2. It should be noted that velocity

V B of the eddy-induced overturning has been included in the
mean kinetic energy,(ρ0/2)|V̂ |

2, in the present definition.

3.4 Energy cycle

An energy diagram for Eqs. (13), (14), (16), and (18) is il-
lustrated in Fig. 2. In order to elucidate the form of the en-
ergy cycle, equations for the energy interaction, Eqs. (15) and
(20), are here made independent of the budget of the potential
and kinetic energies.

We are primarily concerned with the case of baroclinic in-
stability (Charney, 1947; Eady, 1949), which is a cascade
that originates in the mean potential energy in the absence
of mechanical forcing at the boundaries. The eddy-induced
overturning is essential to relax the slope of density surfaces,
which leads to the extraction of the mean potential energy as
expressed byV B

·G̃ in Fig. 2. This channel is found to be in
the resolved mean field, and it provides an input to the mean
kinetic energy (i.e., acceleration of the mean current), in con-
trast to the classical Lorenz energy diagram (Lorenz, 1955;
Böning and Budish, 1992). It is also noted in Fig. 2 that the
mean kinetic energy(ρ0/2)|V̂ |

2 will leak to the unresolved
perturbation field bŷV ·GB : this is the redistribution of mo-
mentum by the form drag.

In the unresolved field in Fig. 2, the quantitŷV ·GB is
independently connected to both the eddy potential and ki-
netic energies; this is due to Eq. (20). In particular, the
direct connection between the eddy potential and the mean
kinetic energies involves both the density surface perturba-
tion and the layer-thickness form drag. The situation in the
unresolved perturbation field is consistent with the result of
Iwasaki (2001) derived from the mass-weighted-mean equa-
tions for non-Boussinesq fluids. The backmapping method
of de Szoeke and Bennett (1993) based on the mean height
of each isopycnal surface is consistent with the theory of
Iwasaki (2001) based on the mean pressure along each isen-
tropic surface (cf. Kushner and Held, 1999; Greatbatch and
McDougall, 2003).

In addition to the form drag, the Reynolds stressM[V ]

also connects the mean and eddy kinetic energies, which is
relevant to the role of relative vorticity in baroclinic instabil-
ity.

3.5 Comparison with the TEM and Lorenz formulations

The present diagram (and that of Iwasaki) may be considered
to be partly analogous to the TEM energy diagram (Plumb,
1983; Kanzawa, 1984), in that the fraction of the mean poten-
tial energy extracted by the eddy-induced overturning is able
to interact with the mean kinetic energy before cascading to
the unresolved field. The TEM energy diagram differs from
that of Lorenz (1955) not because of a different definition of
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resolved mean field
(general circulation)

unresolved perturbation field
(transient eddies)

mean potential energy
ρ̃gz

mean kinetic energy
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eddy potential energy
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Fig. 2. The energy diagram for the thickness-weighted-mean formulation of an adiabatic hydrostatic Boussinesq fluid. Energy budgets are
evaluated after taking the volume integral in a closed domain� based on Eqs. (13–16), (18), and (20). Details are in Sect.3.4.

the mean and perturbation fields but because the TEM energy
equations assume geostrophy in some terms in the primitive
equations. The major difference between the present formu-
lation (Bleck, 1985; Iwasaki, 2001; Jacobson and Aiki, 2006)
and those of both Lorenz and the TEM theory comes from
the modified definition for the mean and eddy kinetic ener-
gies, including the momentum equation being written for the
total transport velocity and the modified pressure term incor-
porating the layer-thickness form drag. On the other hand,
the definition of the mean and eddy potential energies given
in this paper is similar to those in the classical Lorenz di-
agram and in the TEM diagram except for the direction of
averaging.

