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Abstract. The Mediterranean Sea is considered a “hot spot”

for climate change, being characterized by oligotrophic

to ultra-oligotrophic waters and rapidly increasing seasur-

face temperature and changing carbonate chemistry. Coccol-

ithophores are considered a dominant phytoplankton group

in these waters. As marine calcifying organisms they are

expected to respond to the ongoing changes in seawater

carbonate chemistry. We provide here a description of the

springtime coccolithophore distribution in the Mediterranean

Sea and relate this to a broad set of in situ-measured en-

vironmental variables. Samples were taken during the R/V

Meteor (M84/3) oceanographic cruise in April 2011, be-

tween 0 and 100 m water depth from 28 stations. Total di-

atom and silicoflagellate cell concentrations are also pre-

sented. Our results highlight the importance of seawater

carbonate chemistry, especially [CO2−
3 ] but also [PO3−

4 ] in

unraveling the distribution of heterococcolithophores, the

most abundant coccolithophore life phase. Holo- and het-

erococcolithophores respond differently to environmental

factors. For instance, changes in heterococcolithophore as-

semblages were best linked to the combination of [CO2−
3 ],

pH, and salinity (ρ = 0.57), although salinity might be not

functionally related to coccolithophore assemblage distri-

bution. Holococcolithophores, on the other hand, showed

higher abundances and species diversity in oligotrophic areas

(best fit, ρ = 0.32 for nutrients), thriving in nutrient-depleted

waters. Clustering of heterococcolithophores revealed three

groups of species sharing more than 65 % similarities. These

clusters could be assigned to the eastern and western basins

and deeper layers (below 50 m), respectively. In addition, the

species Gephyrocapsa oceanica, G. muellerae, and Emilia-

nia huxleyi morphotype B/C are spatially distributed together

and trace the influx of Atlantic waters into the Mediterranean

Sea. The results of the present work emphasize the impor-

tance of considering holo- and heterococcolithophores sep-

arately when analyzing changes in species assemblages and

diversity. Our findings suggest that coccolithophores are a

main phytoplankton group in the entire Mediterranean Sea

and can dominate over siliceous phytoplankton. They have

life stages that are expected to respond differently to the vari-

ability in seawater carbonate chemistry and nutrient concen-

trations.

1 Introduction

Marine phytoplankton constitutes about 1–2 % of the global

biomass among primary producers (Falkowski, 1994); how-

ever, it contributes to ∼ 46 % of the primary production in a

global scale (Field et al., 1998). Coccolithophores represent

∼ 10 % of global phytoplankton biomass (Tyrrell and Young,

2009). They play an important role in biogeochemical cy-
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cles, contributing to both the organic and inorganic carbon

pumps through photosynthesis and calcification. The latter

is the main process controlling PIC : POC (rain ratio). For

instance, in the eastern Mediterranean Sea, they are the main

contributor to the inorganic carbon pump (CaCO3 production

and flux) throughout the year (Knappertsbusch, 1993; Ziveri

et al., 2000; Malinverno et al., 2003).

Most studies looking at coccolithophore assemblages and

distribution take into account parameters such as nutri-

ents, photosynthetically active radiation (PAR), temperature,

salinity, and oxygen (e.g., Young, 1994; Ziveri et al., 1995;

Hagino et al., 2000; Takahashi and Okada, 2000; Haidar and

Thierstein, 2001; Cortés et al., 2001; Ignatiades et al., 2009).

Parameters related to the seawater carbonate system have

only recently been considered due to their importance for

calcification and the ongoing and projected changes directly

related to the rapidly increasing atmospheric pCO2. Car-

bonate chemistry parameters have been suggested as drivers

of coccosphere morphology modification in field samples

(Beaufort et al., 2008, 2011; Meier et al., 2014; Triantaphyl-

lou et al., 2010), Emiliania huxleyi blooms (Merico et al.,

2006; Tyrrell et al., 2008), and changes in coccolithophore

assemblage composition (Charalampopoulou et al., 2011).

Although it is not clear why coccolithophores calcify, calcifi-

cation is an energy-consuming process for coccolithophores

(Brand, 1994; Balch, 2004), maintained by natural selection

over millions of years, that changes the carbonate chem-

istry of their surrounding media. It is therefore plausible

that the availability of the necessary resources for carry-

ing out calcification (i.e., HCO−3 and CO2−
3 ) should facili-

tate coccolithophore’s growth in the ocean. In this context,

it is important to understand how marine calcifying organ-

isms could respond to the rapid accumulation of atmospheric

CO2 and their interaction with the ocean’s carbonate chem-

istry (Kroeker et al., 2013).

The Mediterranean Sea provides an ideal ground to ex-

plore the factors controlling coccolithophore distribution be-

cause of the well-known large gradient in physicochemical

parameters. It has a negative fresh-water balance, with evap-

oration exceeding precipitation. Surface water temperature,

salinity, total alkalinity (TA), and [CO2−
3 ] increase towards

the eastern basin. The Mediterranean Sea is one of the most

nutrient-poor regions of the global ocean (Dugdale and Wilk-

erson, 1988), with a trophic status ranging from mesotrophic

in the northwest to extremely oligotrophic in the east (Krom

et al., 1991; Berman et al., 1984; Berland et al., 1988; Yacobi

et al., 1995; Psarra et al., 2000). The spatial distribution of the

phytoplankton community along an east–west transect shows

that coccolithophores can dominate along the Mediterranean

Sea, in the Levantine, Ionian, and Tyrrhenian basins (Ignati-

ades et al., 2009). Ocean acidification, warming, and changes

in nutrient availability are expected to significantly alter pri-

mary production rates, as well as the overall plankton com-

munity structure. Studies on coccolithophores distribution in

the Mediterranean Sea are mostly regional (Dimiza et al.,

2008; Malinverno et al., 2003), losing part of the abovemen-

tioned gradients. Additionally, carbonate chemistry parame-

ters were not available in older studies focussed on the dis-

tribution of coccolithophores in the Mediterranean Sea. Thus

comparisons between the different basins are scarce and the

influence of carbonate chemistry parameters on actual coc-

colithophore assemblages remains therefore uncertain.

The present work investigates the regional and vertical dis-

tribution of living coccolithophores in the Mediterranean Sea

with respect to in situ-measured environmental parameters

and with focus on those of the carbonate chemistry. It pro-

vides a description of the late springtime coccolithophore

assemblage’s composition and distribution in the Mediter-

ranean Sea, with a basin resolution that has not been assessed

before, and along physical and chemical gradients.

2 Material and methods

2.1 Sampling

A detailed water sampling was conducted during the M84/3

cruise from 6 to 28 April 2011 onboard the R/V Meteor (Tan-

hua et al., 2013a). Here we investigate a subset of 81 sam-

ples from 28 stations collected between 0 and 100 m water

depth. Samples were taken using a carousel of 24 Niskin

bottles interfaced with the SBE911 CTD system (SeaBird)

that provided the hydrographical data for in situ tempera-

ture, salinity, and dissolved oxygen of the seawater samples.

Samples collected at < 1 m water depth were obtained by

filling a 5 L plastic container with surface water. Between

1.5 and 4.5 L of water was gently filtered onto acetate cellu-

lose membranes (Millipore, 0.45 µm pore size, 47 mm diam-

eter). Membrane filters were oven-dried at 40 ◦C for ∼ 12 h

and stored in sealed Petri dishes. Figure 1 shows the lo-

cation of all sampled stations during the cruise trajectory.

Table 1 shows the stations coordinates, dates, and sampled

depths. The bottle data can be found at http://cdiac.ornl.gov/

ftp/oceans/CLIVAR/Met_84_3_Med_Sea/.