Another concern is the boundary condition. The applica-
tion of the TEM energy cycle to the Eady problem described
in Sect. 5a of Plumb (1983) is complicated by the nonphysi-
cal energy fluxes through the top and bottom boundaries: the
domain integrated fluxes divergences, such as∇·F ∗(KM)

and∇·F ∗(KE), are nonzero. These energy fluxes in Plumb
(1983) correspond to the pressure fluxes in the present study:
we show that the volume integral of the pressure flux diver-
gence clearly vanishes in the mean field, Eq. (15), and in the
eddy field, Eq. (20).

To summarize, the adiabatic mean formulation presented
here provides several unique features: (i) the total trans-
port velocity Û has no component normal to solid bound-
aries (Sect.2.2), (ii) velocity V B of the eddy-induced over-
turning circulation is included in the mean kinetic energy
(ρ0/2)|V̂ |

2, (iii) geostrophic balance is not used in closing
the energy diagram, and (iv) the presence of density surface

perturbations (i.e., eddy potential energy) is directly related
to the form drag working on the basic geostrophic currents:
this replaces the route via the eddy kinetic energy in the TEM
theory.

3.6 Assumptions

Additional results may be obtained if further assumptions
are made. For example, if the basic current is largely
geostrophic (ρ0f z×Ṽ 'G̃) and the form drag is approxi-
mated asGB

'ρ0f z×V B in middle and high latitudes as is
often done (Rhines, 1979; Greatbatch, 1998), the input from
the potential energy balances the output to the unresolved
field (this is indicated by the triple line in Fig. 2):

V̂ · GB
' (Ṽ + V B) · (ρ0f z × V B)

= Ṽ · (ρ0f z × V B)

= −V B
· (ρ0f z × Ṽ )

' −V B
· G̃. (22)

A small exchange due to the barotropic component of the
form drag will be ignored if we consider a form dragGB that
causes no net force in each vertical column (i.e., redistribut-
ing momentum only in the vertical direction). Equation (22)
implies that no energy accumulates in the mean kinetic en-
ergy, which in turn indicates that the layer-thickness form
drag approach in OGCMs produces results similar to those
given by the extra advection schemes (discussed in Sect. 4 of
Gent et al., 1995).

Nevertheless, the use of Eqs. (1) and (2) in OGCMs may
result in barotropic currents and interactions with the bot-
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Fig. 3. Zonal integral of the meridional overturning stream func-
tion 9y

=−
∫ z
−h vBdz (with units of 106 m3/s) in the global ocean,

for the parameterized velocity in Eq. (24) with C′
=0.02. The baro-

clinic velocity Ṽ bc of the basic geostrophic current was calculated
from the World Ocean Atlas. The solid (dashed) contours denote
positive (negative) values.

tom topography that differ somewhat from those in the ex-
tra advection schemes, since the upper-layer momentum is
gradually transferred down to the bottom by the form drag
parameterization. Greatbatch and Li (2000) have reported
that a three-dimensional simulation adopting the momentum
approach is successful in showing anticyclonic mean flow
around a seamount. Aiki et al. (2004) have demonstrated
that relaxing the thermal wind balance of the basic field al-
lows for barotropic currents to be present (see their Fig. 3).
In the present energy cycle (Fig. 2), the fraction of the mean
potential energy that is extracted by the eddy-induced over-
turning is able to interact with the mean kinetic energy before
cascading to the unresolved field, in contrast to the extra ad-
vection schemes (based on the Lorenz diagram) that remove
the mean potential energy directly.

4 Work of the layer-thickness form drag

It is of great interest to quantify the work of layer-thickness
form drag in the world’s oceans. Below we derive an indirect
estimate of the energy conversion rate; realistic analyses of
field measurements and numerical simulations are devoted to
a later study.