2.2 Phytoplankton analyses

A portion of each filter was placed on aluminum stubs and

gold-coated using an EMITECH K550X sputter coater. The

quantification and identification of the main phytoplank-

ton groups and coccolithophore species were performed by

JEOL-JSM 6300 and ZEISS-EVO MA10 scanning elec-

tron microscopes (SEMs). Transects of 5–15 mm on the

filter, corresponding to an average of 2.3 mL of seawater,

were observed at 3000x and phytoplankton groups quanti-

fied as coccolithophores, diatoms, and silicoflagellates (Dic-

tyocha spp.). A subset of five random samples was analyzed

under a light microscope for estimation of coccolithophore

and diatom cell abundance at 1000x. This was done in or-

der to check whether counts at higher magnification were

biased towards smaller cells. This comparison showed that
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Table 1. Location, date, and water depth from which the samples were collected.

Station Month/day/year Longitude Latitude Bot. depth Sampled depth (m)

(◦ E) (◦ N) (m) 100 50 25 5 0

287 4/6/2011 25.60 37.67 829 X∗ X X

288 4/7/2011 26.22 35.65 2293 X X

291 4/8/2011 33.00 34.07 2474 X X X X

292 4/9/2011 35.17 33.99 1681 X

293 4/9/2011 34.42 34.00 2034 X

294 4/10/2011 31.00 33.70 2437 X X X X X

296 4/11/2011 28.77 33.58 2934 X

297 4/11/2011 26.02 34.40 4210 X X X

298 4/12/2011 24.33 34.50 3287 X X

299 4/12/2011 22.50 35.00 3117 X

302 4/13/2011 20.35 35.07 2968 X X X X X

305 4/14/2011 17.25 35.60 4440 X X

306 4/15/2011 19.00 36.50 3445 X X X

307 4/15/2011 19.30 37.90 3305 X X

308 4/15/2011 19.00 38.50 3462 X X X X

309 4/16/2011 18.80 39.50 805 X X X

313 4/16/2011 18.00 41.25 1105 X X

316 4/19/2011 11.50 38.60 1665 X X

319 4/20/2011 11.30 40.30 2880 X X

320 4/20/2011 10.61 38.75 2490 X X

321 4/20/2011 9.40 38.25 1565 X X X X

324 4/21/2011 5.60 38.65 2845 X X X X X

329 4/23/2011 2.00 37.90 2730 X X X X X

331 4/23/2011 0.00 37.05 2704 X X X X X

332 4/24/2011 −1.40 36.50 2340 X X

334 4/24/2011 −4.40 36.10 1228 X X X X

337 4/25/2011 −5.36 36.00 935 X X X X X

338 4/25/2011 −5.75 35.95 337 X

∗ 75 m

Figure 1. Sampling stations presented in this study collected during the M84-3 research cruise. A composite image is superimposed showing

the surface chlorophyll concentration (mg m−3) at an approximate date of the sampling period in the different basins. The transect shown in

the following figures includes the stations labeled in black.

www.ocean-sci.net/11/13/2015/ Ocean Sci., 11, 13–32, 2015
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relative abundances of diatoms were similar in the two meth-

ods. They comprised between 1.7 and 3.3 % (SD= 0.85) of

cells counted via optical microscopy and between 0.8 and

4.1 % (SD= 1.6) of cells counted via SEM. Coccolithophore

species were identified and their absolute and relative abun-

dances counted. In samples with very few coccospheres a

larger filter portion was observed in order to quantify a min-

imum of 100 cells (a maximum number of 420 cells were

counted). Lower (CL) and upper (CU) confidence intervals

at 95 % significance were estimated following Bollmann et

al. (2002). For a 100-cell count these were CL = 82 and

CU = 102, and for a 420-cell count:CL = 382 andCU = 422.

Cell densities (number of cells per liter of seawater) were

calculated. Emiliania huxleyi was sub-classified into mor-

photypes according to Young et al. (2003). For each sam-

ple the Shannon–Wiener diversity index (H’) was calculated

for heterococcolithophores and holococcolithophores. These

two groups were treated separately because they represent

two different stages of a coccolithophore’s life cycle, and tax-

onomy between the two does not always account for it.

2.3 Environmental parameters

A detailed protocol of all measured environmental variables

can be found in Tanhua et al. (2013a). In situ salinity, tem-

perature, and oxygen data were measured with a CTD (de-

scribed in Sect. 2.1). Overall data accuracies were 0.002 ◦C

for temperature and 0.003 for salinity. Macronutrients (phos-

phate and nitrate and silicate concentrations) were measured

onboard with a QuAAtro autoanalyzer from SEAL Analyt-

ical. The following protocols from SEAL Analytical were

followed: nitrate (NO3) (method no. Q-068-05 rev. 4), phos-

phate (PO3−
4 ) (method no. Q-031-04 rev. 2), and silicium (Si)

(method no. Q-066-05 rev. 3). The nutrient analytical error

was determined on 5–7 sample replicates taken at selected

stations. The error for nitrate is 0.08 µmol kg−1, for phos-

phate 0.007 µmol kg−1, and for silicate 0.10 µmol kg−1.

The carbonate system was characterized by measuring dis-

solved inorganic carbon (DIC), pH, and total alkalinity (TA).

DIC content was measured coulometrically using a SOMMA

(single-operator multi-metabolic analyzer) system. The pre-

cision of the analysis is ±0.6 µmol kg−1 and the accuracy is

2.5 µmol kg−1. The pH was measured by means of double-

wavelength spectrophotometry, and it is reported at 25 ◦C on

the total scale. The reproducibility of the pH measurements

was 0.0012. TA was analyzed following a double-end-point

potentiometric technique. The precision of the TA measure-

ments was 0.1 µmol kg−1. More details about the DIC, TA,

and pH measurements and quality control are presented in

Álvarez et al. (2014). In situ conditions for other CO2-related

variables were calculated from in situ pH and TA for the first

100 m water column. Calculations were performed using the

program CO2Sys (Lewis and Wallace, 1998). Equilibrium

constants of Mehrbach et al. (1973) refitted by Dickson and

Millero (1987) were chosen (Álvarez et al., 2014).

A characterization of the upper 100 m environmental pa-

rameters is shown in Fig. 2; the profiles for the complete wa-

ter column at a higher spatial horizontal resolution and a full

description of the physicochemical setting are presented in

Tanhua et al. (2013b) and Álvarez et al. (2014) in this Ocean

Science special issue.

2.4 Statistical analyses

The E-PRIMER v.5 package was used for the following anal-

yses:

– (1) The BIOENV routine, which computes a rank cor-

relation between the elements of similarity matrices for

environmental parameters and biological data, was run

to detect the combined changes in environmental pa-

rameters and species distribution among stations. The

routine examines all possible combinations of environ-

mental variables and gives the “best fit” (higher Rho–

Spearman rank correlation) of environmental variables

explaining changes in biological communities. This test

was performed for all heterococcolithophore and holo-

coccolithophore species contributing > 2 % to the total

assemblage of each group. Before running the routine,

we checked for mutual correlation among environmen-

tal variables and selected a subset of them for this rou-

tine. These were salinity, temperature, oxygen, pH, par-

tial pressure of carbon dioxide (pCO2), and the con-

centrations of bicarbonate ion (HCO−3 ), carbonate ion

(CO−2
3 ), NO3+ NO2, and PO3−

4 .

– (2) Hierarchical cluster analyses by group average.

These were performed for heterococcolithophore and

holococcolithophore species. Emiliania huxleyi mor-

photype A was removed of the data set used to run

the cluster analyses. This was done to emphasize our

results on overall community composition and not on

E. huxleyi , which largely dominated the assemblages

in our samples. When clusters among species were de-

tected, pair-wise Spearman correlations were performed

using the software SPSSv18 to assess the environmental

parameters influencing changes in each species’ abun-

dance.

For the analyses performed using E-PRIMER software,

the biological data were transformed in logarithmic scale

log(1+x) to avoid overemphasizing the dominant species.

Environmental data were standardized (−mean ·STD) to

bring data into a comparable scale. Similarity matrices were

created for biological and environmental data. For the bio-

logical data the Bray–Curtis similarity coefficient was used

to examine similarity between each sample’s pair. Euclidean

distances were used to create the environmental data matrix.