4.1 Scaling

Greatbatch (1998) suggested that the layer-thickness form
drag can be parameterized by Fickian diffusion that transfers
the geostrophic momentum in the vertical direction (cf. Fer-
reira et al., 2005). In considering a similar form drag, Aiki et

al. (2004) incorporated Rayleigh damping in the baroclinic
component of the isopycnal mean velocitỹV bc:

GB/ρ0 = −C′
|f |Ṽ bc, (23)

whereC′ (>0) is a nondimensional constant. A series of pre-
liminary numerical experiments were reported in Aiki et al.
(2004), in which an arbitrary setting ofC′

=0.3 was used with
little justification for the rate of the overturning circulation.
An appropriate value ofC′ that gives a realistic overturning
circulation in the world’s oceans is examined below.

Here we compute the form drag,GB , starting with exist-
ing information about the eddy-induced velocityV B . Equa-
tion (23) with the form-drag approximationGB

'ρ0f z×V B

(Sect.3.6) yields the following eddy-induced extra velocity:

V B
' C′

f

|f |
z × Ṽ bc. (24)

The basic current of the velocity,̃V bc, is assumed to be in
thermal wind balance with the climatological density field of
the World Ocean Atlas 2001 (Conkright et al., 2002), at least
away from the equator. As plotted in Fig. 3 for the meridional
overturning stream function, there are four distinct cells:
(i) in the Southern Ocean associated with the instability of
the Antarctic Circumpolar Current, (ii, iii) in the equatorial
flanks that tend to lower the upwelling thermocline, and (iv)
in the northern mid-latitudes corresponding to overturning
cells of the Gulf Stream and the Kuroshio. We setC′

=0.02
so that the overturning rate in the Southern Ocean, which is
16×106 m3/s in Fig. 3, becomes as high as that in Figs. 6
and 7 of Gent et al. (1995). Although the eddy-induced cir-
culation shown in Fig. 3 looks more intense between 30◦ S
and 30◦ N (which will weaken the equatorial upwelling), the
setting ofC′

=0.02 for the simplified form drag in Eq. (23)
can be regarded as corresponding to the standard horizontal
diffusivity κ=1000 m2/s in the parameterization of Gent and
McWilliams (1990). If the magnitude of the bolus velocity is
roughly 2% of the isopycnal mean velocity from Eq. (24) in
the global ocean, estimates of the mean kinetic energy based
on the thickness-weighted mean velocity and based on the
unweighted mean velocity will yield very similar values, re-
gardless of the physical meaning of the modified definitions
of the mean and eddy kinetic energies (Sects.3.1and3.3).

4.2 Global conversion rate

The quantityV̂ ·GB in Eq. (22) is the work done by the
form drag: momentum redistribution in the resolved mean
field results in an energy cascade into the unresolved per-
turbation field. The quantity−V B

·G̃ is the depletion rate
of the mean potential energy by the eddy-induced overturn-
ing. With the parameterization in Eqs. (23) and (24), these
terms becomêV ·GB

'−V B
·G̃=−ρ0C

′
|f ||Ṽ bc|

2, which is
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negative in each vertical column. Figure 4 plots the column
integral∫ 0

−h

ρ0C
′
|f ||Ṽ bc|

2 dz, (25)

for C′
=0.02 and velocitỹV bc from the World Ocean Atlas

(Sect.4.1). Energy extraction on the order of 10−2 W/ m2

is suggested in the regions of the Antarctic Circumpolar
Current, the Gulf Stream, and the Kuroshio, which are
indeed regions of enhanced eddy activity in the world’s
ocean currents. The global integral amounts to 0.41 TW
(1 TW=1012 W). Similar estimates using the Gent and
McWilliams parameterization (Huang and Wang, 2003;
Wunsh and Ferrari, 2004) give a range of 0.2–1.7 TW (which
is reported to be very sensitive to the implementation tech-
nique). These values are comparable with the work done by
the wind stress, which has been estimated at about 0.8 TW
(Wunsh, 1998). A global data assimilation for the layer-
thickness form drag,GB , in Eq. (2) by Ferreira et al. (2005)
has confirmed that the work associated with the eddy stress
in the ocean interior is close to that of the wind stress ap-
plied at the sea surface. The wind-induced Ekman transports
can increase the mean potential energy through the energy
channelṼ ·G̃ in Fig. 2, which makes the energy cycle of
the (wind-driven) ocean circulation different from that of the
(heat-driven) atmosphere circulation.

5 Conclusions

To understand the anisotropic mixing of momentum in a
stratified fluid, we have investigated the residual effects of
pressure perturbation (layer-thickness form drag) using the
thickness-weighted temporal-averaged mean momentum and
density equations (de Szoeke and Bennett, 1993; McDougall
and McIntosh, 2001; Jacobson and Aiki, 2006). The layer-
thickness form drag connects the mean and eddy fields in a
four-box energy diagram if the thickness-weighted mean ve-
locity and the deviation from it are used for the definitions of
the mean and eddy kinetic energies, respectively (Sects.3.1
and3.2). The adiabatic energy diagram in Sect.3.4 should
be consistent with the energy diagrams of layer models, TRM
theory, and Iwasaki’s atmospheric theory. The energy equa-
tions are obtained using an integral identity (called the “pile-
up rule”) between cumulative sums of the Eulerian mean
quantity and the thickness-weighted mean quantity in each
vertical column (Sect.2.2). The pile-up rule shows that
the thickness-weighted mean velocity satisfies a no-normal-
flow boundary condition at the top and bottom of the ocean,
which enables the volume budget of the pressure-flux diver-
gence to be determined in the energy diagram (Sect.3.5).
The pile-up rule has also made it possible to rewrite the to-
tal kinetic energy based on the Eulerian mean, Eq. (8), in a

Fig. 4. A column integrated energy conversion rate
ρ0C′

|f |
∫ 0
−h |Ṽ bc|

2dz [W/ m2] in the world’s oceans for the pres-

sure drag in Eq. (23) with C′
=0.02. The baroclinic velocitỹV bc of

the basic current was calculated from the World Ocean Atlas.

thickness-weighted form, Eq. (17). Necessary conditions for
the derivation of the adiabatic energy diagram are summa-
rized as follows:

(i) The total transport velocity has no component across the
top and bottom boundaries (which represents an appro-
priate boundary condition for the pressure flux in the
mean field).

(ii) The mean and eddy kinetic energies are defined using
the total transport velocity and the deviation from it, re-
spectively.

(iii) The momentum and density equations in the mean field
are written for the total transport velocity and the mean
height of density surfaces.

McDougall and McIntosh (2001) have contributed to prove
condition (i), Bleck (1985) and Jacobson and Aiki (2006)
have demonstrated conditions (ii) and (iii), and Iwasaki
(2001) has explained all of the above three conditions. Re-
gardless of the physical meaning of (ii), the scale analysis
in the global ocean suggests that estimates of the mean ki-
netic energy based on the thickness-weighted mean velocity
and based on the unweighted mean velocity will yield very
similar values (Sect.4.1). Under certain assumptions, the
work of layer-thickness form drag in the global ocean circu-
lation is suggested to be comparable to the work done by the
wind forcing (Sect.4.2). Direct analyses of high-resolution
data in the Southern Ocean will serve to understand the rela-
tionship between the works done by the wind stress and the
layer-thickness form drag (cf. Johnson and Bryden, 1989;
Killworth and Nanneh, 1994; Rintoul et al., 2001).
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An application of the layer-thickness form drag is the pa-
rameterization of mesoscale eddies in the coarse-resolution
ocean models used in climate studies (Greatbatch, 1998).
The use of the thickness-weighted mean momentum Eq. (2)
in OGCMs may result in barotropic currents and interactions
with the bottom topography that differ somewhat from those
in the extra advection schemes, since the adiabatic energy
cycle enables the fraction of the mean potential energy to in-
teract with the mean kinetic energy before cascading to the
unresolved field (Sect.3.6). Further studies should investi-
gate the role of layer-thickness form drag in the ocean and
atmosphere circulations.
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