Pair-wise Spearman correlations were performed on the basis

of non-transformed, non-standardized data.

Ocean Sci., 11, 13–32, 2015 www.ocean-sci.net/11/13/2015/
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Figure 2. Environmental parameters at sampling stations for surface waters during the M84-3 cruise. The west–east transect along the

Mediterranean Sea does not take into account the stations in the Aegean, Adriatic, the northernmost Ionian, or northern Tyrrhenian regions.

It includes the stations labeled in black (west–east transect) in Fig. 1.

3 Regional settings

The Mediterranean Sea can be divided into two basins with

a general counterclockwise circulation: the western and east-

ern basins. The Strait of Sicily prevents deep-water exchange

between the two. The upper layer (from the surface down

to 150–200 m, according to the basin and the season) is oc-

cupied by the Atlantic Water (AW) (Ribera d’Alcalà et al.,

2003). In the western Mediterranean, AW flows along the

eastern part of the Alboran Sea in an anticyclonic fashion,

and moves to the western Alboran in a more variable pat-

tern (Robinson et al., 2001). Further east, the AW is trans-

ported along the Algerian slope until the Sardinia Channel.

Part of the flow then proceeds to the eastern basin along the

Tunisian slope, while the other part reaches northern Sicily

and circulates along Italy. In the north, the Liguro–Provenco–

Catalan Current, is form by AW surrounding Corsica. AW

closes its western gyre southeast of Spain, where it encoun-

ters the newly entered AW (see Robinson et al., 2001, for

more details). In the eastern basin, a jet of Atlantic Water en-

ters through the Strait of Sicily, meanders through the interior

of the Ionian Sea and continues to flow through the central

Levantine all the way to the shores of Israel (Robinson et

al., 2001). Convection occurs when the water approaches the

Rhodos gyre. Another part of the AW flow moves to the Io-

nian and a part of it goes further into the Adriatic Sea. Deep-

water formation also occurs in the Adriatic gyre (Pinardi and

Masetti, 2000).

During the M84/3 cruise, the surface layer in the western

basin was filled by the inflow of relatively low-salinity AW

through the Strait of Gibraltar. The salinity minimum, in the

surface layer of the strait, shows the entrance of this water

into the Mediterranean. Once it reaches the Sicily Channel

(close to stations 304/305), the salinity minimum was found

at ∼ 100 m depth. (Hainbucher et al., 2014). In terms of car-

bonate chemistry, AW from the surface western Mediter-

ranean was characterized by TA below 2560 µmol Kg−1, DIC

near 2250 µmol Kg−1, and pH of 8 (Àlvarez et al., 2014). In

the surface layer, AW with salinity lower than 38 was de-

tected in all the Tyrrhenian stations except 319 in the cen-

ter of the basin, where salinity was higher. There, Álvarez

et al. (2014) suggest that the upper ∼ 50 dbar was occu-

pied by probably AW affected by evaporation or mixed with

the salty intermediate water entering through the Strait of

Sicily. During the M84/3 cruise, modified AW and Levantine

Surface Water (LSW) dominated the eastern Mediterranean,

down to approximately 100 m water depth. The LSW, formed

www.ocean-sci.net/11/13/2015/ Ocean Sci., 11, 13–32, 2015
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Figure 3. Daily mean chlorophyll-a concentration from satellite data (Volpe et al., 2012) along the 

transect of the M84/3 cruise, plotted for the month of April 2011. In this figure, gaps correspond to 

cloud covered observations and the temporal-spatial location of the samplings during our study is 

indicated by black dots. The transect is representative of 18Km in latitude, (two pixels at 9Km 

resolution).  
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the month of April 2011. In this figure, gaps correspond to cloud-covered observations and the temporal–spatial location of the samplings

during our study is indicated by black dots. The transect is representative of 18 km in latitude (two pixels at 9 km resolution).

by intensive heating and evaporation, has the largest salin-

ity and temperature of the entire Mediterranean (> 17 ◦C,

> 38.9), and has TA values around 2610 µmol Kg−1, DIC

around 2270 µmol Kg−1, and pH25T around 8.03 (Álvarez et

al., 2014). Levantine Intermediate Water (LIW) was detected

at ∼ 50–100 m in the Levantine Sea, along its path from the

northeastern Levantine Sea, and in the Rhodes cyclonic gyre

(Hainbucher et al., 2014, and references therein). Close to the

M84/3 trajectory, wind-induced upwelling and downwelling

zones are found in different seasons (see Bakun and Agos-

tini, 2001): for instance, (1) downwelling along the south-

ern coastal boundary during winter, reversing to coastal up-

welling off Libya in spring and off Algeria in summer and

fall; (2) strong upwelling in the eastern Aegean Sea through-

out the year, becoming remarkably intense in the summer and

fall; and (3) strong summer and fall upwelling in the eastern

Ionian Sea.

Figure 3 shows daily variations in cloud coverage dur-

ing the month of April (from satellite observations). It pro-

vides an overview of the meteorological situation and pos-

sible short-term variability that may mask any relationship

with long-term average oceanographic gradients. Approxi-

mately half of the satellite observations were cloud covered,

with a minimum in cloud coverage (∼ 40 % of observations)

at about 25◦ E (south of Crete). This minimum corresponds

to the only segment of the transect directly influenced by

northern wind regimes. Such approximation can be com-

pared with the meteorological reports during the M84/3 (data

not shown), which shows that ∼ 58 % of the sampling days

were cloudy (at the time of recording), with the majority of

sunny days from southern Crete towards the Adriatic. There-

fore, the sampled days were representative, in terms of cloud

coverage, of the conditions during April 2011.

4 Results

4.1 Main phytoplankton community

Overall, phytoplankton cell density was highest in the west-

ern Mediterranean Sea, in the Strait of Gibraltar and in the

Alboran Sea. For coccolithophores, the pattern was not one

of gradual increase towards the west but rather of local-

ized spots of higher cell densities close to Gibraltar and a

continuous presence, at lower cell densities, in the rest of

the Mediterranean. The satellite-derived chlorophyll a con-

centration during April 2011 (Fig. 3) shows a similar pat-

tern. Coccolithophores were the most abundant phytoplank-

ton group during the sampling, relative to siliceous phy-

toplankton. They were present in great numbers in all the

main Mediterranean basins and accounted for 68 to 99 %

of counted phytoplankton. Diatoms, although present in all

studied basins, displayed low concentrations in the east-

ern Mediterranean, increasing towards the west. They were

on average 6 % (maximum 25 %) of total phytoplankton.

Silicoflagellates (Dictyocha spp.) accounted on average for

Ocean Sci., 11, 13–32, 2015 www.ocean-sci.net/11/13/2015/
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Figure 4. Distribution of coccolithophores (upper panel), diatoms (middle panel) and silicoflagellates 

(lower panel) in a west to east transect along the Mediterranean Sea (the transect includes the stations 

labeled in black in Figure 1). 
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transect along the Mediterranean Sea (the transect includes the sta-

tions labeled in black in Fig. 1).

1 % of phytoplankton (maximum 9 %). Figure 4 shows the

distribution of these different phytoplankton groups in the

Mediterranean transect. A species present mostly at low

cell densities was the xanthophyte Meringosphaera mediter-

ranea.

4.2 Environmental factors controlling coccolithophore

community distribution

A total of 70 coccolithophore species in heterococcol-

ithophore life stage and 45 in the holococcolithophore stage

were recorded (see Appendix A). The majority of the quan-

tified cells were in the heterococcolithophore phase. The

species Emiliania huxleyi largely dominated the coccol-

ithophore counts in all stations except for station 319 (at the

center of the Tyrrhenian Basin), where Corisphaera gracilis

and Rabdosphaera clavigera were the dominant species.

The results from the Spearman’s rank-correlation-based

routine (BIOENV) suggest that holococcolithophores were

preferentially distributed in low-nutrient, high-pH seawaters.

(ρ = 0.328, Table 2). They were almost absent at 100 m. Het-

erococcolithophore distribution was best linked to a combi-

nation of [CO2−
3 ], pH, and salinity with ρ = 0.566 as well as

to [PO3−
4 ] (Table 3).

4.3 Species assemblages

When clustering all the species within the heterococcol-

ithophore life stage, three groups or assemblages were identi-

fied that shared more than 65 % similarities. Figure 5 presents

the results of further clustering of the species with high simi-

larities. The distribution of these species along the east–west

transect (stations with black labels in Fig. 1) that includes

the stations in the Levantine, Ionian (excluding 307–309),

Tyrrhenian (excluding 319), Algerian, Alboran, and Gibral-

tar regions shows that the three groups are distinctively dis-

tributed in the Mediterranean Sea (Figs. 5, 6, and 7). The

first group comprises species that were more abundant in the

eastern stations: U. tenuis, D. tubifera, P. vandelii, S. pul-

chra, R. clavigera, and S. protrudens (R. xyphos was very

close to this cluster, with similarity > 50 %). P. vandelii, how-

ever, was patchily distributed all along the transect. The sec-

ond group includes E. huxleyi Type B/C and the Gephyro-

capsa species: G. ericsonii, G. muellerae, and G. oceanica.

These species were almost exclusive of the western basin.

A third group was formed by Florisphaera profunda and

Gladiolithus flabellatus, being closely related to A. robusta

and H. carteri (the last two with similarities between 40 and

60 %). The species in the latter group were almost restricted

to depths below 50 m, with higher abundances at 100 m, and

were patchily present from the Algerian to the Levantine

basins. Clustering analysis for the holococcolith phase did

not reveal any pattern in the species composition among the

different samples.

Single Spearman correlations for the species that were

clustered together reveal that their distribution can be better

explained by seawater carbonate chemistry parameters; for

instance, species that were mostly abundant at eastern sta-

tions thrived in waters with higher [CO2−
3 ] and pH and in the

surface. Among these species, U. tenuis, R. clavigera, S. pul-

chra, and S. protrudens were negatively correlated to phos-

phate concentrations and only D. tubifera showed a high pos-

itive correlation with temperature. Finally, F. profunda and G.

flabellatus were correlated to [NO3+ NO2] and negatively

with temperature. Table 4 shows these results.

4.4 Species diversity (H’)

Hetero- and holococcolithophore species diversity index (H’)

changed slightly in the W–E transect. Although correlations

between H’ and the longitude of the sample sites (◦E) in

the first 50 m water column were rather weak, the trend was

opposite for the two life stages. For instance, heterococ-

colithophore diversity tended to decrease towards the east

(ρ =−0.419, p = 0.000), while holococcolithophore species

diversity tended to increase W–E (ρ = 0.310; p = 0.005)

(Fig. 9). H’ index at 100 m was often zero for both
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Table 2. Rho values (ρ) for the best Spearman’s rank correlations for all possible combinations between the environmental parameters

explaining patterns in holococcolithophore assemblages. Only ρ > 0.2 are shown. Description as in Table 1. On the left, the number of

variables taken into account; on the right, description of the variables and the highest ρ values for the rank correlations at a given number of

variables. In the first row, the ρ value for each variable is shown in decreasing order of contribution to explain changes in the biological data.

Only ρ > 0.2 are shown.

Number of Variables (ρ)

variables

1 NO−
3
+ NO−

2
(0.275); PO3−

4
(0.236); pH (0.214); pCO2 (0.204);

2 NO−
3
+ NO−

2
pH (0.327)

3 NO−
3
+NO−

2
PO3−

4
, pH (0.328)

4 NO−
3
+ NO−

2
pH, O2, Salinity (0.311)

5 NO−
3
+ NO−

2
PO3−

4
, pH, O2, salinity (0.311)

6 NO−
3
+ NO−

2
PO3−

4
, pH, pCO2, O2, salinity (0.299)

7 NO−
3
+ NO−

2
PO3−

4
, pH, pCO2, O2, salinity, Temperature (0.283)

8 All (0.275)

Table 3. Rho values (ρ) for the best Spearman’s rank correlations for all possible combinations between the environmental parameters

explaining patterns in heterococcolithophore assemblages. Description as in Table 2.

Number of Variables (ρ)

variables

1 CO2−
3

(0.551); pH (0.498); pCO2 (0.397); PO3−
4

(0.358); NO−
3
+ NO−

2
(0.328); salinity (0.310); O2 (0.226);

2 CO2−
3

salinity (0.563)

3 CO2−
3

pH, salinity (0.566)

4 CO2−
3

pH, PO3−
4

, salinity (0.565)

5 CO2−
3

pH, pCO2, PO3−
4

, salinity (0.539)

6 CO2−
3

pH, pCO2, PO3−
4

, salinity, temperature (0.517)

7 CO2−
3

pH, pCO2, PO3−
4

, salinity, O2, temperature (0.507)

8 All (0.491)

groups, being on average 0.3 for holococcolithophores,

which are mostly present at surface, and 1.3 for heterococ-

colithophores.

5 Discussion

5.1 Main phytoplankton community

Although picoplankton can seasonally dominate phytoplank-

ton assemblages in the Mediterranean Sea (Decembrini et al.,

2009; Yacobi et al., 1995), previous studies have often sug-

gested that coccolithophores are one of the most abundant

phytoplankton groups in this sea, in both the eastern (e.g.,

Gotsis-Skretas et al., 1999; Malinverno et al., 2003; Igna-

tiades et al., 1995, 2009; Rabitti et al., 1994; Ziveri et al.,

2000) and western basins (e.g Barlow et al., 1997; Barcena

et al., 2004, Ignatiades et al., 2009). Our findings suggest

that coccolithophores are a main phytoplankton group in the

entire Mediterranean Sea that dominated over siliceous phy-

toplankton for the period under study (Fig. 4). Silicoflagel-

lates were almost absent at 100 m and more abundant at sur-

face waters of the Tyrrhenian Sea, with cell densities up to

6.7× 103 cells L−1. Diatoms were preferentially distributed

in the western Mediterranean Sea, in waters with lower

[CO2−
3 ] pH and higher PO3−

4 at a maximum cell density

of 1.6× 104 cells L−1 (Fig. 4). Diatom cell densities in the

Mediterranean ranged from a few individuals in the Ionian

Sea surface to∼ 3.5× 104 in the Tyrrhenian Sea (June 1999;

Ignatiades et al., 2009), from 0.8× 103 to 2× 104 (July

2005, Decembrini et al., 2009), from 0.2× 103 to 5× 103

(September–October 2004, Lasternas; et al., 2011), and from

0.7× 103 to 2.6× 103 cells L−1 (December 2005; Decem-

brini et al., 2009) in the Tyrrhenian Sea. Without taking into

account interannual variability, this suggests a pattern of en-

hanced diatom abundances in the first part of the year and a

decrease after July.

In the last decades, many attempts to explain the tempo-

ral and spatial phytoplankton distribution based on few key

environmental factors have been made. Some of the most

discussed are the hypothesis of Sverdrup (1953), stating that

changes in phytoplankton abundances are light- and nutrient-

controlled features, and the so-called Margalef’s mandala

(Margalef, 1978), which proposes that phytoplankton succes-

sion depends on nutrient concentration and turbulence. Re-

garding the possible role of light in the relative success of
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Table 4. Three highest Spearman’s correlation (ρ) results for (1) the dominant species Emiliania huxleyi, (2) each of the species belonging

to the observed clusters with the environmental parameters, (3) the holo- and hetero-life phases of the same species, and (4) hetero- and

holococcolithophore abundances and diversity (H’) and abundances of siliceous phytoplankton groups. Preferential depth and distribution

along the west–east transect is described. Number of samples taken into account for the analysis is also shown (N ). Significance level was

0.05.

Species/group Variable (r,N ) Pref. depth Pref. distribution

E. huxleyi Type A pH (0.468; 73) CO2 (-0.448; 73), CO2−
3

(0.444; 73), 0–100 m W–E

E. huxleyi Type B/C Salinity (−0.691; 81), CO2−
3

(−0.685;73), pH (−0.616; 73) 0–100 m W

G. ericsonii Salinity (−0.805; 81), CO2−
3

(−0690; 73), pH (-0.576; 73) Above 50 m W

G. oceanica CO2−
3

(−0.833; 73), Salinity (−0.803; 81), pH (−0.731; 73) 0–100 m W

G. muellerae CO2−
3

(−0.835; 73), Salinity (−0.830; 81), pH (−0.707; 73) 0–100 m W

U. tenuis CO2−
3

(0.626; 73), pH (0.605; 73), PO3−
4

(-0.551; 74) Above 50 m E

R. clavigera CO2−
3

(0.727; 73), pH (0.701; 73), PO3−
4

(-0.546; 74) Above 50 m E

D. tubifera pH (0.600; 73), Temperature (0.597; 81), CO2−
3

(0.541; 73) Above 50 m E

S. pulchra pH (0.551; 73), CO2−
3

(0.528; 73), PO3−
4

(-0.399; 74) 0–100 m E

S. protrudens pH (0.557; 73), CO2−
3

(0.489; 73), PO3−
4

(-0.450; 74) Above 50 m E

F. profunda NO−
3
+ NO−

2
(0.637; 81), Temperature (−0.553; 81), pH (−0.468; 73) Below 50 m W–E

G. flabellatus NO−
3
+ NO−

2
(0.583; 81), Temperature (−0.522; 81), O2 (−0.481; 73) Below 50 m W–E

S. pulchra HOL PO3−
4

(−0.308; 74) CO2 (−0.261; 73), O2 (0.260; 73) Above 50 m W–E

C. mediterranea HCO−
3

(-0.294; 73) – – Above 50 m W–E

C. mediterranea HOL O2 (0.240; 73) – – Above 50 m W–E

H. carteri CO2 (0.341; 73), pH (−0.339; 73), – 0–100 m W–E

H. carteri HOL NO−
3
+ NO−

2
(−0.284; 81), – – Above 50 m W–E

Hetero-abund. CO2 (−0.278; 73), – – 0–100 m W–E

Holo-abund. Depth (−0.427; 81), NO−
3
+ NO−

2
(−0.391; 81), CO2 (0.339; 73) Above 50 m E

Hetero-diversity (H’) CO2−
3

(−0.486; 73), Salinity (−0.426; 81), pH (−0.413; 73) – –

Holo-diversity (H’) HCO−
3

(−0.460; 74) CO2−
3

(0.446; 73), pH (0.388; 73) – –

Diatoms CO2−
3

(−0.617; 73), pH (−0.602; 73), PO3−
4

(0.534; 74) Below 25 m W

Silicoflagellates Si (0.254; 76) – – 0–100 m W–E

coccolithophores over siliceous phytoplankton, we recorded

global and UV radiation at the surface, and at the time of

sampling at some of the stations, but lack light data at ev-

ery depth. No significant correlation was observed for any

of the phytoplankton groups with radiation data (p > 0.05,

N = 21). Most likely, a response to changes in radiation will

not be immediate (specially because the variable that we

recorded – cell densities – relates to cell division). In such a

case the short temporal extension of our data (by minute dur-

ing the sampling) could mask a correlation. Large variations

in light are also observed on the vertical profile. Holococ-

colithophores and diatoms correlated with depth (negative

and positive correlations, respectively), although for diatoms

this correlation was rather weak (ρ = 0.240; p = 0.031). This

could indicate that the two groups are more sensitive to light

conditions than heterococcolithophores, but it might also be

an artifact of the co-correlation between depth and nutrients.

Additionally, light attenuation can differ between stations,

and therefore this comparison is only approximate.

In the case of nutrients, it is important to notice that the

dominance of coccolithophores over siliceous phytoplank-

ton was clear in all the basins, including the Gibraltar strait,

where nitrate and phosphate were available and silicate con-

centrations were above the half-saturation constant for di-

atoms (Ks_Si: ca. 3.5 µM (Merico et al., 2006; Leblanc et

al., 2003; Sarthou et al., 2005) or 0.8–2.3 µM (Nelson et

al., 1976)) and we could have expected the community to

be dominated by fast-growing phytoplankton. In the inte-

rior of the Mediterranean, [Si] was probably too low (of-

ten below 1.0 µmol Kg−1) to support large diatom popula-

tions, except for the deeper layers (100 m) of the Ionian and

Levantine basins, which ranged from 0.8 to 1.4 µmol Kg−1.

Egge and Aksnes (1992) observed that, at Si values lower

than 0.6 µM, Emiliania huxleyi outcompeted the otherwise

dominant Skeletonema costatum. For the data set here pre-

sented, nutrient variability alone does not explain the domi-

nance of coccolithophores during April 2011, at least not di-

rectly. A possible phosphate limitation for other phytoplank-

ton groups (notice the high N / P ratios in both the eastern and

western basins as well as in the Strait of Gibraltar) cannot

be ruled out for explaining coccolithophore dominance over

other groups. Turbulence does not account for it either, since

coccolithophores dominated in regions where water density

was homogeneous throughout the first 100 m as well as in

regions where isoclines can be distinguished (e.g., see salin-

ity and temperature profiles from Fig. 2). Overall, the reason

for the dominance of coccolithophores over siliceous phyto-

plankton remains unclear.
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We suggest that the relative success of coccolithophores

over siliceous phytoplankton during April 2011 in all

Mediterranean Sea basins can be due to a parameter(s) not

measured during this study or to a threshold concentration in

a resource that limits the growth of the other phytoplankton

groups, but that covers the requirements of coccolithophores.

The last hypothesis would be better tested experimentally

than by correlation analysis.

5.2 Environmental factors controlling coccolithophore

distribution

Concerning the coccolithophore community, the study of

Knappertsbusch (1993) suggests the occurrence of sea-

sonal variability. His sampling was divided in two pe-

riods: late winter (February–March 1988) and late sum-

mer (September–October 1986). Knappertsbusch observed

higher cell densities during late winter and increasing to-

wards the eastern Mediterranean, reaching 230 000 cells per

liter in the Levantine Basin. During September–October this

pattern was reversed. Our results resemble those correspond-

ing to September–October in Knappertsbusch work. How-

ever, there was no gradual increase towards the west but

rather localized higher cell densities close to Gibraltar and

a continuous presence, at lower cell densities, in the rest

of the Mediterranean (Fig. 4). This is in agreement with

the relatively low satellite-derived chlorophyll a values in

most the surface Mediterranean Sea during the month of

April, ∼ 0 mg m−3, and the increased values approaching

the Strait of Gibraltar, ∼ 0.5–0.6 mg m−3 (Fig. 3), and mea-

sured data from Rahav et al. (2013) ranging from ∼ 0.03

to ∼ 0.1 µg L−1 in most of the Mediterranean and rising to

0.31 µg L−1 near the Strait of Gibraltar. It also agrees with

the suggested modulation of pH by primary production in

the western basin during the cruise (Álvarez et al., 2014).

In the study by Ignatiades et al. (2009), the increase in coc-

colithophore cell densities in the western Mediterranean is

mainly due to the significantly higher values at one station

(close to the Balearic Islands).

Coccolithophores have a heteromorphic life cycle, with

diploid cells producing heterococcoliths and haploid cells

producing holococcoliths. Nothing is known about the ef-

fects of the ongoing climate change and ocean acidification

on coccolithophore life cycle and how this could determine

its distribution.

5.2.1 Holococcolithophores

Our findings documented that holococcolithophore distri-

bution during the time of the M84/3 cruise was best ex-

plained by changes in nutrients ([NO3+NO2] and [PO3−
4 ])

and pH (ρ = 0.328, Table 3). They were more abundant

in low-nutrient, high-pH seawaters typical of the surface

(upper 50 m) Mediterranean waters. Holococcolithophores

were, in general, present in all samples collected in Mediter-
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Figure 5. Hierarchical cluster for the heterococcolithophores species that shared more than 65% 

similarity in their abundance and distribution patterns. 

  

Figure 5. Hierarchical cluster for the heterococcolithophore species

that shared more than 65 % similarity in their abundance and distri-

bution patterns.

ranean surface waters but almost absent at deeper depths

(∼ 100 m). Higher abundances in very oligotrophic waters

of the Mediterranean Sea have been reported before (Klei-

jne, 1991,1992). Cros and Estrada (2013) reported holo-

coccolithophores being more abundant in the upper photic

zone nutrient-depleted waters. They linked the observed seg-

regation to a differentiation of ecological niches. Dimiza

et al. (2008) observed that holococcolithophores around

Andros Island were more abundant in surface waters to-

gether with some heterococcolithophore species such as Rab-

dosphaera clavigera. The lower ρ obtained in the BIOENV

analysis for holococcolithophores (Table 2) might be due to

the lack, in the statistical analysis, of an important parameter

(e.g., irradiance, zooplankton grazing) not measured during

this study.

Interestingly, when both life phases were recorded (i.e., in

the species S. pulchra, C. mediterranea and H. carteri), the

environmental factors controlling the abundances were con-

siderably different (Table 4). This clearly indicates that the

two life phases respond differently to environmental factors

which is likely imposing a differential distribution.

5.2.2 Heterococcolithophores

Heterococcolithophore distribution was best linked to a com-

bination of [CO2−
3 ], pH, and salinity (ρ = 0.566; Table 3),

and the single abiotic parameter that best grouped heterococ-

colithophore assemblages in a manner consistent with the

sampling locations was [CO2−
3 ] (Table 3, first row). The ρ

value for the combination of four variables – [CO2−
3 ] pH,

salinity, and [PO3−
4 ] – was not much lower than the “best

fit” ([CO2−
3 ] pH, salinity). This might indicate that, apart

from seawater carbonate chemistry, [PO3−
4 ] is also impor-

tant in explaining heterococcolithophore distribution. It is

worth noting that [PO3−
4 ] correlated to the heterococcol-

ithophore species diversity (H’) (ρ: 0.322, p < 0.05) but not

to the abundance. Thus, the availability of PO3−
4 might co-
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Figure 6. Distribution, along a west–east transect, of the heterococcolithophore species forming the cluster comprised mainly of “eastern

Mediterranean species”. Holococcolithophores as a group are added in the bottom right panel (the transect includes the stations labeled in

black in Fig. 1).
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Figure 7. Distribution, along a west to east transect, of the heterococcolithophore species forming the 

cluster comprised mainly by “western Mediterranean species” (the transect includes the stations 

labeled in black in Figure 1). 
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Mediterranean species” (the transect includes the stations labeled in black in Fig. 1).

determine the assemblage composition. Differences in PO3−
4

usage have been reported between strains of the same species

(Oviedo et al., 2014). It is therefore likely that different

species show different sensitivities to [PO3−
4 ], which could

induce differences in community composition upon environ-

mental [PO3−
4 ]. Overall, we suggest [CO2−

3 ], pH, and proba-

bly [PO3−
4 ] as functionally related important variables in ex-

plaining heterococcolithophore distribution in the Mediter-

ranean Sea.

Although heterococcolithophores preferentially use

HCO−3 for their intracellular calcification within a calcifying

vesicle (Mackinder et al., 2010) at alkaline pH values, CO2−
3

is the major carbon source for CaCO3 and we can assume

the uptake of both HCO−3 and CO2−
3 (Ziveri et al., 2012).

In the Mediterranean Sea, [CO2−
3 ] increases gradually

towards the east. Thus, it is possible that those species

thriving in the eastern basins utilize comparatively more

CO2−
3 than those that prosper in the western Mediterranean.

Using a compilation from worldwide plankton samples and

sediments spanning the last 40 kyr, Beaufort et al. (2011)

recorded significant correlations between coccolith mass

belonging to the family Noelaerhabdaceae (genera Emilia-

nia, Gephyrocapsa, and Reticulofenestra) with [CO2−
3 ] and

[HCO−3 ]. They argue that differentially calcified species are

distributed in the ocean according to the ocean’s carbonate
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Figure 8. Distribution, along a west to east transect, of the heterococcolithophore species forming the 

smallest of the observed clusters comprised by 2 deep photic zone species (the transect includes the 

stations labeled in black in Figure 1). 

  

Figure 8. Distribution, along a west–east transect, of the heterococ-

colithophore species forming the smallest of the observed clusters

comprised of two deep photic zone species (the transect includes

the stations labeled in black in Fig. 1).
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Figure 9. Shannon-Weiner diversity index for holococcolithophores and heterococcolithophores. A 

higher index, or higher uncertainty in correctly guessing the “next species” that would be sampled, is 

representative of a more diverse community. 
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Figure 9. Shannon–Wiener diversity index for holococcol-

ithophores and heterococcolithophores. A higher index, or higher

uncertainty in correctly guessing the “next species” that would be

sampled, is representative of a more diverse community.

chemistry. Modeling studies also highlighted the importance

of [CO2−
3 ] for coccolithophore distribution, as observed

by Merico et al. (2006); Tyrell et al. (2008) observed that

Emiliania huxleyi blooms in the Baltic Sea coincide with

periods of high [CO2−
3 ].

Changes in pH are concomitant with changes in the ratio

between bicarbonate and carbonate ions. This makes diffi-

cult to disentangle which parameter of the carbonate system

could affect coccolithophore populations. Under laboratory

culture conditions, Emiliania huxleyi calcification is sensitive

to low pH and bicarbonate, while photosynthesis and growth

is sensitive to low pCO2 (Bach et al., 2013) and the coc-

colith morphogenesis in Calcidiscus leptoporus is hampered

by pCO2 and no other parameter of the carbonate chemistry

(Langer and Bode, 2011). How will these responses trans-

late to a community scale in the ocean? Charalampopoulou

et al. (2011) found that the coccolithophore species distribu-

tion between the North Sea and the Atlantic Ocean related

to pH and irradiance. In our study, pCO2, one of the param-

eters considered to run the BIOENV routine, was not part

of the best-fitting variables to explain coccolithophore dis-

tribution patterns. This might be an indication that, during

the time of the study, there was no evident pCO2 limita-

tion of photosynthesis in the observed species or that coccol-

ithophore sensitivity to CO2 among species, even if different

(Langer et al., 2006, 2009) do not have major effects on coc-

colithophore species assemblages in the Mediterranean. Imi-

tating the experimental design of the abovementioned culture

experiments on a mesocosm scale could help elucidating how

the different effects of carbonate chemistry modification on

coccolithophore’s physiology and morphology will shape the

community.

Salinity, even if one of the environmental variables that op-

timized the best-fitting combination of variables explaining

the biological data, might not be crucial in controlling hetero-

coccolithophore distribution. Experimental evidence (Brand,

1984) indicates strain-specific differences that allow Emilia-

nia huxleyi to survive at a wide salinity range. E. huxleyi has

been found in oceanographic regions characterized by very

different salinities (reviewed by Tyrrell et al., 2008). Fur-

thermore, heterococcolithophores isolated from the Mediter-

ranean Sea (CODENET collection) were maintained at salin-

ities of 32–33 with non-observed adverse effects (Probert and

Houdan, 2004).

5.3 Species assemblages

Another feature that was different between the coccol-

ithophore life stages is the development of species assem-

blages. Holococcolithophore species did not form differ-

ent assemblages along the Mediterranean Sea (no species

clustering with high similarities in abundance and distribu-

tion). Holococcolithophores seem to behave as a homoge-

neous group, exploiting a similar ecological niche. However,

three heterococcolith clusters were identified whose species

shared more than 65 % similarities (Fig. 5). The first group

comprises species that were more abundant in the eastern

stations: U. tenuis, D. tubifera, P. vandelii, S. pulchra, R.

clavigera, and S. protrudens. The second group includes E.

huxleyi Type B/C and the Gephyrocapsa species – G. er-

icsonii, G. muellerae, and G. oceanica – that were almost

exclusive to the western Mediterranean. A third group was

formed by Florisphaera profunda and Gladiolithus flabel-

latus and found with higher abundances below 50 m. Most

of the species in these clusters have been found to share
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an ecological niche in other studies: U. tenuis, D. tubifera,

S. pulchra, and R. clavigera have been considered typical

in oligotrophic warm waters and/or surface water species

(Okada and Honjo 1973; Okada and McIntyre, 1977, 1979;

Nishida, 1979; Ziveri et al., 2000; Haidar and Thierstein,

2001; Malinverno et al., 2003; Ziveri et al., 2004, for Syra-

cosphaera spp.; Triantaphyllou et al., 2004). The gephyro-

capside species have been considered typical of eutrophic ar-

eas (Kleijne, 1989; Broerse et al., 2000) with lower density,

lower salinity and higher temperature (Takahashi and Okada,

2000; Knappertsbusch, 1993). Finally, F. profunda and G. fla-

bellatus are widely recognized deep euphotic zone species,

often living below 100 m depth (Okada and Honjo, 1973;

Boeckel et al., 2006), and are controlled by the dynamics of

the nutricline and thermocline (Molfino and McIntyre, 1990;

Triantaphyllou et al., 2004). Both species were an important

component below the 50 m, with highest abundances around

100m, where fluorescence data (not shown) place the deep

chlorophyll maximum. The positive correlation with [NO3+

NO2] supports the previous observations. The negative cor-

relation with temperature reflects the fact that nutrients are

generally linked to deep mixing and colder waters. For in-

stance, higher abundances of F. profunda have been observed

in sediments underneath relatively warmer and stratified sur-

face waters with a deep nutricline (Boeckel et al., 2006).

The clustering of coccolithophore species resembles those

proposed by Young (1994): an umbelliform group such as

Umbellosphaera tenuis, found in nutrient-depleted waters;

a second group of placolith-bearing cells such as Emilia-

nia huxleyi or Gephyrocapsa spp. found in coastal or mid-

ocean upwelling regions; and a last group, composed of flori-

form cells, such as Florisphaera profunda, associated with

deep photic-zone assemblages in low to mid-latitudes. To

the first group we would add the rabdolith-bearing species

as well as some Syracosphaera species widely associated

with oligotrophic (Ziveri et al., 2004) surface waters (Malin-

verno et al., 2003) and cluster them together in our study. As

Balch (2004) suggested when referring to this species group-

ing proposed by Young, “it is likely that the three groups of

coccolithophores show differences in their growth strategies

which ultimately would relate to their natural abundance”.

Heterococcolithophores and holococcolithophores also

displayed opposite trends in species diversity (Fig. 9). How-

ever the weak correlation obtained between the diversity in-

dex H’ and the longitude of the sample site should be taken

into account. Given the taxonomical problems between the

two life stages (see Sect. 2.1) when considering the two as a

single group would lead to the overestimation of the number

of species, affecting H’. Future work on the topic of discrim-

inating between the two life stages would be necessary in

order to clarify the trends suggested here.

Overall, distribution patterns and their relation to environ-

mental parameters are different between the holo- and hete-

rococcolithophore life phases. This is probably the result of

a different physiology and reveals that the two phases are ex-

ploiting different ecological niches. Differences in the mor-

phology and ecology of the two life phases enable the species

to survive under a wider range of environmental conditions

and could result in a wider distribution range in space and/or

time. For instance, blooms of Emiliania huxleyi in hetero-

coccolith phase can end due to viral attacks (Martínez et

al., 2007; Vardi et al., 2012) which the haploid phase (i.e.,

holococcolithophores) can resist (Frada et al., 2008, 2012):

Therefore, the occurrence of haploid individuals would serve

as new starting point in the case of viral attack in the hetero-

coccolith phase. Another factor that could have affected the

results presented here is zooplankton grazing: although gen-

erally zooplankton grazing does not cause E. huxleyi blooms

to end (Nejstgaard et al., 1997), their effect on smaller pop-

ulations could be more important. Possibly important factors

that were not addressed in our study are zooplankton grazing

and irradiance. Therefore, their contribution to the control

of the observed distribution of holo- and heterococcolith life

phases cannot be ruled out.

5.3.1 Gephyrocapsa oceanica, G. muellerae, and

Emiliania huxleyi morphotype B/C as tracers

of Atlantic water influx

Atlantic Water (AW), with a winter salinity around 36.5

(Rohling, 2009), enter the Mediterranean Sea through the

Strait of Gibraltar. In its eastwards pathway following a cy-

clonic circulation, the surface water increases in salinity, TA,

and temperature and decreases in nutrient concentrations. A

main part of this AW flows into the Tyrrhenian Sea (Tanhua

et al., 2013b, and references therein). Therefore, if there are

species that arrive within this water mass (but whose optimal

environment is not typical of eastern Mediterranean waters),

the Tyrrhenian Sea could still host them.

During April 2011, the distribution of the species Gephy-

rocapsa oceanica and G. muellerae and morphotype B/C of

the species Emiliania huxleyi was highly and negatively cor-

related with salinity. We have argued that salinity constrain

to coccolithophore distribution is not critical. A high corre-

lation with this parameter might just reflect the carry-over

of a different species assemblage in a different water mass.

Gephyrocapsa oceanica, G. muellerae, and morphotype B/C

of the species Emiliania huxleyi were mostly present un-

til ∼ 10◦ E after the Sardinia Channel and in the Tyrrhe-

nian Sea. They are all present in AW (Ziveri et al., 2004;

McIntyre and Bé, 1967) and have been reported before for

western Mediterranean waters (e.g., Cross, 2002, and Knap-

pertsbusch, 1993; the latter only for Gephyrocapsa spp).

The morphotype B/C of E. huxleyi has been associated with

cold (Hagino et al., 2005; Mohan et al., 2008), nutrient-

rich (> 10 µmol nitrate kg−1) waters with low calcite satura-

tion states. These characteristics can be found in AW but

are lost very soon in the Mediterranean Sea. Knapperts-

busch (1993) related G. oceanica to surface AW’s influence

given the highly negative correlation with salinity. Here we
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propose Gephyrocapsa oceanica, G. muellerae, and Emilia-

nia huxleyi morphotype B/C as tracers for AW influx into the

Mediterranean.

6 Conclusions

Our results highlight the importance of seawater carbon-

ate chemistry, especially [CO2−
3 ], and [PO3

4-] in unraveling

the distribution of heterococcolithophores, the most abun-

dant coccolithophore life stage. Thus, carbonate system pa-

rameters might be critical, but overlooked, for solving the

coccolithophore distribution patterns. In contrast, holococ-

colithophore distribution was mainly linked to oligotrophic

conditions. This correlation can be due to competitive ad-

vantages under such conditions, but this hypothesis remains

to be tested.

Environmental parameters that drive the observed patterns

in distribution and assemblage composition of the haploid

and diploid life phases of coccolithophores (holo- and het-

erococcolithophore) differ. Our results emphasize the im-

portance of considering holo- and heterococcolithophores

separately when analyzing changes in species assemblages

and diversity, and the impacts of acidification on coccol-

ithophores. Changes in the biogeographic distribution of

hetero- and holococcolithophores can be expected along with

the changes in carbonate chemistry and nutrient concentra-

tions that are projected for the next century.
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Appendix A

Table A1. Coccolithophore species list. Heterococcolithophores.

[1] Anoplosolenia brasiliensis (Lohmann) Deflandre

[2] Calciosolenia murrayi Gran

Family Coccolithaceae Poche

[3] Calcidiscus leptoporus (Murray et Blackman) Loeblich et Tappan

[4] Hayaster perplexus (Bramlette et Riedel) Bukry

[5] Pleurochrysis carterae (Braarud et Fagerland) Christensen

[6] Umbilicosphaera sibogae var. sibogae (Weber-Van Bosse) Gaarder

[7] U. foliosa (Kamptner) Geisen

[8] U. hulburtiana Gaarder

Family Helicosphaeraceae Black

[9] Helicosphaera carteri (Wallich) Kamptner

[10] H. pavimentum Okada et McIntire

Family Noelaerhabdaceae Jerkovic

[11] Emiliania huxleyi (Lohmann) Hay et Mohler

[12] Gephyrocapsa ericsonii McIntire et Bé

[13] G. ornata Heimdal

[14] G. oceanica Kamptner

[15] G. muellerae Bréhéret

[16] Reticulofenestra parvula (Okada et McIntyre) Biekart

Family Papposphaeraceae Jordan et Young

[17] Papposphaera lepida Tangen

Family Pontosphaeraceae Lemmermann

[18] Pontosphaera japonica (Takayama) Nishida

[19] Scyphosphaera apsteinii Lohmann

Family Rhabdoaphaeraceae Ostenfeld

[20] Acanthoica biscayensis Kleijne

[21] A. quattrospina Lohmann

[22] Algirosphaera cucullata (Lecal-Schlauder) Young, Probert et Kleijne

[23] Algiropsphaera robusta (Lohmann) Norris

[24] Anacanthoica acanthos (Schiller) Deflandre

[25] Cyrtosphaera lecaliae Kleijne

[26] Discosphaera tubifera (Murray et Blackman) Ostenfeld

[27] Palusphaera vandeli Lecal emend. Norris

[28] Rhabdosphaera clavigera var. clavigera Murray et Blackman

[29] R. clavigera var. stylifera (Lohmann) Kleijne et Jordan

[30] R. xiphos (Deflandre et Fert) Norris

Family Syracosphaeraceae Lemmermann

[31] Alisphaera capulata Heimdal

[32] A. extentata (Kamptner) Kleijne, Jordan, Heimdal, Samtleben, Chamberlain et Cros

[33] A. gaudi (Kamptner) Kleijne, Jordan, Heimdal, Samtleben, Chamberlain et Cros

[34] A. unicornis Okada et McIntire

[35] Calciopappus caudatus Gaarder et Ramsfjell

[36] C. rigidus Heimdal
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Table A1. Continued.

[37] Coronosphaera binodata (Kamptner) Gaarder

[38] C. mediterranea (Lohmann) Gaarder

[39] Michaelsarsia adriaticus (Schiller) Manton, Bremer et Oates

[40] M. elegans Gran, emend. Manton, Bremer et Oates

[41] Ophiaster formosus Gran

[42] Ophiaster hydroideus Gran

[43] Syracosphaera ampliora Okada et McIntire

[44] S. anthos (Lohmann) Jordan et Young

[45] S. bannockii (Borsetti et Cati) Cros, Kleijne, Zeltner, Billard et Young

[46] S. borealis Okada et McIntire

[47] S. corolla Lecal

[48] S. delicata Cros, Kleijne, Zeltner, Billard et Young

[49] S.dilatata Jordan, Kleijne et Heimdal

[50] S. histrica Kamptner

[51] S. lamina Lecal-Schlauder

[52] S. marginoporata Knappertsbusch

[53] S. molischii Schiller

[54] S. nana (Kamptner) Okada et McIntyre

[55] S. nodosa Kamptner

[56] S. noroitica Knappertsbusch

[57] S. ossa (Lecal) Loeblich et Tappan

[58] S. pirus Halldal et Markali

[59] S. prolongata Gran, ex Lohmann

[60] S. protrudens Okada et McIntyre

[61] S. pulchra Lohmann

[62] S. rotula Okada et McIntire

[63] Syracosphaera sp. type D, sensu Kleijne

[64] S. tumularis Sánchez- Suárez

[65] Syracospahaera sp.

Sub-Family Umbellosphaeroideae Kleijne

[66] Umbellosphaera tenuis (Kamptner) Paasche

[67] F. profunda Okada et Honjo

[68] Gladiolithus flabellatus (Halldal et Markali) Jordan et Green

[69] Polycrater galapagensis Manton et Oates

[70] Ceratolithus cristatus Norris
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Table A2. Coccolithophore species list. Holococcolithophores.

[1] Acanthoica quattrospina HOL = sp. aff Sphaerocalyptra of Cros et al. (2000)

[2] Anthosphaera fragaria Kamptner emend. Kleijne

[3] A. lafourcadii (Lecal) Kleijne

[4] A. periperforata Kleijne

[5] Anthosphaera sp. Type A of Cros and Fortuño (2002)

[6] Anthosphaera sp. Type C of Cros and Fortuño (2002)

[7] Calcidiscus leptoporus HOL (Murray et Blackman) Loeblich et Tappan

[8] C. leptoporus ssp. quadriperforatus HOL (Kamptner) Geisen, Billard, Broerse, Cros, Probert et Young

[9] Calicasphaera concava Kleijne

[10] Calyptrolithina divergens (Halldal et Markali) Heimdal

[11] C. divergens var. tuberosa (Heimdal) Jordan, Kleijne et Heimdal

[12] C. multipora (Gaarder) Norris

[13] Calyptrolithophora papillifera (Halldal) Heimdal

[14] Calyptrosphaera cialdii Borsetti et Cati

[15] C. dentata Kleijne

[16] C. heimdalae Norris

[17] C. sphaeroidea Schiller

[18] Coccolithus pelagicus ssp. braarudii HOL (Gaarder) Geisen, Billard, Broerse, Cros, Probert et Young

[19] Corisphaera gracilis Kamptner

[20] C. strigilis Gaarder

[21] C. tyrrheniensis Kleijne

[22] Corisphaera sp. Type A of Kleijne (1991)

[23] Coronosphaera mediterranea HOL gracillima-type =Calyptrolithophora gracillima (Kamptner) Heimdal

[24] Coronosphaera mediterranea HOL hellenica-type =Zygosphaera hellenica Kamptner

[25] Gliskolithus amitakarenae Norris, orthog. emend., Jordan et Green

[26] Helicosphaera carteri HOL =Syracolithus catilliferus (Kamptner) Deflandre

[27] Helladosphaera cornifera (Schiller) Kamptner

[28] Homozygosphaera arethusae (Kamptner) Kleijne

[29] H. spinosa (Kamptner) Deflandre

[30] H. triarcha Halldal et Markalii

[31] Homozygosphaera vercellii Borsetti et Cati

[32] Poricalyptra gaarderae (Borsetti et Cati) Kleijne

[33] Poritectolithus sp. 2 of Cros and Fortuño (2002)

[34] Sphaerocalyptra adenensis Kleijne

[35] S. quadridentata (Schiller) Deflandre

[36] Sphaerocalyptra sp. 1 of Cros and Fortuño (2002)

[37] Sphaerocalyptra sp. 3 of Cros and Fortuño (2002)

[38] Sphaerocalyptra sp. 6 of Cros and Fortuño (2002)

[39] Syracolithus schilleri (Kamptner) Loeblich et Tappan

[40] Syracolithus sp. type A of Kleijne (1991)

[41] Syracosphaera anthos HOL =Periphyllophora mirabilis (Schiller) Kamptner

[42] Syracosphaera bannockii HOL =Zygosphaera bannockii (Borsetti et Cati) Heimdal

[43] Syracosphaera pulchra HOL oblonga-type =Calyptrosphaera oblonga Lohmann

[44] Syracosphaera pulchra HOL pirus-type =Calyptrosphaera pirus Kamptner

[45] Zygosphaera amoena Kamptner
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